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NONLINEAR BOUNDARY VALUE PROBLEMS
FOR SECOND ORDER ELLIPTIC SYSTEMS

FRANK SCHINDLER

1. Introduction. In [3] P. Habets and K. Schmitt, [4] H. W. Knobloch
and K. Schmitt presented a unifying theory for existence of solutions of
boundary value problems for systems of ordinary differential equations
of the form

(.1 x" = f(t, x, x').

In this article we shall show that by using the same arguments as in [3],
[4] the major results proved there hold for boundary value problems for
elliptic systems of second order:

(1.2) Lu, = f(x,u,0u),r=1,2,...,N,xe Q,
(1.3) Bu,(x) = ¢,(x), x € 00,
where
_ m y aZu
L= i,;Z‘;=1a”(X) 0x;0x; ’

a;;€ Co(),0 <a <1,

Q is a bounded domain with C2.« boundary,

(1.4) 0< e = 3 ayxes < Mige

M i, j=1
for all e R™, £ £ 0and all xeQ, Bu = u or Bu = p,u + q, ou/oy,
p,q,€ C%(0Q), p, > 0,q, > 0, (v is the unit outward normal). In order
to generalize results in [3], [4] we need an apriori estimate, which will be
proved in §2. In §3 we prove an existence result for systems of elliptic
boundary value problems.

2. An Apriori Estimate for Solutions Of Coupled Elliptic Systems.

Assumptions. Let 2 be a bounded domain in R” with C2 boundary 00,
define
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Q)  (Fux) = z; a; ax ax, + Zb'(x) + e(X)u

4 7=1 =1

for all u € W22(Q), where af; € C(), b7, c, € L°°(Q),

2.2 0= —I&I2 = Z aj(x) €& = MIEP
1y =1

forall xeQ, &€ =(&, ..., & )ER", r=1,2,... N. Let f: Q x RN x
RmN — RN satisfy Carathéodory conditions (f(x, ...) is continuous for
almost all xe€ Q, and f(-, u, p) is measurable for all u€ R¥, p e R"N)
and let the following Nagumo condition hold:

For every Positive number U there exists a continuous, nondecreasing
function ¢y: [0, c0) — (0, co) such that

e i G -

24  |f(x, u, p)| £ ¢u(|pl) forall xe Q, |u| < U, ue R™,pe R™N.

Let B,u, = u, or Bu, = p(x)u, + q,x)ou,/dy, where p,, q, € C%*(30),
pA(x) >0, g,(x) > 0, x € 00.

LEMMA 2.1. Let &, f, B, Q satisfy all assumptions above. Then the follow-
ing holds. For every constant P > 0 there exists a constant Q such that:
Ifue W2.0(Q),p = 3(m — 1), m = 2, is a solution of

@.5) (Lu) (x) = f(x, u, ou) a.e. in Q
2.6) Bu =0, xedQ, u(x) < P, xe0,
then [0u(x)| £ Q for all x € Q, where
2.7 0% £ C(gp(Q) + D).

The constant C depends on P, the bounding function ¢,, the constant M
Sfrom (1.2), the modulus of continuity of ai;, the norms ||b7l|c, lc,|l, the
boundary 90, which is assumed to be of class C? and meas 0.

PROOF. Let u € W2.x(Q), p = 3(m — 1) be a solution of (2.5) and (2.6),
|u(x)] < p for all x € Q. Then one can apply the inequality (11.8), page
193, [5], or the continuity of the operator T: L(Q) — W2.2(Q) in the case
By = p,(x)u + q,(x)ou/ov (see [1]) in order to obtain

lullz,p = Co(lf(x, u, 2u)l

2.8
28) + P(meas Q)1/5), p = 3(m — 1)(note u € CY{Q)),

7. the norms

where C, depends on M, the modulus of continuity of af;,

6%l 05 llc,]|c and the boundary 89Q. Let s, = ||u|| ., then
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29 lullzp = dy(gyls)) + 1), dp = 2C(P + 1)(meas Q)2

Now we shall modify the proof from [9], where it was proved for ordinary
differential equations.

First we have to prove an interior estimate for any subregion Q' of Q
such that dist (0Q’, 9Q) = 0 > 0.

Let

Kig(v) = {stw: we Sls(»),0 < 5 < 13,
where
Sta(v) = {w:weRm |wl =t,wv = (1/2)t]},

v being a fixed nonzero vector in R™. Note that meas,,_; S?,3(v) does not
depend on v, v # 0.
Let sy be chosen in such a way that

(meas,, 157212
d3m-1)(p(s0) + 1)
(assume ¢h,(§)s—0 — 00, Otherwise the assertion of the lemma is trivial).
Pick a point xy € 2 with |Vu,(xo)| # 0, put v, = Vu,(x0)/[Vu,(xo)l, §(s) =
u,(xy + stv,) and apply Taylor’s Theorem in order to get

< ¢2

ur(xO + tvr) = ur(XO) + tvur(xO)'v

+tzw_1j -9

If one replaces tv, by an arbitrary w, € S,‘,,s(v,), one can obtain

(xo + stv,)v,;v,;ds.

1 0%u,(xy + sw,)
< 2 O YA T O%,)
IVu,(xo)l t<2P +t :,,Z—:1 . ox,%0, ds.
Integrate over S%;(v,), then
4P 4t 1 j‘ . |0%u (x0+sw) >1’3
< r r S .
Vi (xo)l = t + (meas,,_; Si;3)V/3 (.“ 0 55:/3 0x,0x dsd,

Using the transformation of the coordinates:
X0 + swW, = Xg + s Wy, W, = (t/5)a),, dw, S = (t/5)m—1 da), F’

meas,, 1 St(v,) = (¢/0)"* meas,,_; S%;(v,)

one gets
IV, ()] = 42
(2.10)
_1[0%u,(x0+ 5 @, )PP )1/3(m—1)
* (meas,, ; Syf/s)l’ Sim—1) (.f .f 23 T oxox; ds dw,S ,
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or

4P 4t
(211) Ivur(xo)l s e + (measm_l 52/3)1/3('”—1) ‘ d3(m—l) '(¢P(su) + 1)

Note that (2.10) holds for any u € C%Q) and therefore also for any u €
W2nQ),p = 3(m — 1).
The right hand side in (2.11) takes on a local minimum for
2= P.(measm_l Sg/ )1/3(m—1)
d3im—1 (fp(s,) + 1)

Then either s, < sy, or 2 < §2, since ¢, is nondecreasing and

Vi, (x)|2 < 64 P d31)(hp(s,) + 1)-(meas S25)1/3m—0,
i.e.,
max [Vu(xo)[?
(2.12) %=
S 2N%(s§ + 64 Pd3 1) ($p(s.) + 1)(meas,,; S2)71/3m-D),

Now we need an estimate near the boundary 9Q. Let us take x, € 02
an arbitrary point and assume that xy = (0,0, ... 0),x0€ 0,0 = {x € R™:
x| €7, 0L Xy S 1o i=1,2,...n — 1}, 0 € Q. Otherwise we take
a neighborhood U of x, and a C2function A, x; = h(xy, ..., X;_1,
Xi+1, - - - X,,) and we transform the entire region in such a way that in
new coordinates yi, ... ¥,, »V,, = O describes the boundary in small
neighborhood 0@ of x; € 9Q. In the new coordinates y;, ... y,, our equa-
tions will have the same form and the same properties as the original
system, provided the functions y; = y«(x), i = 1, 2, ... m have bounded
first and second derivatives; but this is satisfied locally for each point
xo € 00 in our case (for details see [5]).

Let

(2.13)  Oy={xeR™: |x;| < 11/2,0 < x,, < 79/2, j=1,2, ... m—1)},
T T

then 0, is a neighborhood of x relative to Q. For any y € 0, with |[Vu,(y)|
# 0, either y — tv, or y + tv, does not intersect the hyperplane x,, =
(1/2)y,, for all t > 0, where v, = Vu,(»)/|Vu,(»)|.
Suppose the former and define:

S+(y) = {ZE RM, Zy g (l/z)ym}’

Kf:/:;(}’s V) = {y + stw: WES%'B(y, V), 0 é s é l}a

Sta(y,v) ={y + w:we Sz},

Ky, v) = Kia(y, v) N SH(),

TS2(1s v) = Sia(y, v) N SHY).
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Then *K¢;(y, v,) < 0 for all ¢t € (0, §), y € 0, with |Vu,(y)| # 0, v, =
Vu,(»)/IVu,(y)l, and meas,,_; +Sis(y, v,) = (1/2) meas S?;(v,), since the
axis of symmetry of S¢s(y, v,)is y + tv, € St(y) for all + > 0. Hence one
may obtain similarly as for an interior estimate by using Taylor’s Theorem
on TK!(y, v,) that:

[V, (y)|?

S 2N2{s§+64 P dsy ) - [p(5,) + 1] [meas,,_; TS25(y, v, ()] 1/3m-D}
where v,(y) = (1, 0, ... 0) for Vu,(y) = 0 and v,(y) = Vu(»)/|Vu,(y)|
otherwise, and meas,, ; TS%;s(y, v(»)) = (1/2) meas,,_; SZ;5(v,(»)), where
meas,,_; S¢,5(v,(»)) is independent of v,(y).

Now if we combine both kinds of estimates together with the com-
pactness of {2, we may conclude

214 si S Clgylsa) + D),

where C depends only on these quantities: M from (1.2), the modulus of
continuity of the a¥;, [|bf], llc,|l.,, meas 2, 99Q. Hence there exists a
constant Q > 0 such that: s, < Q < oo for any solution u of

(Lu)(x) = f(x, u, ou), x € Q,
(Bu)(x) = ¢(x), x € 09,
lul, = P,

since lim,_,o, 52/¢)4(s) = co. It is clear that Q can be chosen in such a way
that (2.14) holds for Q instead of s,.

ReMARK. The last lemma is in its various forms due to Bernstein [2],
Nagumo [7, 9], Tomi [12], Schmitt and Thompson [9], Sindler [10], for a
detailed discussion, see references [5, 6].

REMARK 2.2. Q-estimate (2.7) for partial differential systems is new (case
of ordinary differential systems is in [9]) and will be needed in §3.

REMARK 2.3. Let ¢ € C#%(9Q), i = 1 or 2 depending on the form of B.
Then one can assume Bu = ¢, x € 90 in (2.6) and Lemma 2.1 stays true.

3. Nonlinear Boundary Value Problems for Systems of Second Order
Elliptic Equations.

AssuMPTIONS. Let 2 be a bounded domain in R” with C2.« boundary
00, define

3.1 Pu = Z a; (X)) s—=— Bx Bx,

7 7=1

for all u € C%(Q), where a,; € C1(Q) and
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(3.2) 05 el s 3 a6t < Mg,

M 1, j=1
for all xe Q, all £€ R™.
Let f: @ x RN x RmN — RN be locally y-Holder continuous satisfying
the Nagumo condition: For every bounded set U = RN there exists a
nondecreasing, continuous function ¢y such that

lim s?

im —— = o0,

§—>00 ¢U(S)

(3.3 |fCx, u, p)| < gu(Ipl), x€Q, ue U, pe RN,

Let Bu = uor B,u = p,(x)u + q,(x)ou/ov foreachr = 1,2,... N, where
D 4, € C%2(5Q), p, > 0, g, > 0.

LeEMMA 3.1. Let E be a real Banach space and let O be a bounded neigh-
borhood of O€ E. Let H: O x [0, 1] » E be a completely continuous
operator such that for all 2€[0, 1] and ue€dO, u # H(A, u). Then
dis(H(-, 0), 0, 0) = dys(H(-, 1), 0, 0).

PRrOOF. See [11].

THEOREM 3.2. Let Q be a bounded domain in R™ with C%.* boundary, &£,
f satisfy all assumptions from §3. ¢, € CH%(9Q) (i = 1 or 2 depending on
the formof B) r=1,2,... N, g: Q » RN, ge C2+(Q) and let 3 be a
bounded, open subset of Q x RN such that

(34) Brgr(x) = ¢r(x)’ x€eod,r=12,... N,
3.5 gx)el, = {u:(x,u)e 3}, xeQ.

Furthermore assume that for every (xy, ug) € 02 there exists a twice dif-
Serentiable function r: U — R, where U is some neighborhood of (x,, u,)
in R™*N, and constants 7y > 0, y2 > 0 which are such that:

@) ZNUE {(xw):rx, u) £ 0}, r(xo, ug) = 0,
(i) 20t 0) - (0 — 8x0) Z 71 > 0,

2 2
a réioa,uu())la ;a r(axl(:é uO)}, g_:l(xo’ uO)' gg(xo) é T2

2

i) [T w0

m 2 m N 2
53 o) g Ta oo ) +2 35 32000 52 o

(iv) iy j= i 7=1 =1
2o XN, 0%r(x, Up) _or >
+ i,;l s,/Z=laU(x0) Wysiyij a*u(xo’ uO) 'f(xO’ Uy, u) 20

Jorally = (yy, ... ¥n), Yi = (Vits Vios -+ Yim)s 1 = 1, 2, ... N such that
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~—(xo, uo) +Za'(+;"°)y =0,j=12,.
/=1 4

Moreover in the case Bu = p,(x)u + q,(x)ou/oy and x, € 0Q suppose also

0 E 2 (=g <o

X =0
Then the boundary value problem
(3.6) (Lu)(x) = f(x, u, ou), x € Q,
(3.7 (Bu)(x) = ¢(x), x € 90,
has a solution u € C%(Q) such that u(x)e 5, x € Q.

Proor. For simplicity assume B,u, = p,u, + g, ou,/ov(the other case is
even simpler). Consider the problem

(38) (g u,)(x) —Afr(x’ u, au)= (1 —}')[(g gr) (x) —k(ur—gr(x))]s X € Qa
3.9) (Bu)(x) = ¢(x), x€0, r=1,2,... N0 11,

where k > 0 is to be chosen. If u is a solution of (3.8) and (3.9), u(x) € 3,
x € 0, then

[Af(x, u,0u) + (1 — (L &) (x) — k(u, — g()| = Px(Iou]) + T,
where K = max{|u|:ue 3,, x € 3}, and
T = max{|(£g,) (x) — k(u, — g,(X))|: [ul £ K, x€Q,r=1,2,... N}.
Let @x(s) = ¢x(s) + T, then @y is also nondecreasing and continuous

such that lim,_,., @x(s)/s?2 = 0, hence, there exists a constant N, such that

(3.10 Ioullo, = Ny

for any solution u of (3.8) and (3.9) with u(x) € 3., x € Q.
Let

= {ue CYD): u(x)€ 3,, |ou(x)| < N + 1, xe 0},

the 0 is a bounded, open neighborhood of 0 € C1() and (3.8) and (3.9) is
equivalent to the operator equation

u = LAf, u, 0u) + iku + (1 — DL g)(-) + kg(-))

where #, u = Pu + ku subject to the boundary conditions (3.9). Since
k >0, ;! is a compact, linear operator on C(Q). If now there exists
u € 90 which is a solution of (3.8) and (3.9) for some A€ [0, 1), then it
must be the case that [gu(x)| £ N, < Ny + 1, x € 0, u(xg) € 33, xo€ Q.
First assume xj € 09, then there exists a twice differentiable function r
on some neighborhood (x,, 1) in R#*N such that (i) — (v) hold. Therefore
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ar(xy, ug)/dy = 0 since r(x, u(x)) < 0, [x — xo| < ¢, x € Q, r(xg, ug) = 0.
But

or(xg, up) _ or ou
ov (xo, o) v+ o, ou oy

_ 0r(xg, ug) y 1 _ b
T YT B (qr o) =g u°’> <0

and this is a contradiction. Thus x, € Q and there exists a function r,
r(xg, ug) = 0, r(x, u(x)) =< 0 for |x — xo| =< ¢ for some ¢ > 0. It follows
that

N
G.11) —(xo, ug) + Z (xo, ug) a‘gfc’fo) —=0,j=1,2,... N,and
J

= — B ) 0Pr(xo, Uo)
Lr(x, U(X)) |y=x, = ’.,IZ:_la,y(xo) 2x.0%;
32,- aus(xO)
”JZ_I SZ alj(xo) axiaus axl
8 . 02r(xg,ug) 0uy(xo) Ou Axo)
(312) i,;l 5 /Z=l ai{X0) ouou, 0x; éx,-

+ 2 (o, ) (AfCx s, ()
+ (1 — DL g)(xo) — k(ug — g(x0)D-
on the other hand
or > or <
a—u(xo, up)(up — g(xg)) = 71 > 0,and a—u(xo, ug) Yg(xo)‘ = re
We therefore obtain that (3.12) is negative if we can show that
k %(xo, up) (up — &(xo)) — %(Xo, up) £ g(xo) + %(Xo, ug) f(xo, o, B1(xo))
is positive, it shall be in the case if

(3.13) k1= 12 — m@y(1ou(xo))) > 0

where my = sup |0r(x, u)/oul. It is enough to show

(3.14) lim %‘g”) = 0, where s, = N,,
k—o0

see (3.10). Assume for a while that (3.14) is satisfied, then from (iv) and

(3.13) one can conclude that (3.12) is negative and this is a contradiction

to r(x, u(x)) having a local maximum at x = x, € 9, since Lr(x, u(x))|,=s,
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< 0, and & is a uniformly elliptic operator. We hence conclude that the
Leray-Schauder degree

dis(id — L AfC, -5 2) — k- =(1 = D) Zg(-) + kg(+)), 0,0)

is independent of 1 [0, 1), i.e., it equals d;4(id — L 7Y(L g(-) + kg(-), 0,
0), see lemma 3.1. If on the other hand ¥ = #; (¥ g(-) + kg(+)), then
Lu + ku=2Lg + kg, u(x) = g(x), thus u = g € @. Therefore the above
degree equals 1 and (3.8) and (3.9) has a solution u; € @ for all 1€[0, 1)
and also for 1 = 1, i.e., (3.6) and (3.7) has a solution u € @ completing the
proof provided we show that (3.14) holds. From lemma 2.1 one can get

52 < C(é(sp) +ak + b + 1), forallk = 1,2, .... Then either s, £ D <
0w,k =1,2,...,orlim inf,_, k/s? > 0, or lim sup s?/k < oo, and
2
(.15) 0 < lim 2568 < jim sup 3£ . 1im 29 _ o,
k—o0 k k k—o0 s,%

hence (3.14) holds.

COROLLARY 3.3. Let Q be a bounded domain with C2 boundary, %, f,
B, ¢ satisfy all assumptions from Theorem 3.2. Moreover assume there exist
twice differentiable functions at, 8: Q — RN such that

(3.16) a;(x) <0< B(x), xeQ,i=12,...N,

(L a)x) = filx, Uy, ... Ui_1, Oy Usigs - Ups D1y - - - Oy - - PNy

(&L BIx) = filx, uy, ... u;—y, Bis Uig1s - . Uy, P1s - - OBy -+ - PN)
for all u = (ﬁl, .. uy) with a x) £ u; < BAx), p;€R”, 1 £i < N.
3.17) Ba(x) <0 < Bf(x),x€0Q,1 Si<N.
Then there exists a solution u of

(& u)(x) = f(x, u, ou), x € 09Q), x € 69,
Bu(x) = 0, x € 90,
such that a (x) € u{x) < fAx), 1 Si < N, xe.
Proor. For Y we take in Theorem 3.2 the following set:
3 ={0u): a x) <u; < By(x),xe0Q,1 £i <N}

If upe oy, xo€ Q, then there exists j such that either ug; = a;(xp) or
uy; = B;(xp). Assume the former and put r(x, u) = u; — ,(x), then r
satisfies all assumptions in Theorem 3.2 and we can conclude the existence
of a solution u € C¥Q) with u(x)e %,, x€ Q.

REMARK 3.4. In Corollary 3.3 instead of (3.16) and (3.17) one might
assume
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(3.16) @(x) S0 (¥, xeQi=12..N
(3.17’) ﬁia,o(x) = 0 é ﬁ,-‘B;(x), X € aQ, i= l, 2, ... N

To see that we take Uf = U; + ¢, L = L; — ¢,

S U.p) + gt w2 Uy
S, u, p) = {filx, u, p), L S u; 2 U;
1f(pr)+ e A

apply Theorem 3.2 with U¢, L¢, f¢ and by a standard limiting argument
one can conclude the assertion.

ExAMPLE 3.5. Let Q be a bounded domain in R™ with boundary 9.
Consider the following system:

(3.18) du = u® + vVu (0.25, 0.75)
(3.19) Av =v3 — w2 + )(v + 1) + uVv (0.75, 0.25)
subject to the boundary conditions:
ou ov
(3.20) u+§v——0v+a = 0, x € 90.

Let 3 = {(x,u,v): x€Q, (u, v) € R u? + v? < d?}. Assume that for some
x €8, (uy, Vo) € 95,. Then u + v§ = d§. Put r(u, v) = (2 + v2 — d?)/2,
g(x) = (0, 0), note that r(uy, vp) = 0, r(u, v) £ 0 for all (x, u, v) € 3,

— %(uo, Volup — g—z(uo, Vo) Vo= —uf — V3 = —d? < 0.

Let ugé + vop = 0, then

auzgz + gv’; 2 + (gz g:;) (fi(MOa Vo, 8’ 77), f‘Z(u09 Vo, &, 7?))

= &2 + 9% 4+ uf + ugvof + v4 — vo(ud + D(vo + 1) + ugvey

2,1 2 dz— )__7_ . e —
25+ L+ L2 - T 20, providedd 2 /53770,

Therefore all assumptions of Theorem 3.2 are satisfied and one may
conclude the existence of a solution (u,v): 2 — R? of (3.18)—(3.20) such
that u2(x) + v2(x) £ 5 + 4/70, for all x € Q.

REMARK 3.6. One can replace (3.20) by
(3.21) ‘u(x) = 0, v(x) = 0, x € 9Q.
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Then there exists a solution (u, v) of (3.18), (3.19) and (3.21) such that

u¥(x) + v2(x) £ 5+ 4/70, xe Q.
REMARK 3.7. Let

ou(x) _ o ov(x) _
(3.22) o= 0,855 = 0, xe00.

Then there exists a solution (u, v) of (31.8), (3.19) and (3.22) such that
u¥(x) + v&(x) £ 5 + 4/70. To see that we consider, instead of (3.22), these
boundary conditions:

eux) + 2= 0= v + & xed0, e >0,

and apply a limiting argument.
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