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Introduction. Let R be a real closed field and V an affine algebraic R-
variety. We assume that V(R) is Zariski-dense in V. A basic semialgebraic 
set S c V(R) is a set of the form S = S(fl9 . . . , fj = {x e V(R) \ f{(x) > 
0, / = 1, . . . , m} for suitable/^ e R[V]. HOW many/j- are needed for such 
a representation of SI It is shown that there exists a finite upper bound 
depending only on the dimension n of V. This bound is equal to n for 
n ^ 3.1 did not succeed in proving (or disproving) this for n > 3. Anyway, 
the best bound is ^ n. We shall also characterize the basic semialgebraic 
sets among the open semialgebraic sets. 

1. The real spectrum. For a quasicompact scheme S we denote by 
(X(S), ß(S)) the real spectrum [4]. This is a restricted topological space 
X(S) with base ß(S) [2]. For an jR-variety V one has also the restricted 
topological space (V(R), 7*(K)), where j-(V)is the lattice generated by all 
sets, which are basic semialgebraic after restriction to open affine subsets 
of V. By the ultrafilter theorem [2] one has canonical isomorphisms 

(?(R),ftV))~{X(V)9ß(V)) 
p 

where A means canonical ultrafilter completion of a restricted topological 
space. 

Now let Xi, ..., xt be real points of the R-Variety V, and let A be 
the semilocal ring A = lim_>0(£/), U open in K, xl9 . . . , xt e U. We set 
V(xl9 . . . , Xi) := {Fe V(R)\x(F) generalizes some x j , and provide 
this with the induced base f(xl9 . . . , x7). Then the projection X: 
Spec(^) -> F defines an imbedding 

X(X): (*(Spec04)), /3(Spec04)) -> {X(V\ /3(F)), 

moreover, one has the commutative diagram 
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(Z(Spec04)), /3(Spec (A)) > (V(*i,. • • */), f(*i> . . . , *,)) 
/ |X(Spec(^ ) ) 

where / | Z(spec(y4)) is an isomorphism. 
We denote by (V(xl9 . . . , */), f(*i, . . . , xt) the subspace of all closed 

points in (FOi> • • • > */)> f(*i> • •> */)• T n e m a P S -> S defines a lattice-
isomorphism : j{V) -* f(K), but this no longer holds for the above sub-
lattice. Nevertheless, we have the following Proposition. 

PROPOSITION 1. For Sl9 S2 e f{V) one has Si fl V(xl5 . . . , x;) = 52 fl 
V(xi, . . ., */) (#" in (S1 [J S2)\(Si fl S2)

z there is no generalization of 
some Xj. 

(Here we need the index Z for Zariski, whereas general topological 
symbols without index Z refer to the strong topology, which is generated 
by the base of the corresponding restricted topological spaces.) 

PROOF. See [3]. 

2. Relation to spaces of orderings. Let A be a commutative ring with 
unit and W(A) its Wittring. Following Knebusch [8], [9], a homeomorphism 
a: W[A] -+ Z is called a signature of A. We provide the set Sign(y4) of all 
signatures of A with the base Z(A), which is generated by all sets Z(<p, n) •= 
{a e Sign(^t) | a(cp) = n] with <p e W(A) and n e Z. One has a natural map 

x: (X(A)9 ß(A)) -> (Sign(^), Z(^)); (*, P(x)) -> a 

where ^(V) = signPGc)(/c(X) (x) p) and X(A) = ^(Spec^)). 
A 

By Dress [5] % is surjective ; apparently % is constant on connected com
ponents, and Mahé [10] has even shown that % defines a homeomorphism 
between Sign(^f) and the space of the connected components of X(A). 
Now, if A is semilocal and connected, each component of X(A) admits 
exactly one closed point, hence % induces a homeomorphism X(̂ 4) -> 
Sign(A). Following Schwartz [13] this can be seen directly : o e Sign(A) 
defines a canonical décomposition A = Q(a) (J p(a) (J — Q(a) ; p(a) is a 
prime ideal and for Q(a) the relations Q(a) + Q{a) c= g(<j) and Q(a) • 
ö(*) c QM hold. Moreover, ßfr) U pM e X(^) [6] [8]. 

PROPOSITION 2. 2>f 4̂ òe semilocal and connected. The map Sign(^4) -> 
X(A);a y-* Q(a) U p(o) inverts %\%\ X(A) -> Sign(A) is a homeomorphism. 

Note that # need not be an isomorphism of restricted topological spaces. 
Now for q*(A) = {a e A* \ a<a} = 1 for all a e Sign(^l)} and G(A) = 

A*jq*{A) the pair (Sign(,4), G(A)) is a space of orderings in the sense of 
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Marshall [11], [12]. For the proof see 6.4 in [7], 2.5a in [9]. Now, by pro
positions 1 and 2 the theory of the spaces of orderings is made applicable 
for geometrical problems. In particular, we use the following proposition. 

PROPOSITION 3. Let (X9 G) be a space of orderings and B a X a clopen 
subset. 

a) There exist elements gh ..., gn e G, such that B = B(gÌ9 . . . , gn) 
iff for all fans Y c X with \ Y\ = 4 one has \Y ft B\ * 3. 

b) If moreover, for each finite fan Y c X one has 2k\B ft Y\ = 0 mod| Y\9 

there exist gl9 . . . , gk e G with B = B(gl9 . . ., gk). 

Here B(gl9 . . . , gk) = {a eX\a(gi) = 1 for / = 1, . . . , k}. Without 
b) this is [12, 3.16], and b) can be proved correspondingly using 5.5 in 

[ni. 
3. Generation and characterization of basic semialgebraic sets. Let V 

be an affine algebraic jR-variety, R real closed, such that V(R) is Z-dense 
in V9 n = dim V. Among the open semialgebraic sets S a V(R) a basic 
one has the following additional properties : 

(A)SftdSz= 0 . 
For U < V, U real, integral and closed, one has 
(F) 17 H P(S)\ i=- 3 for all fans Y c X(R(U)) with \Y\ = 3. 
Here p is defined as in §1. If moreover S is of the form S = 

S(al9 . . . , ak), then for the above U < V one has 
(Fk) 2*|7 fi P(S)\ = 0 mod \Y\ for all finite fans Y a X(R(U)). 

PROPOSITION 4. Let S a V(R) be open semialgebraic. 
a) If (A) holds for S and also (Fk) for all U < V as above, then S is basic. 
b) If moreover, for all m ^ n = dim V there exists a number k(m) e N 

such that (Fk(m)) holds for all U < V with dim U ^ m then there exists a 
sequence 1 < ii < • • • < ir = n with ij+1 — ij ^ 2 such that S is of the 
form S = S(bl9 . . .,bk)for k ^ Ur/=ik(ij). 

For the proof one applies Prop. 3 on a suitable semilocalization of V. 
So by Prop. 2 and Prop. 1 one gets a representation of S of the form 
S = S(bl9 . . . , bjtin)) up to a set of lower dimension. This aberration can 
be represented by further elements c l s . . . , ck(i). Unfortunately, the number 
of elements we need to drop the dimension of the defect increases multi-
plicatively in our proof. See [3] for the details. 

COROLLARY. Let S c V(R) be basic semialgebraic. Then S is of the form 
S = S(bl9 .. .9bm)withm ^ im + 1 ) / 2 ] (2 / - (1/2)(1 - (-1)»). 

This follows from the fact that stability index of F = transcendence 
degree of Ffor function fields over R [1]. 
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COROLLARY. For n = 1 every open semialgebraic set S a V(R) is of the 
form S = S(b). 

This is more of less well known [14]. 

COROLLARY. Suppose that R is the field R and V(R) complete. Let 
S c V(R) be semialgebraic and open. If for each pair x, y of points in V(R) 
there exists an open set 0 c V(R) with x9 y e 0 and a basic semialgebraic 
set S' a V(R) such that S f] 0 = S' fl 0 then S is basic. If moreover, S' 
is always of the form S(b'), then S is of the form S(b) too. 

PROOF. See [3]. 
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