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1. Introduction. Let/(x, y, z) be a homogeneous polynomial with ration
al coefficients. Let Cf be the real projective curve defined by / = 0. It is 
well known [9] that if Cf is nonsingular, then it is a compact one-dimen
sional manifold, and so homeomorphic to a disjoint union of circles. 
A circle can have either a one-sided or two-sided imbedding in RP2 ; in 
the latter case it has both an interior (homeomorphic to a disk), and an 
exterior (homeomorphic to a Möbius strip). The two-sided components 
of Cf are called ovals. If / has even degree, then every component 
of Cf is an oval; if degree:(/.) is odd, every component except one is an 
oval. 

Curves C\ and C2 have the same topological type if there is a home-
omorphism <p: RP2 -» RP2 which maps Cx onto C2. Each oval of a non-
singular curve Cf is either inside or outside any other; the partial ordering 
of the ovals induced by this inclusion relation, together with the parity of 
the degree of/, determine the topological type of the curve. 

We present an algorithm which, given/(x, y, z) with rational coefficients, 
determines whether Cf is nonsingular, and if so, determines the ordering 
of its ovals. 

2. Description of algorithm. We may assume tha t / i s squarefree; (if not, 
we can replace / by its greatest squarefree divisor /z, as Cf = Ch). The 
main step of the algorithm is construction of a cellular decomposition 
Df of RP2 such that every component of C/ is a union of cells of Df. The 
following description of Df is produced : (1) a list of the pairs of adjacent 
cells (two cells are adjacent if their union is connected), and (2) a list of the 
cells contained in Cf. In the course of constructing Df we determine if 
Cf has singularities, and if so, halt. 
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Assuming C/ is nonsingular, the rest of the algorithm is straightforward. 
The reflexive transitive closure R of the adjacency relation is an equival
ence relation; for a subset X of RP2, let R(X) denote the restriction of R 
to the cells of Df which meet X. We construct the equivalence classes of 
R(Cf); (the union of) each class is a component of Cf. Let Obe one of 
these components and K the corresponding class of R(Cf). We construct 
the equivalence classes of R (complement (O)) ; (the union of) each class is 
a component of complement (O). O is an oval if and only if there are two 
such classes ; if there is only one, we do not process O further. Suppose 
there are two classes Kx and K2. Let V be the union of the cells of Kx and 
let W be the union of the cells of K2. We want to determine which of V 
and W is the interior (Int(O)) and which is the exterior (Ext(6>)) of O. 
Now it can be shown that Df gives RP2 the structure of a finite cell com
plex. As O U V = V and O U W = W, K U Kx and K\] K2 give V 
and W respectively the structure of subcomplexes of RP2. We can there
fore compute the Euler characteristic i of each of V and W using the 
formula 

X = OCQ - ai + a2, 

where <*,- is the number of /-cells. But Int(O) is homeomorphic to the closed 
disc and Ext(O) is homeomorphic to the closed Möbius band. Thus 
%(lnt(0)) = 1 and ^(Ext(O)) = 0. Hence we can determine from % which of 
Fand Wis Int((9)and which is Ext(<9). After making this determination for 
all ovals of C/, we know, for any oval, which cells of Df are inside, which 
on, and which outside it. From this information the ordering of ovals 
follows. 

The chief tool for constructing Df is the cylindrical algebraic decomposi
tion (cad) algorithm [2], [3], [4]. We use this algorithm to construct a 
cellular decomposition of the affine plane relative to the polynomial 
g(x, y) = f(x, y9 1). (The algorithm would compute the discriminant 
D(x) o£g(x, y), isolate the real roots of D(x), and then "lift" the cells in the 
real line which are determined by the roots of D(x) to cells in the plane 
which are determined by the locus of g(x, y). Note that D(x) is not the zero 
polynomial as/(x, y, z), and hence g(x, y), is squarefree.) Regarding the 
affine plane as a subset of RP2, we extend to a cellular decomposition of 
RP2 relative to f(x, y, z) by appropriately partitioning the line at infinity 
into cells. Before applying the cad algorithm, we perform a linear change 
of coordinates of RP2, if necessary, to ensure that the curve Cf has only 
simple intersections with the line at infinity, and that Cf does not contain 
the point [0, 1, 0]. These properties facilitate the passage from the affine 
to the projective plane. 

3. Concluding remarks. It can be shown that the computing time of our 
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algorithm is 0(p(n, d)), for some polynomial function p of the degree n 
of/and the size d of its coefficients. Polotovskii [7] gave a topological type 
algorithm for curves of even degree, but did not establish a bound for it. 
His approach is quite different from ours; he examines the curves/(x, y, z) 
+ ezn, (n = degree(/)), for various small values of e. As noted by Fuks 
and Delzell [5], one could get a topological type algorithm from Tarski's 
decision procedure for elementary algebra and geometry [8], but such 
an algorithm would have an exponential computing time bound. We 
have recently learned of an independently developed topological type 
algorithm by Gianni and Traverso [6], which has some resemblance to 
our method, but does not make use of cell complexes. 

Because the time of our method depends almost entirely on the time 
required by the cad algorithm, and because the cad algorithm has recently 
been implemented [1], our algorithm appears to have some practical 
value. It could be used, for example, to study examples relating to Hubert's 
16th problem [9]. 

4. Acknowledgements. We are indebted to G. Brumfiel for the observa
tion that Euler characteristic suffices to distinguish the interior of an oval 
from its exterior. We had originally envisioned a full homology calcula
tion. The second author would like to acknowledge helpful and inspiring 
conversations on the subject of this paper with the following people: 
G. Collins, E. Fadell, T.-C. Kuo, E. Mansfield. 

REFERENCES 

1. D. S. Arnon, Algorithms for the geometry of semi-algebraic sets, Technical Report 
#436, Computer Science Dept , University of Wisconsin, Madison, Wisconsin, (Ph. D. 
thesis), 1981. 

2. , G. E. Collins and S. McCallum, Cylindrical algebraic decomposition I : 
the basic algorithm. SIAM J. Comp. 13 (1984). 

3. and , Cylindrical algebraic decomposition II: an adjacency algorithm 
for the plane. SIAM J. Comp. 13 (1984). 

4. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic 
decomposition, in Proceedings of the Second GI Conference on Automata and Formal 
Languages, Lecture notes in Computer Science 33 Springer-Verlag, Berlin, 1975, 134-
163. 

5. C. Delzell, private communication, 1980. 
6. P. Gianni and C. Traverso : Shape determination for real curves and surfaces, Pub

lication 23, Dipartimento di Matematica, Università di Pisa, July, 1983. 
7. G. M. Polotovskii, Algorithm for determining the topological type of a rough plane 

algebraic curve of even degree, Gorkov Gos. Univ. Ucen. Zap, Vyp 187 (1973), 143-
187. 

8. A. Tarski, A Decision Method for Elementary Algebra and Geometry, University 
of California Press, 1951. 

9. G. Wilson, Hilberth Sixteenth Problem, Topology 17 (1978), 53-73. 



850 D.S. ARNON AND S. McCALLUM XEROR PARC 3333 COYOTE HILL ROAD, PALO ALTO, CA 94304 DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO, TORONTO, CANADA M5S 1A7 




