HILBERT'S PROBLEM 16 (B)

J.-P. FRANCOISE

Dedicated to the memory of Gus Efroymson

Hilbert's Problem 16 (B) is related to interesting questions of real analytic geometry and dynamical systems. Let L be the canonical fibre line bundle on P_{C}^{2} and m be a positive integer. A Pfaff algebraic form (P.A.F.) of degree m on P_{C}^{2} is an algebraic section of $T\left(P_{\mathrm{C}}^{2}\right)^{*} \otimes L^{\otimes-(m+1)}$. Let E_{C}^{3} be the affine space of dimension 3; a P.A.F. is equivalent to the data of a 1-form $\omega=\omega_{1} d x_{1}+\omega_{2} d x_{2}+\omega_{3} d x_{3}$, where ω_{i} are homogeneous of degree $m+1$ and $\sum_{i=1}^{3} x_{i} \omega_{i}=0$. A P.A.F. defines a foliation with singularities of $P_{\mathbf{C}}^{2}$ whose leaves are open Riemann surface. They are called leaves of the P.A.F. An algebraic ordinary differential equation of degree m (A.O.D.E.) is a vector field $X=f(x, y) \partial / \partial x+g(x, y) \partial / \partial y$ on E_{R}^{2} whose components are two polynomials of degree m. The flow of X defined by equations

$$
\frac{d x}{d t}=f(x, y)
$$

(i)

$$
\frac{d y}{d t}=g(x, y)
$$

determines a foliation with singularities of $E_{\mathbf{R}}^{2}$. A limit cycle (L.C.) is a periodic solution of (i) isolated in the set of periodic solutions. After complexification and compactification, an A.O.D.E. gives a P.A.F. whose leaves are invariant by the involution $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ of P_{C}^{2}. Now we are ready to state the main.

Problem. What is the relation between the number of L.C. and the degree m ?

We have found a partial solution, i.e.,
Theorem (Françoise-Pugh [2]). For any integer m and real T, there exists $b(m, T)$ such that the number of L.C. of period less than T of an A.O.D.E. of degree m is less than $b(m, T)$.

A key theorem in the localreal study is Bautin's theorem generalized
to arbitrary m in [1]. Let $\mathscr{B}(m)$ be the set of A.O.D.E. of degree m with $f(x, y)=\lambda x-y+\cdots$, and $g(x, y)=x+\lambda y+\cdots$.

Theorem (Bautin). Let $X_{0} \in \mathscr{B}(2)$ be a center at $O \in E_{\mathrm{R}}^{2}$; then the number of L.C. which may appear in an arbitray small neighborhood of $O \in E_{\mathbf{R}}^{2}$ for an arbitrary perturbation $X_{0} \rightarrow X \in \mathscr{B}(2)$ is less than 3.

We used the analytic geometry statement that if A, B are subanalytic sets, and $f: A \rightarrow B$ is a sub-analytic proper morphism, then for any point $y_{0} \in B$, there exist an integer N and a neighborhood $U\left(y_{0}\right)$ such that the number of connected components of $f^{-1}(y), y \in U\left(y_{0}\right)$ is less than N.

Of course we had to appeal to dynamical systems, whose methods begin with Poincaré-Bendixson, and yield proofs that periodic solutions may accumulate on: i) singular points, ii) periodic solution, and iii) graphics. A graphic is a union of singular points and adherent trajectories. L.C. cannot accumulate on a periodic solution because a periodic solution has an analytic first-return map. A graphic or a singular point limit of periodic solutions has a first-return map which may fail to be analytic a priori. Hence there is no simple way to prove that an A.O.D.E. has a finite number of L.C. Let us say that an A.O.D.E. is generic if its flow is Kupka-Smale. Then a uniform bound for the number of L.C. of generic A.O.D.E. of fixed degree m implies the existence of a uniform bound for all A.O.D.E. of degree m (Pugh). A similar idea in the complex version was one of the key ideas of Petrowski-Landis's methods.

References

1. J.-P. Francoise, Cycles limites, étude locale, Preprint I.H.E.S., 83 M 13.
2. J.-P. Francoise et C. C. Pugh, Déformations de cycles limites, Preprint I.H.E.S., 82 M 62.

35 Route de Chartres, 91440 Bures sur Yvette, France

