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EXAMPLES OF RP-MEASURES

JOHN N. MCDONALD

ABSTRACT. We call a measure on the torus 72 an RP-measure if its
Poisson integral is the real part of a holomorphic function. Let
RP, denote the set of RP-measures which are non-negative and have
total mass one. We construct an extreme element ¢ of RP, such that
the closed support of 4 is all of T% We also construct an RP-mea-
sure which is not an extreme point, but which belongs to a proper
weak* closed face of RP,, is absolutely continuous with respect to
Haar measure, and satisfies a certain necessary condition on ex-
treme elements of RP,.

The well known theorem of Herglotz asserts that, if » is a positive
harmonic function on the open unit disk D, then there is a unique positive
Borel measure g on the unit circle 7'such that

(1) u(z) = j P00,

where P,(x) denotes the Poisson kernel Re(x + z)/(x — z). An equivalent
way to state Herglotz’s theorem is the following. Let f be holomorphic in
D, have positive real part and satisfy f(0) = 1. Then there is a unique
probability measure gf on T such that

@ Ref(2) = [ Px)dug(x)

It is clear from (2) that the correspondence M;(f) = yy is a bijection be-
tween the convex sets P(T)) = Borel probability measures on 7 and

2, = {f|f holomorphic in D, Re f > 0, f(0) = 1}.

Also, if 2, and P(T) are equipped with the topology of uniform con-
vergence on compacta and the weak* topology respectively, then M, is
continuous. Moreover, M, is affine, i.e., it preserves convex combinations.
It follows that

Mi(ex ;) = ex P(T),
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where ex 2, denotes the set of extreme points of £;. Since the extreme
points of P(T) are exactly the measures supported by singletons, it follows
that f'€ ex 2, if and only if

3 Re f() = [ P.(0dd 0,

for some y € T, where J, denotes the unit point mass measure concen-
trated at y.

When the disk D is replaced by the bi-disk D x D, there is an analogue
of (1). Namely, if u(z, w) is positive on D x D and harmonic in each
variable, then there is a unique positive measure 4 on the torus 72 such
that

uz, w) = [ PLOPOIux, ).

Thus, as in the one-dimensional case, we have a mapping M;: #;—
P(T?), where

2 = {f]f holomphic on D x D, Re f > 0 and f(0, 0) = 1}

and M(f) is the unique probability measure gy which satisfies

Refiz, w) = [ PLOPUOMputx, »).

Like M,, the mapping M, is affine, continuous, and one-to-one, but, in
contrast to the one dimensional case, M is not onto. In fact, it is easy
to show that y€ My(2,) if and only if [ x2y%du(x, y) = 0 for all pairs
of integers (p, q) with pg < 0. The set My(#,) will, from now on, be
denoted by RP;. Since RP; is weak* compact and convex, it must have
extreme points, but the problem of describing the extreme points of RP;
posed by Rudin in [6], does not have such an easy solution as the problem
of describing the extreme points of P(T). Note, in particular, that PR,
cannot contain point masses.

In this paper we present two examples. In our first example we show that
if g is an appropriately chosen inner function, then

Gz, w) = a1 - 1ig£w2{((i})+ iz) + ig(0)

is an extreme element of 2, having the property that y; = M»(G) is an
extreme RP; measure whose closed support is all of 72 (Note the contrast
with (3).) Our second example is a member of 2, of the form

_ 1 + z7fyw/2)
Fy(z, w) = 1—_%,
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where f; is a certain polynomial of degree n = 2. We show that F; satisfies
a necessary condition on the extreme points of £,, given by Forelli in
[1], that up, = My(Fp) is absolutely continuous with respect to the usual
Lebesgue measure on T2, and that up, belongs to a proper weak* closed
face of RP;. Unfortunately, the example Fy happens not to be an extreme
element of £2,. Nevertheless, it suggests a conjecture which relates to
another question raised by Rudin in [6], namely, does there exist an ex-
treme element of RP; which is absolutely continuous with respect to
Lebesgue measure on 72? In constructing our examples we will develop
some results which are, perhaps, of some independent interest.

ExampPLE A. This example is derived from the following

THEOREM 1. Let g be an inner function on D such that g(0) is real. Then

@ G, w) = LB ELE) 1 ig0)

is an extreme element of P,. (See [2] for a discussion of inner functions.)

Before giving a proof of Theorem 1 we will show how it leads to our
example. We choose g such that it has no analytic continuation across any
sub-arc of 7. (For example, we could take g to be the Blaschke product

— )-n) k _

where A, = exp (2zi/n). Of course, the crucial property possessed by this
g is that its zeros accumulate at every point of T.) It is easy to show that
if Wis an open subset of T2, then G cannot have an analytic continuation
across W. It follows from a result due to Rudin [5, p. 23], that ug(W) >
0. Thus, the closed support of g is all of T2

PROOF OF THEOREM 1. Define a measure vy on 72 via

[ e, et ) = [ @G 3 1y,
T? T

for he C(T?). Here, C(T?) denotes the space of continuous complex valued
functions on 72 and |dy| denotes the element of arc-length on T normal-
ized so that |7 |dy| = 1. We remark that the Poisson integral of v is

Re( T E2E00 )

Note that vy € RP;, for, if n, m > 0, then

[ xmmdnx, ») = [ @ymiast = o.



194 J. N. MCDONALD

Consider
Z(vp) = {ve RPy| v is absolutely continuous with respect to vy}.

It is evident that ex #(yy) < ex RP;. The previous statement tells us
nothing, however, unless we know that ex #(vy) # @. Since % () is not
necessarily weak* closed, we cannot assert the existence of extreme ele-
ments of % (yy) via the Krein-Milman theorem. Nevertheless, we will
show that g, where G is given by (4), is an extreme element of & (y).

Let v € # (). Define a measure p, on T via

[, 7o) = [ 1)t ),

where f€ C(T). It is claimed that p, is absolutely continuous with respect
to Lebesgue measure on 7. Let K = T be closed and have Lebesgue
measure 0. Let f'e€ C(T) be chosen such that fy(y) =1 for y € K and | fy(»)|
< lforye T\K. Lete > 0 be given. Choose Hy € C(T?) such that

| dy
() j e = Holdy < .
Then, forn =1, 2, ..., we have
| : i
| oo = | [ vt )|
< | [ ) Hox, x|+ ¢
<[, ) HEDL ||| + <.
Letting n — oo, we obtain p,(K) = e. Since ¢ was chosen arbitrarily from
(0, 00), it follows that p,(K) = 0. Thus, the measure p, is absolutely con-

tinuous with respect to arc-length measure on 7.
Now define a measure 9 via

[ 1o pnie, ) = [ mED)0do),  hec(T.
We will show that ¥ = vy by showing that

[ ke st ) = ke, patx, ).

for every k € C(D x D) such that |k| = 1. Let ¢ > 0 be given. Choose
Hj as in the previous paragraph. Choose r € (0, 1) such that

© || k@), »H(ED) st = [ kG, ») o). Iyl | < ¢
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and
@) [, kG o) - | kG, o] < .

From (5) and the definition of v,, we have
® [ kx i, ) = | KGO, DHGEO), » 1| < e
From (6) and (8). we have

| e ot ) = § k@), 1) HoEO). 21| < 2.
T

From the definition of vy and from the continuity of y — g(ry), it follows
that

| etz ) = k@), D HiCx, )l 9| < 2.

Again, using (5), we have

|k paix, ) = [ k@), i, )| < 3e
From the definition of p,, it follows that

| ) = k@), ») dos)| < 3e.
Using (7), we have

|, ke i, ) = kG, 9) do)| < e
Finally, by the definition of ¥, we have

| e et ) = ke, y)ds, )| < de.

T2 T2

Since ¢ is an arbitrary positive number, it follows that [kdy = {kd9. Thus,

vy =J.
The argument above shows that

[ 1t i, ) = § GGY »D, (e,
T2 T

for every h € C(T?), where D, = (dp,)/|dy|. Taking h(x, y) = x~1y», where
n is a positive integer, and using the fact that y € RP;, we have

| ey = 0.
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It follows that F, = fD, belongs to the Hardy space H;. (See [2, Chapt. 4]
for a discussion of Hj, the F. and M. Riesz Theorem, and related topics.)
It is now clear that the mapping v — F, is an affine bijection between
Z (v) and a convex subset of

Ry = {FemFg 2 0and | FOROI = 1}.

In fact, it is easy to show that each Fe€ R, is of the form F, for some
v € Z(yp). It follows that v is an extreme element of % () if and only if
F, is an extreme element of R,. In [3, example 3] we showed that the
extreme elements of R, are exactly the outer functions which lie in R,.
(See [2] for a discussion of outer functions.) An example of an outer func-
tion in R, is F; = (2i)~! (g + i)2. (Note the fact that F; € R, depends on
g(0) being real.) The measure y; such that F; = F, is given by

|1 an(x, ») = | HGD), 9 (1 + Tm g(3) 1y
We will now calculate the Poisson integral of y;. Let z, w € D. Then

J PP ) = 327w [ PG )
+ Do [ P ).
For n > 0, we have

[ xPunx ) = | gO)1Pu) (1 +m O]
T2 T
= g0 + Qi) Mgl — gl
and
[P ) = [g0)Pu») (1 + Im (D]
= 800" + Qi) g1 = gy
Also,
[ Puddba(x, 3) = 1 + @0 (gOw) — gOw)-

A straightforward calculation now shows that

_ Ref 1 —igw) (A + iz)
I - P (X)P,(y)dv(x, y) = Re( 1 — zg(w) )

Since v; is an extreme element of RP1, it follows that
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6w = L=fEN AL B 1 o)

is an extreme element of #,.

ExaMpLE B. Consider a function Fe 2, For A, z€ D, we have the
expansion

©) Fz,22) = 1 + 2Y F,()z",
n=1

where F,(4) is a polynomial in A of degree < n, which satisfies sup;p|F,(1)|
= 1. Let %, denote the set of polynomials of degree < » which are boun-
ded in absolute value by 1 on D. Of course %,, is a compact convex set of
(complex) dimension n + 1. Let fe€ ex %, where n > 1. Consider the set

F(f, n) = {Fe 2|F,2) = f(D}.

It is easy to see that (f, n) is a proper face of 2, which is closed in the
topology of uniform convergence on compact subsets of D x D. Further-
more, we have the following

THEOREM 2. For n > 1 and f € ex ¥, % (f, n) contains an extreme element
Of ,72.

PRrROOF. Since #(f, n) is a compact convex set, by the Krein-Milman
theorem it suffices to show that & (£, n) is non-empty. Thus, the observation
that

1 + z#f(w/z
rew = T
belongs to & (f, n) completes the proof.

The interested reader can check that Theorem 2 is simply a re-phrasing
of Example 4 of [3]. Also, Examples 1 and 2 of [3] correspond to the cases
in which f(2) = A and f(A) = A" respectively. A natural idea, then, is
to study the case in which fis an extreme element of %, which is not of the
form cA*. It requires a little work, however, to show that such extreme
elements of %, exist. We will show below that, for n = 2, there is a
polynomial f; € %, having the following properties:

(10) ,fb—l(T)\D = {'119 12’ e ln},
where A3, Az, . . ., A, are distinct points of 7'; and
€Y foEeex U,

Let x1, X, . . ., x, be distinct points of 7. And let K~1 = sup []%|x —
x;|2. Since 1 — K [] 1le®* — x;|? is a non-negative trigonometric polyno-
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mial, it follows from a well known result of Fejer and Riesz [4, p. 259]
that there is a polynomial 4 € # of degree n such that

h(el‘t)lz =1 — KH;!:I leu —_ lez

Note that |A(x;)| = 1, forj = 1, 2, ..., n, and that A is not of the form
cz". Consider

E={geU,lg(x) =hx),i=12...,n}

It is easy to see that E is a proper face of %, and can contain cz*, for at
most one value of c¢. Note also that 4 € E. It follows from the Krein-Mil-
man theorem that E has an extreme point f; which is not of the form
cz*. It is claimed that fy(x) ¢ T for x # x;,i =1,2,...,n Theset T )
JoX(T) contains xj, Xg, ...x, Suppose xq€ T () fo(T) where xy # x;,,
i =1,2,..., n Then the trigonometric polynomial

go(e®) = 1 — | fo(e)|?

has degree = n and vanishes at more than n points. It follows from the
result of Fejer and Riesz mentioned above that g (e®) = 0, for all t€
[0, 27). Thus, |fy(x)| = 1 for every x € T. By Schwarz reflection it must
follow that fj is of the form cz”. This contradiction shows that f; satisfies
(10). That f; also satisfies (11) follows from the fact that f; is an extreme
element of the face E.

(The author is indebted to the referee for this proof of the existence of
an fy€ U, satisfying (10) and (11). The original proof submitted was
much longer.)

Given f;, we define an element Fy of & (f;, n) by

1 + zrfy(w/z

We will show below that Fjis not an extreme element of #,. However,
F, is in some sense close to being extreme, for, besides belonging to a
proper closed face of 2,, namely, #(f;, n), it possesses another property
in common with the extreme elements of 2,. We are referring to a neces-
sary condition on members of ex 2, given by Forelli in [1]. Forelli’s condi-
tion may be described in our context as follows. Each F € &, may be
written uniquely in the form

Flz, w) = 1 + f(z, w)

I - f(Z, W) ’
where f'is analytic on D x D, f(0,0) = 0, and
(12) sup |f(z, w)| £ L.

2z, weED
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The function of f is said to be irreducible if, whenever f = f, f,, where
f1 and f; are analytic on D x D and satisfy (12), then either f; or f; is a
constant of modulus 1. Forelli proved that, if Feex £,, then fis irreduci-
ble. We will show that

To(z, w) = 27 fo(w]z)

is irreducible. Suppose that fy(z, w) = fi(z, w)fs(z, w), where f; and f;
are analytic in D x D and satisfy (12). Letting w = Az, we have

i) = e 20z 12) = (5025 fo D),

where f; ,(A)is a polynomial of degree < k satisfying sup;ep | f;, (D) = 1
fori=1,2and k =0, 1,2.... Let p and g be, respectively, the first
integers such that f; (1) # 0 and f; (1) # 0. Then we may write

JoA) = f1, f(A)f,,(3)
and assert that p + ¢ = n. It is claimed that either p = 0 or g = 0. Sup-
pose p > 0 and g > 0. Then f;,, and f; , both have degree < n. Also,
since | 3, J(A)l, | /2, (Al = 1 and since
|f3, 541 12, (A = [ fo(A)] = 1,

it follows that

If, A1 = 1S, /(A0 = 1,

for i =1, 2, ... n. Thus, 1 — |f,(e**)|?is a non-negative trigonometric
polynomial of degree p < n having n zeros. It follows from the result of
Fejer and Riesz that |f;, ,(e®)| = 1. Similarly, |f; [(e*]) = 1. It follows
that |fy(A)| = 1 for A€ T. But f; has the property that |f(4)| < 1, for
A€ T\{A, ..., A,}. Thus, one of p, g, say p, must be 0. It has now been
shown that

Jo(A) = f1,0/2,4(A).
Since | fo(41)| = 1, it follows that | f; o] = 1. From

|fi(z, 22) =1,  z A€ D,

S0, 0) = f,o, and the maximum modulus principle, it follows that

Nz, Az) = fi,0. Hence, fi(z, w) = f1,0.
Next, we show that My(F;) is absolutely continuous with respect to
Lebesgue measure on 72. Define a measure ¢ on T2 via

(13) do = Re ({_;;_%%) \dy! |dx].

Note that



200 J. N. MCDONALD

Jore(T 2R )i =

for y € T\{A1, A2, . . ., A,}. Thus,

ors = el

- e

j 1dyl
T

It follows that ¢(7?) is a finite measure. We will show that the Poisson
integral of ¢ is Re Fy and, hence, that ¢ = M,(F;). We have

[ PcoPudots. ) = [ [ PeoPur) R(FEZHT ) 1y ax

- L IT P)P.(Y) R{-i—%) Idy] |dx].

For all but finitely many values of x € T, we have x ~*¢ fi(T). Consequent-
ly, we have

j‘ Pu(y) Re(l + x f‘)(y)>|dy| Re<1 + x”fo(wx)>

X fo() T w)
It follows that
[ PP 3) = [ P Re( 2R g

_ 1 + z7fy(w/2)
= Re(  ZEH0E)

Re Fy(z. w).

I

Unfortunately, Fj is not an extreme point of 2, as the following argu-
ment shows. By the result of Fejer and Riesz, there is an analytic poly-
nomial g of degree £ n such that

1 — [fo(e™)|? = |g(e™)|2.
We will show that

1 (z"g(w/2))?
(14) Re (Fy(z, w) + T T = o fywl2)
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for |z|, [w| < 1. To prove (14) we observe first that the left hand side of
that inequality can be re-written in the form

(s L= 122few/z)]? + 27 IRe((z"g(w/2))* + 27|22 fo w[z)(g(w/2))?)
I = z7fo(w/z)|? ‘

Thus, (14) will follow, if we can show that the numerator of (15) is non-

negative when |z| = |w| = 1. Clearly, it suffices to show that the ex-
pression

(16) I = 1fo(e®)]? £ 271 Re(z((g(e™)? + fole™) (g(e™))?))

is non-negative, for |z] = | and 7€ [0, 2z). But (16) is non-negative be-

cause the + term is dominated by the expression1 — |fy(e?)|2. It follows
that (14) holds and, hence that Fj € ex 2.
While Fy is not an extreme element of & (fy, n), it suggests the following

QUESTION. Does £ (fy; n) have an extreme element F; such that M,(F;)
is absolutely continuous with respect to Lebesgue measure on 72?
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