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EXAMPLES OF RP-MEASURES 

JOHN N. MCDONALD 

ABSTRACT. We call a measure on the torus T2 an i?P-measure if its 
Poisson integral is the real part of a holomorphic function. Let 
RP1 denote the set of RP-measures which are non-negative and have 
total mass one. We construct an extreme element /u of RP± such that 
the closed support of /u is all of T2. We also construct an i?P-mea-
sure which is not an extreme point, but which belongs to a proper 
weak* closed face of RPlt is absolutely continuous with respect to 
Haar measure, and satisfies a certain necessary condition on ex­
treme elements of RPX. 

The well known theorem of Herglotz asserts that, if u is a positive 
harmonic function on the open unit disk D, then there is a unique positive 
Borei measure JLL on the unit circle Tsuch that 

(1) u(z) = ^TPz{x)d{i(x\ 

where Pz(x) denotes the Poisson kernel Re(x + z)/(x — z). An equivalent 
way to state Herglotz's theorem is the following. Le t /be holomorphic in 
Z), have positive real part and satisfy /(0) = 1. Then there is a unique 
probability measure [if on Tsuch that 

(2) Ref(z) = lTP,(x)djuf(x). 

It is clear from (2) that the correspondence Mi(f) = [if is a bijection be­
tween the convex sets P(T) = Borei probability measures on Tand 

0>x = {/I/holomorphic in D, R e / > 0,/(0) = 1}. 

Also, if ^ i and P(T) are equipped with the topology of uniform con­
vergence on compacta and the weak* topology respectively, then Mx is 
continuous. Moreover, A/x is affine, i.e., it preserves convex combinations. 
It follows that 

Mi(ex ^ 0 = ex P(T), 

Received by the editors on March 21, 1984 and in revised form on September 18, 
1984. 

Copyright © 1986 Rocky Mountain Mathematics Consortium 

191 



192 J. N. MCDONALD 

where ex 0>x denotes the set of extreme points of 0>x. Since the extreme 
points of P{T) are exactly the measures supported by singletons, it follows 
t h a t / e ex 0»x if and only if 

(3) Ref(z) = §TPz(x)döy(x), 

for some y £ T, where dy denotes the unit point mass measure concen­
trated at y. 

When the disk D is replaced by the bi-disk D x D, there is an analogue 
of (1). Namely, if w(z, w) is positive on D x D and harmonic in each 
variable, then there is a unique positive measure ju on the torus T2 such 
that 

u(z, w) = ^P£x)PJiy)dfj(x9 y). 

Thus, as in the one-dimensional case, we have a mapping M2: 0*2-* 
P(T2l where 

^2 = {/j/holomphic onD x D, R e / > 0 and/(0, 0) = 1} 

and M2(f) is the unique probability measure ßf which satisfies 

Re/(z, w) = ^P2(x)Pw(y)d[if(x, y). 

Like Mi, the mapping M2 is affine, continuous, and one-to-one, but, in 
contrast to the one dimensional case, M2 is not onto. In fact, it is easy 
to show that fi e M2(0>2) if and only if Jr2 x^y^dju(x, y) = 0 for all pairs 
of integers (/?, q) with pq < 0. The set M2(^2) will, from now on, be 
denoted by RPV Since RPi is weak* compact and convex, it must have 
extreme points, but the problem of describing the extreme points of RPi 
posed by Rudin in [6], does not have such an easy solution as the problem 
of describing the extreme points of P(T). Note, in particular, that PRX 

cannot contain point masses. 
In this paper we present two examples. In our first example we show that 

if g is an appropriately chosen inner function, then 

r-f \ (1 — ig(w)) (1 + iz) . • /n\ 
G ( Z ' W) = 1 - zg(w) + / g ( 0 ) 

is an extreme element of ^ 2 having the property that JLLG = M2(G) is an 
extreme RPi measure whose closed support is all of T2. (Note the contrast 
with (3).) Our second example is a member of ^ 2 of the form 

F (v ™\ - * + ZnfpW/z) 
F ° ( Z ' W) - 1 - ZnMz) * 
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where/o is a certain polynomial of degree n ^ 2. We show that F0 satisfies 
a necessary condition on the extreme points of ^2> given by Forelli in 
[1], that JUFQ = M2(FQ) is absolutely continuous with respect to the usual 
Lebesgue measure on T2, and that juFo belongs to a proper weak* closed 
face of RPi. Unfortunately, the example FQ happens not to be an extreme 
element of ^2- Nevertheless, it suggests a conjecture which relates to 
another question raised by Rudin in [6], namely, does there exist an ex­
treme element of RPi which is absolutely continuous with respect to 
Lebesgue measure on T21 In constructing our examples we will develop 
some results which are, perhaps, of some independent interest. 

EXAMPLE A. This example is derived from the following 

THEOREM 1. Let g be an inner function on D such that g(0) is real. Then 

(4) <Kz, w) = ( 1 - ; ^ ( y ^ + ig(0) 

is an extreme element of g?2> (See [2] for a discussion of inner functions.) 

Before giving a proof of Theorem 1 we will show how it leads to our 
example. We choose g such that it has no analytic continuation across any 
sub-arc of T. (For example, we could take g to be the Blaschke product 

where Xn = exp {Inijn). Of course, the crucial property possessed by this 
g is that its zeros accumulate at every point of T.) It is easy to show that 
if Wis an open subset of T2, then G cannot have an analytic continuation 
across W. It follows from a result due to Rudin [5, p. 23], that/^(W) > 
0. Thus, the closed support of juG is all of T2. 

PROOF OF THEOREM 1. Define a measure v0 on T2 via 

f h(x, y)dv0(x, y) = \ h(g(y), y)\dy\, 

for he C(T2). Here, C(T2) denotes the space of continuous complex valued 
functions on T2 and \dy\ denotes the element of arc-length on T normal­
ized so that lT \dy\ = 1. We remark that the Poisson integral of v0 is 

Re( J + **?\ ). 
\ 1 - zg(w) I 

, m > 0, then 

f x-*y*dvo(x9 y) = f (g(y))nym\dy\ = 0. 

zg(w) 

Note that v0 e RPh for, if «, m > 0, then 
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Consider 

«̂ "(%) = {ve RP\\ v is absolutely continuous with respect to VQ}. 

It is evident that ex ^(VQ) ^ ex RPi. The previous statement tells us 
nothing, however, unless we know that exJ*(yo) # 0 . Since «̂ (Vo) is not 
necessarily weak* closed, we cannot assert the existence of extreme ele­
ments of «̂ "(vo) v*a the Krein-Milman theorem. Nevertheless, we will 
show that jLtG, where G is given by (4), is an extreme element of J^(v0). 

Let v e ^(VQ). Define a measure pv on T via 

lTAy)dpv{y)=^J{y)dv{x,y\ 

where fe C(T). It is claimed that pv is absolutely continuous with respect 
to Lebesgue measure on T. Let K ^ T be closed and have Lebesgue 
measure 0. Le t / e C(T) be chosen such that f0(y) = I for ye K and \My)\ 
< 1 for y G T\K. Let e > 0 be given. Choose H0 e C(T2) such that 

(5) i dv - H0\dvo < s. 
7-2 I dVQ 

Then, for n = 1, 2, . . ., we have 

| j ^ / o W ) " ^ ) | = j j*r2 (/oW)"^*, J) 

^ | f (fo(y))"H0(x, y)dVo(x, y) + £ 

^ i f (fo(y))nH0(g(y%y) dy + £. 

Letting « -• oo, we obtain pv(K) ^ £• Since e was chosen arbitrarily from 
(0, oo), it follows that pv(K) = 0. Thus, the measure pv is absolutely con­
tinuous with respect to arc-length measure on T. 

Now define a measure v via 

j ^ h ( x , y)dv(x, y) = $T h(Ky\y)dpv(y\ h e C(T*). 

We will show that v = v by showing that 

1 /c(x, j^)c/P(x, y) = I /c(x, y)ßfv(x, y). 

for every k e C(D x D) such that |£| g 1. Let e > 0 be given. Choose 
H0 as in the previous paragraph. Choose r e (0, 1) such that 

(6) | f k(g(ry),y)H0(g(y),y)\dy\ - f k(g{y\y)H,(g(y\y)\dy\ 
\JT J T 

< £ 
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and 

(7) | J r kdfcy), y)dpv(y) - j ^ k(&y\ y)dpv(y) j 

From (5) and the definition of v0, we have 

(8) | £ k(x, y)dv(x, y) - j ^ k(^y)9 y)H^y\ y) \dy\ j < e. 

195 

< £. 

From (6) and (8), we have 

I f k(x, y)dv(x, y) - f k(Wy\ y)H0(g(yl y)\dy\ < 2e. 

From the definition of v0 and from the continuity of y -• g(ry\ it follows 
that 

< 2e. i fc(x, J V K * , >•) - I k(g(ry), y)HQ(x9 y)dv0(x, y) 
I J 72 J T 

Again, using (5), we have 

1 k(x, y)dv(x, y) - I k(g(ry), y)dv(x, y) 
I J T2 J T2 

From the definition of pv, it follows that 

J k(x, y)dv(x, y) - I k(g(FyX y) dpv(y) 
IJ T2 J r 

Using (7), we have 

| k(x, y)dv(x, y) - I kQ(~y), y) dpv(y) 

Finally, by the definition of P, we have 

J k(x, y)dv(x, y) - 1 k(x, y)dv(x, y) 
| J 72 J T2 I 

Since $ is an arbitrary positive number, it follows that \kdv — \kdv. Thus, 
v = v. 

The argument above shows that 

f A(x, y)dv(x, y) = f A ® » . J ^ v O O k H 

for every h e C(T2), where Dv = (*//ov)/|d[y|. Taking A(x, y) = x _ 1 jw , where 
w is a positive integer, and using the fact that v e RP\, we have 

< 3e. 

< 3e. 

< As. 

< 4e. 

§Ty»g(y)Dv(y)\dy\ = 0. 
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It follows that Fv = fDv belongs to the Hardy space Hv (See [2, Chapt. 4] 
for a discussion of Hi, the F. and M. Riesz Theorem, and related topics.) 
It is now clear that the mapping v -• Fv is an affine bijection between 
^(vo) a n d a convex subset of 

Rg = {FeHilFg è 0 and ̂ F^iGÔI^I = l}. 

In fact, it is easy to show that each Fe Rg is of the form Fv for some 
v e &(VQ). It follows that v is an extreme element of J^(vo) if and only if 
Fv is an extreme element of Rg. In [3, example 3] we showed that the 
extreme elements of Rg are exactly the outer functions which lie in Rg. 
(See [2] for a discussion of outer functions.) An example of an outer func­
tion in Rg is Fi = (2I)"1 (g + O2. (Note the fact that Fx e Rg depends on 
g(0) being real.) The measure v\ such that F\ = Fn is given by 

j ^ A(x, y)dvx(x, y) = ^hfäy), y) (1 + Im g(y)) \dy\. 

We will now calculate the Poisson integral of v\. Let z, w e D. Then 

f Pz(x)Pw(y)dvi(x,y) = g Z-» f x-Pw(y)dv1(x, y) 

oo /* 

+ 2 zn\ x--Pw(y)dvi(x, y). 

For « > 0, we have 

^x»Pw(y)dVl(x, )') = ^«ÖO^-fcOO + Im (g(y))\dy\ 

= «(w)" + (2 / ) - 1 (^ ) " - 1 -gC^)"+1) 

and 

J^jr-i'.Odv!^, y) = J"rgWP„(j) (1 + Im (g(jO)l«fyl 

= g{wY + (2i)-1(g(w)"+1 - g(w)»-1). 

Also, 

f PJiyMx, y)=l + (20-1 (g(w) - i(^)). 

A straightforward calculation now shows that 

Since vi is an extreme element of RP\9 it follows that 
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G(z, w) = o-y»(]i)+fe) + m 

is an extreme element of gP2. 

EXAMPLE B. Consider a function Fe0>2- For /l, z e D , we have the 
expansion 

oo 

(9) F(z,Az)= 1 +2ZF„Q)z», 

where Fn(X) is a polynomial in A of degree g «, which satisfies supÀŒD\Fn(À)\ 
S 1. Let <̂ „ denote the set of polynomials of degree ^ « which are boun­
ded in absolute value by 1 on D. Of course °Un is a compact convex set of 
(complex) dimension « 4 - 1 . L e t / e ex ^w, where n > 1. Consider the set 

^ ( / , « ) = {Fe^2 |F„(A)=/(A)}. 

It is easy to see that ^(f, n) is a proper face of ^ 2 which is closed in the 
topology of uniform convergence on compact subsets of D x D. Further­
more, we have the following 

THEOREM 2. For n > 1 andfe ex °Un9 ̂ (f, n) contains an extreme element 

PROOF. Since ^(f, n) is a compact convex set, by the Krein-Milman 
theorem it suffices to show that &"(/, n) is non-empty. Thus, the observation 
that 

F(z, w) = ; + *M*\ 
1 - znf(w/z) 

belongs to ^{f9 n) completes the proof. 
The interested reader can check that Theorem 2 is simply a re-phrasing 

of Example 4 of [3]. Also, Examples 1 and 2 of [3] correspond to the cases 
in which /(A) = A and /(A) = Am respectively. A natural idea, then, is 
to study the case in which/is an extreme element of °Un which is not of the 
form cXk. It requires a little work, however, to show that such extreme 
elements of %n exist. We will show below that, for n ^ 2, there is a 
polynomial/o e <%n having the following properties: 

(10) f*\T)\D = ft, A2, . . ., AJ, 

where Ai, A2,. . ., A„ are distinct points of T; and 

(11) / 0 e e x ^ M . 

Let xi, x2, . . ., xn be distinct points of T. And let K'1 = sup II7=il* — 
Xj\2. Since 1 — K Uf=i\ett ~~ XA2 ls a non-negative trigonometric polyno-
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miai, it follows from a well known result of Fejer and Riesz [4, p. 259] 
that there is a polynomial h e fy of degree n such that 

h(e«W = 1 - * n ? = i k f t - * / l 2 . 

Note that \h(x/i\ = 1, for y = 1 , 2 , . . . , AÏ, and that /z is not of the form 
czn. Consider 

E={g* Un\g(*i) = *(*,), / = 1, 2, . . ., *}. 

It is easy to see that £ is a proper face of °Un and can contain czn, for at 
most one value of c. Note also that h e E. Tt follows from the Krein-Mil-
man theorem that E has an extreme point / 0 which is not of the form 
cz*. It is claimed that f0(x) $ T for x ^ xh i — 1 , 2 , . . . , « . The set T Ç] 
fo~l(T) contains x\9 x2, . . .xn. Supposero e T f] fö~\T) where *0 # *,-, 
/ = 1 ,2 , . . . ,« . Then the trigonometric polynomial 

So(*ft) = 1 - l/o(*")l2 

has degree ^ « and vanishes at more than n points. It follows from the 
result of Fejer and Riesz mentioned above that g (eü) = 0, for all / e 
[0, 2TC). Thus, l/oOOl = 1 for every x e T. By Schwarz reflection it must 
follow that/o is of the form czn. This contradiction shows that/o satisfies 
(10). That/o also satisfies (11) follows from the fact that/o is an extreme 
element of the face E. 

(The author is indebted to the referee for this proof of the existence of 
an / 0 G Un satisfying (10) and (11). The original proof submitted was 
much longer.) 

Given/o, we define an element F0 of J^X/o, n) by 

We will show below that F0 is not an extreme element of ^2- However, 
F0 is in some sense close to being extreme, for, besides belonging to a 
proper closed face of ^2> namely, ^(f0, n), it possesses another property 
in common with the extreme elements of ^2- We are referring to a neces­
sary condition on members of ex 0>2 given by Forelli in [1]. Forelli's condi­
tion may be described in our context as follows. Each F e ^ 2 may be 
written uniquely in the form 

Flz w) = ' +/(*>"') 

where fis analytic on D x D,f(0,0) = 0, and 

(12) sup \f(z, w)\ ^ 1. 
Z,WŒD 
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The function of fis said to be irreducible if, whenever/ = / i / 2 , where 
fi and /2 are analytic on D x D and satisfy (12), then either/! or / 2 is a 
constant of modulus 1. Forelli proved that, if F e ex ^>2, then/is irreduci­
ble. We will show that 

/0(z, w) = znf0(wjz) 

is irreducible. Suppose that /0(z, w) = fx(z, w)f2(z, w), where fx and f2 

are analytic in D x D and satisfy (12). Letting w = Xz9 we have 

z'Mx* = /i(*. ^)/2(z, Az) = (f;/ua)2*)(i;/u(M 

where fitk(X) is a polynomial of degree ^ /c satisfying sup^eD |/-,*(/l)| ^ 1 
for / = 1,2 and k = 0, 1, 2 . . . . Let /? and q be, respectively, the first 
integers such t h a t / ^ A ) ^ 0 and/2,9(A) ^ 0. Then we may write 

/oW=/M(A)/2 ,g(A) 

and assert that p + # = n. It is claimed that either /? = 0 or q = 0. Sup­
pose p > 0 and <? > 0. Then / i^ and/2>9 both have degree < w. Also, 
since \fhp(h% \f2,q(k)\ è 1 and since 

l/i,A)I IAA)I = l/o(«l = 1, 
it follows that 

l/i, A)l = IAA)I = i> 
for i = 1, 2, . . . n. Thus, 1 — l / ^ O I 2 ls a non-negative trigonometric 
polynomial of degree p < n having n zeros. It follows from the result of 
Fejer and Riesz that |/i,/^'OI = 1. Similarly, \f2,q(e

ü\) = 1. It follows 
that |/o(A)| = 1 for À e T. But / 0 has the property that \f0(X)\ < 1, for 
X e T\{Xi, . . ., A„}. Thus, one of/?, #, say /?, must be 0. It has now been 
shown that 

M» = fi,o/UV-

Since |/o(Ai)| = 1, it follows that |/i, ol = 1. From 

L/i(z, Az)| g 1, z , A € A 

/(0, 0 ) = / 1 ) 0 , and the maximum modulus principle, it follows that 
/i(z, Iz) =/1>0. Hence,/^z, w) s/1 > 0 . 

Next, we show that M2(F0) is absolutely continuous with respect to 
Lebesgue measure on T2. Define a measure <j on T2 via 

Note that 
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f R e ( j + * " f f / j W | = l , 
)T V 1 - x"f0(y) ) ' ' 

for y e T\{AU X2, • • -, ?•„}. Thus, 

= 1. 

It follows that a(T2) is a finite measure. We will show that the Poisson 
integral of a is Re F0 and, hence, that a = M2(FQ). We have 

^nx)P,(y)da(X, y) = J JyP,(x)P„(y)Re( } + g f f ig ) \ dy \ \dx\ 

For all but finitely many values of x e T, we have x ~n$f0(T). Consequent­
ly, we have 

f Pai(y)Re( J + x:j(/\)\dy\ = Re( j + *ffl"?>\ 
J r w*v-" V 1 - *n/o0>) / \ 1 - *w/o(w*) / 

It follows that 

^P2(x)Pw(y)äa(x, y) = ^ P M ^ ± ^ ^ ) m 

= R / l + z»f0(w/z)\ 
*eV 1 - z'Mw/z) J 

= Re F0(z. w). 

Unfortunately, F0 is not an extreme point of 0>2, as the following argu­
ment shows. By the result of Fejer and Riesz, there is an analytic poly­
nomial g of degree ^ n such that 

1 - l/o(e'0l2 = \g(e-'W. 

We will show that 

< l4> «•<*•• » > ± f r ? Ä r > * 
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for |z|, |vv| < 1. To prove (14) we observe first that the left hand side of 
that inequality can be re-written in the form 

n S x 1 - |z»/o(w/z)l2 ± 2-iRe((z«g(Wz))2 + z»\z\2«f0(^)(g(w/z)?) 
K ' \l-z"M*lz)\2 

Thus, (14) will follow, if we can show that the numerator of (15) is non-
negative when \z\ = \w\ = 1. Clearly, it suffices to show that the ex­
pression 

(16) 1 - \f0(e«W ± 2-iRe(zw((g(^))2 + Me«) fete«))2)) 

is non-negative, for \z\ = 1 and te [0, 2%). But (16) is non-negative be­
cause the ± term is dominated by the expression 1 — |/o(^0l2- It follows 
that (14) holds and, hence that F0 e ex ^ 2 -

WhileFQ is not an extreme element oì^if&rì), it suggests the following 

QUESTION. Does J^(/0; n) have an extreme element Fi such that M2(Fi) 
is absolutely continuous with respect to Lebesgue measure on T21 
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