EXAMPLES OF RP-MEASURES

JOHN N. MCDONALD

ABSTRACT. We call a measure on the torus T^2 an RP-measure if its Poisson integral is the real part of a holomorphic function. Let RP_1 denote the set of RP-measures which are non-negative and have total mass one. We construct an extreme element μ of RP_1 such that the closed support of μ is all of T^2 . We also construct an RP-measure which is not an extreme point, but which belongs to a proper weak* closed face of RP_1 , is absolutely continuous with respect to Haar measure, and satisfies a certain necessary condition on extreme elements of RP_1 .

The well known theorem of Herglotz asserts that, if u is a positive harmonic function on the open unit disk D, then there is a unique positive Borel measure μ on the unit circle T such that

(1)
$$u(z) = \int_{T} P_{z}(x) d\mu(x),$$

where $P_z(x)$ denotes the Poisson kernel Re(x + z)/(x - z). An equivalent way to state Herglotz's theorem is the following. Let f be holomorphic in D, have positive real part and satisfy f(0) = 1. Then there is a unique probability measure μ_f on T such that

(2)
$$\operatorname{Re} f(z) = \int_{T} P_{z}(x) d\mu_{f}(x).$$

It is clear from (2) that the correspondence $M_1(f) = \mu_f$ is a bijection between the convex sets P(T) = Borel probability measures on T and

$$\mathscr{P}_1 = \{f | f \text{ holomorphic in } D, \text{ Re } f > 0, f(0) = 1\}.$$

Also, if \mathcal{P}_1 and P(T) are equipped with the topology of uniform convergence on compacta and the weak* topology respectively, then M_1 is continuous. Moreover, M_1 is affine, i.e., it preserves convex combinations. It follows that

$$M_1(\operatorname{ex} \mathscr{P}_1) = \operatorname{ex} P(T),$$

Received by the editors on March 21, 1984 and in revised form on September 18, 1984.

where ex \mathcal{P}_1 denotes the set of extreme points of \mathcal{P}_1 . Since the extreme points of P(T) are exactly the measures supported by singletons, it follows that $f \in ex \mathcal{P}_1$ if and only if

(3)
$$\operatorname{Re} f(z) = \int_{T} P_{z}(x) d\delta_{y}(x),$$

for some $y \in T$, where δ_y denotes the unit point mass measure concentrated at y.

When the disk D is replaced by the bi-disk $D \times D$, there is an analogue of (1). Namely, if u(z, w) is positive on $D \times D$ and harmonic in each variable, then there is a unique positive measure μ on the torus T^2 such that

$$u(z, w) = \int_{T^2} P_z(x) P_z(y) d\mu(x, y).$$

Thus, as in the one-dimensional case, we have a mapping $M_2: \mathscr{P}_2 \rightarrow P(T^2)$, where

$$\mathscr{P}_2 = \{ f \middle| f \text{ holomphic on } D \times D, \text{ Re } f > 0 \text{ and } f(0, 0) = 1 \}$$

and $M_2(f)$ is the unique probability measure μ_f which satisfies

$$\operatorname{Re} f(z, w) = \int_{T^2} P_z(x) P_w(y) d\mu_f(x, y).$$

Like M_1 , the mapping M_2 is affine, continuous, and one-to-one, but, in contrast to the one dimensional case, M_2 is not onto. In fact, it is easy to show that $\mu \in M_2(\mathcal{P}_2)$ if and only if $\int_{T^2} x^p y^q d\mu(x, y) = 0$ for all pairs of integers (p, q) with pq < 0. The set $M_2(\mathcal{P}_2)$ will, from now on, be denoted by RP_1 . Since RP_1 is weak* compact and convex, it must have extreme points, but the problem of describing the extreme points of RP_1 posed by Rudin in [6], does not have such an easy solution as the problem of describing the extreme points of P(T). Note, in particular, that PR_1 cannot contain point masses.

In this paper we present two examples. In our first example we show that if g is an appropriately chosen inner function, then

$$G(z, w) = \frac{(1 - ig(w))(1 + iz)}{1 - zg(w)} + ig(0)$$

is an extreme element of \mathcal{P}_2 having the property that $\mu_G = M_2(G)$ is an extreme RP_1 measure whose closed support is all of T^2 . (Note the contrast with (3).) Our second example is a member of \mathcal{P}_2 of the form

$$F_0(z, w) = \frac{1 + z^n f_0 w/z}{1 - z^n f_0 w/z},$$

where f_0 is a certain polynomial of degree $n \ge 2$. We show that F_0 satisfies a necessary condition on the extreme points of \mathcal{P}_2 , given by Forelli in [1], that $\mu_{F_0} = M_2(F_0)$ is absolutely continuous with respect to the usual Lebesgue measure on T^2 , and that μ_{F_0} belongs to a proper weak* closed face of RP_1 . Unfortunately, the example F_0 happens not to be an extreme element of \mathcal{P}_2 . Nevertheless, it suggests a conjecture which relates to another question raised by Rudin in [6], namely, does there exist an extreme element of RP_1 which is absolutely continuous with respect to Lebesgue measure on T^2 ? In constructing our examples we will develop some results which are, perhaps, of some independent interest.

EXAMPLE A. This example is derived from the following

THEOREM 1. Let g be an inner function on D such that g(0) is real. Then

(4)
$$G(z, w) = \frac{(1 - ig(w))(1 + iz)}{1 - zg(w)} + ig(0)$$

is an extreme element of \mathcal{P}_2 . (See [2] for a discussion of inner functions.)

Before giving a proof of Theorem 1 we will show how it leads to our example. We choose g such that it has no analytic continuation across any sub-arc of T. (For example, we could take g to be the Blaschke product

$$g(w) = \prod_{n=1}^{\infty} \prod_{k=0}^{n-1} \lambda_n^k \left(\frac{1 - 2^{-n} \lambda_n^k - w}{1 - (1 - 2^{-n}) \lambda_n^k w} \right),$$

where $\lambda_n = \exp(2\pi i/n)$. Of course, the crucial property possessed by this g is that its zeros accumulate at every point of T.) It is easy to show that if W is an open subset of T^2 , then G cannot have an analytic continuation across W. It follows from a result due to Rudin [5, p. 23], that $\mu_G(W) > 0$. Thus, the closed support of μ_G is all of T^2 .

PROOF OF THEOREM 1. Define a measure v_0 on T^2 via

$$\int_{T^2} h(x, y) d\nu_0(x, y) = \int_T h(\overline{g(y)}, y) |dy|,$$

for $h \in C(T^2)$. Here, $C(T^2)$ denotes the space of continuous complex valued functions on T^2 and |dy| denotes the element of arc-length on T normalized so that $\int_T |dy| = 1$. We remark that the Poisson integral of ν_0 is

$$\operatorname{Re}\left(\frac{1+zg(w)}{1-zg(w)}\right).$$

Note that $\nu_0 \in RP_1$, for, if n, m > 0, then

$$\int_{T^2} x^{-n} y^m d\nu_0(x, y) = \int_{T} (g(y))^n y^m |dy| = 0.$$

Consider

$$\mathscr{F}(\nu_0) = \{ \nu \in RP_1 | \nu \text{ is absolutely continuous with respect to } \nu_0 \}.$$

It is evident that $\exp(\nu_0) \subseteq \exp(RP_1)$. The previous statement tells us nothing, however, unless we know that $\exp(\nu_0) \neq \emptyset$. Since $\Re(\nu_0)$ is not necessarily weak* closed, we cannot assert the existence of extreme elements of $\Re(\nu_0)$ via the Krein-Milman theorem. Nevertheless, we will show that μ_G , where G is given by (4), is an extreme element of $\Re(\nu_0)$.

Let $\nu \in \mathcal{F}(\nu_0)$. Define a measure ρ_{ν} on T via

$$\int_T f(y)d\rho_{\nu}(y) = \int_{T^2} f(y)d\nu(x, y),$$

where $f \in C(T)$. It is claimed that ρ_{ν} is absolutely continuous with respect to Lebesgue measure on T. Let $K \subseteq T$ be closed and have Lebesgue measure 0. Let $f \in C(T)$ be chosen such that $f_0(y) = 1$ for $y \in K$ and $|f_0(y)| < 1$ for $y \in T \setminus K$. Let $\varepsilon > 0$ be given. Choose $H_0 \in C(T^2)$ such that

$$\int_{T^2} \left| \frac{d\nu}{d\nu_0} - H_0 \right| d\nu_0 < \varepsilon.$$

Then, for $n = 1, 2, \ldots$, we have

$$\left| \int_{T} (f_0(y))^n d\rho_{\nu}(y) \right| = \left| \int_{T^2} (f_0(y))^n d\nu(x, y) \right|$$

$$\leq \left| \int_{T^2} (f_0(y))^n H_0(x, y) d\nu_0(x, y) \right| + \varepsilon$$

$$\leq \left| \int_{T} (f_0(y))^n H_0(\overline{g(y)}, y) dy \right| + \varepsilon.$$

Letting $n \to \infty$, we obtain $\rho_{\nu}(K) \le \varepsilon$. Since ε was chosen arbitrarily from $(0, \infty)$, it follows that $\rho_{\nu}(K) = 0$. Thus, the measure ρ_{ν} is absolutely continuous with respect to arc-length measure on T.

Now define a measure via

$$\int_{T^2} h(x, y) d\tilde{v}(x, y) = \int_{T} h(\overline{g(y)}, y) d\rho_{\nu}(y), \qquad h \in C(T^2).$$

We will show that $\tilde{\nu} = \nu$ by showing that

$$\int_{T^2} k(x, y) d\tilde{\nu}(x, y) = \int_{T^2} k(x, y) d\nu(x, y).$$

for every $k \in C(D \times D)$ such that $|k| \le 1$. Let $\varepsilon > 0$ be given. Choose H_0 as in the previous paragraph. Choose $r \in (0, 1)$ such that

(6)
$$\left| \int_{T} k(\overline{g(ry)}, y) H_0(\overline{g(y)}, y) |dy| - \int_{T} k(\overline{g(y)}, y) H_0(\overline{g(y)}, y) |dy| \right| < \varepsilon$$

and

(7)
$$\left| \int_{T} k(\overline{g(ry)}, y) d\rho_{\nu}(y) - \int_{T} k(\overline{g(y)}, y) d\rho_{\nu}(y) \right| < \varepsilon.$$

From (5) and the definition of ν_0 , we have

(8)
$$\left| \int_{T^2} k(x, y) d\nu(x, y) - \int_{T} k(\overline{g(y)}, y) H_0(\overline{g(y)}, y) |dy| \right| < \varepsilon.$$

From (6) and (8), we have

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_T k(\overline{g(ry)}, y) H_0(\overline{g(y)}, y) |dy|\right| < 2\varepsilon.$$

From the definition of ν_0 and from the continuity of $y \to g(ry)$, it follows that

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_T k(\overline{g(ry)}, y) H_0(x, y) d\nu_0(x, y)\right| < 2\varepsilon.$$

Again, using (5), we have

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_{T^2} k(\overline{g(ry)}, y) d\nu(x, y)\right| < 3\varepsilon.$$

From the definition of ρ_{ν} , it follows that

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_T k(\overline{g(ry)}, y) d\rho_{\nu}(y)\right| < 3\varepsilon.$$

Using (7), we have

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_T k(\overline{g(y)}, y) d\rho_{\nu}(y)\right| < 4\varepsilon.$$

Finally, by the definition of $\bar{\nu}$, we have

$$\left|\int_{T^2} k(x, y) d\nu(x, y) - \int_{T^2} k(x, y) d\tilde{\nu}(x, y)\right| < 4\varepsilon.$$

Since ε is an arbitrary positive number, it follows that $\int k d\nu = \int k d\tilde{\nu}$. Thus, $\nu = \tilde{\nu}$.

The argument above shows that

$$\int_{T^2} h(x, y) d\nu(x, y) = \int_T h(\overline{g(y)}, y) D_{\nu}(y) |dy|,$$

for every $h \in C(T^2)$, where $D_{\nu} = (d\rho_{\nu})/|dy|$. Taking $h(x, y) = x^{-1}y^n$, where n is a positive integer, and using the fact that $\nu \in RP_1$, we have

$$\int_T y^n g(y) D_{\nu}(y) |dy| = 0.$$

It follows that $F_{\nu} = fD_{\nu}$ belongs to the Hardy space H_1 . (See [2, Chapt. 4] for a discussion of H_1 , the F. and M. Riesz Theorem, and related topics.) It is now clear that the mapping $\nu \to F_{\nu}$ is an affine bijection between $\mathcal{F}(\nu_0)$ and a convex subset of

$$R_g = \left\{ F \in H_1 | F\bar{g} \ge 0 \text{ and } \int_T F(y) \overline{g(y)} |dy| = 1 \right\}.$$

In fact, it is easy to show that each $F \in R_g$ is of the form F_{ν} for some $\nu \in \mathcal{F}(\nu_0)$. It follows that ν is an extreme element of $\mathcal{F}(\nu_0)$ if and only if F_{ν} is an extreme element of R_g . In [3, example 3] we showed that the extreme elements of R_g are exactly the outer functions which lie in R_g . (See [2] for a discussion of outer functions.) An example of an outer function in R_g is $F_1 = (2i)^{-1} (g + i)^2$. (Note the fact that $F_1 \in R_g$ depends on g(0) being real.) The measure ν_1 such that $F_1 = F_{\nu_1}$ is given by

$$\int_{T^2} h(x, y) d\nu_1(x, y) = \int_{T} h(\overline{g(y)}, y) (1 + \text{Im } g(y)) |dy|.$$

We will now calculate the Poisson integral of ν_1 . Let $z, w \in D$. Then

$$\int_{T^2} P_z(x) P_w(y) d\nu_1(x, y) = \sum_{n=1}^{\infty} z^{-n} \int_{T^2} x^n P_w(y) d\nu_1(x, y) + \sum_{n=0}^{\infty} z^n \int_{T^2} x^{-n} P_w(y) d\nu_1(x, y).$$

For n > 0, we have

$$\int_{T^2} x^n P_w(y) d\nu_1(x, y) = \int_{T} \overline{g(y)}^n P_w(y) (1 + \text{Im } (g(y)) | dy |$$

= $\overline{g(w)}^n + (2i)^{-1} (\overline{g(w)}^{n-1} - \overline{g(w)}^{n+1})$

and

$$\int_{T^2} x^{-n} P_w(y) d\nu_1(x, y) = \int_T g(y)^n P_w(y) (1 + \text{Im } (g(y)) |dy|$$

= $g(w)^n + (2i)^{-1} (g(w)^{n+1} - g(w)^{n-1}).$

Also,

$$\int_{T^2} P_w(y) d\nu_1(x, y) = 1 + (2i)^{-1} (g(w) - \overline{g(w)}).$$

A straightforward calculation now shows that

$$\int_{T^2} P_z(x) P_w(y) d\nu_1(x, y) = \text{Re}\left(\frac{1 - ig(w) (1 + iz)}{1 - zg(w)}\right).$$

Since v_1 is an extreme element of RP_1 , it follows that

$$G(z, w) = \frac{(1 - ig(w))(1 + iz)}{1 - zg(w)} + ig(0)$$

is an extreme element of \mathcal{P}_2 .

EXAMPLE B. Consider a function $F \in \mathcal{P}_2$. For λ , $z \in D$, we have the expansion

(9)
$$F(z, \lambda z) = 1 + 2 \sum_{n=1}^{\infty} F_n(\lambda) z^n,$$

where $F_n(\lambda)$ is a polynomial in λ of degree $\leq n$, which satisfies $\sup_{\lambda \in D} |F_n(\lambda)| \leq 1$. Let \mathcal{U}_n denote the set of polynomials of degree $\leq n$ which are bounded in absolute value by 1 on D. Of course \mathcal{U}_n is a compact convex set of (complex) dimension n+1. Let $f \in \mathbb{R}$ \mathcal{U}_n , where n>1. Consider the set

$$\mathscr{F}(f, n) = \{ F \in \mathscr{P}_2 | F_n(\lambda) = f(\lambda) \}.$$

It is easy to see that $\mathcal{F}(f, n)$ is a proper face of \mathcal{P}_2 which is closed in the topology of uniform convergence on compact subsets of $D \times D$. Furthermore, we have the following

THEOREM 2. For n > 1 and $f \in ex \mathcal{U}_n$, $\mathcal{F}(f, n)$ contains an extreme element of \mathcal{P}_2 .

PROOF. Since $\mathcal{F}(f, n)$ is a compact convex set, by the Krein-Milman theorem it suffices to show that $\mathcal{F}(f, n)$ is non-empty. Thus, the observation that

$$F(z, w) = \frac{1 + z^n f(w/z)}{1 - z^n f(w/z)}$$

belongs to $\mathcal{F}(f, n)$ completes the proof.

The interested reader can check that Theorem 2 is simply a re-phrasing of Example 4 of [3]. Also, Examples 1 and 2 of [3] correspond to the cases in which $f(\lambda) = \lambda$ and $f(\lambda) = \lambda^m$ respectively. A natural idea, then, is to study the case in which f is an extreme element of \mathcal{U}_n which is not of the form $c\lambda^k$. It requires a little work, however, to show that such extreme elements of \mathcal{U}_n exist. We will show below that, for $n \ge 2$, there is a polynomial $f_0 \in \mathcal{U}_n$ having the following properties:

(10)
$$f_0^{-1}(T)\backslash D = \{\lambda_1, \lambda_2, \ldots, \lambda_n\},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are distinct points of T; and

$$(11) f_0 \in \operatorname{ex} \mathscr{U}_n.$$

Let x_1, x_2, \ldots, x_n be distinct points of T. And let $K^{-1} = \sup_{j=1}^n |x - x_j|^2$. Since $1 - K \prod_{j=1}^n |e^{it} - x_j|^2$ is a non-negative trigonometric polyno-

mial, it follows from a well known result of Fejer and Riesz [4, p. 259] that there is a polynomial $h \in \mathcal{U}$ of degree n such that

$$h(e^{it})|^2 = 1 - K \prod_{i=1}^{n} |e^{it} - x_i|^2$$

Note that $|h(x_j)| = 1$, for j = 1, 2, ..., n, and that h is not of the form cz^n . Consider

$$E = \{g \in U_n | g(x_i) = h(x_i), i = 1, 2, ..., n\}.$$

It is easy to see that E is a proper face of \mathcal{U}_n and can contain cz^n , for at most one value of c. Note also that $h \in E$. It follows from the Krein-Milman theorem that E has an extreme point f_0 which is not of the form cz^n . It is claimed that $f_0(x) \notin T$ for $x \neq x_i$, $i = 1, 2, \ldots, n$. The set $T \cap f_0^{-1}(T)$ contains $x_1, x_2, \ldots x_n$. Suppose $x_0 \in T \cap f_0^{-1}(T)$ where $x_0 \neq x_i$, $i = 1, 2, \ldots, n$. Then the trigonometric polynomial

$$g_0(e^{it}) = 1 - |f_0(e^{it})|^2$$

has degree $\leq n$ and vanishes at more than n points. It follows from the result of Fejer and Riesz mentioned above that $g(e^{it}) = 0$, for all $t \in [0, 2\pi)$. Thus, $|f_0(x)| = 1$ for every $x \in T$. By Schwarz reflection it must follow that f_0 is of the form cz^n . This contradiction shows that f_0 satisfies (10). That f_0 also satisfies (11) follows from the fact that f_0 is an extreme element of the face E.

(The author is indebted to the referee for this proof of the existence of an $f_0 \in U_n$ satisfying (10) and (11). The original proof submitted was much longer.)

Given f_0 , we define an element F_0 of $\mathcal{F}(f_0, n)$ by

$$F_0(z, w) = \frac{1 + z^n f_0(w/z)}{1 - z^n f_0(w/z)}.$$

We will show below that F_0 is not an extreme element of \mathcal{P}_2 . However, F_0 is in some sense close to being extreme, for, besides belonging to a proper closed face of \mathcal{P}_2 , namely, $\mathcal{F}(f_0, n)$, it possesses another property in common with the extreme elements of \mathcal{P}_2 . We are referring to a necessary condition on members of ex \mathcal{P}_2 given by Forelli in [1]. Forelli's condition may be described in our context as follows. Each $F \in \mathcal{P}_2$ may be written uniquely in the form

$$F(z, w) = \frac{1 + f(z, w)}{1 - f(z, w)},$$

where f is analytic on $D \times D$, f(0, 0) = 0, and

$$\sup_{z,w\in D}|f(z,w)|\leq 1.$$

The function of f is said to be irreducible if, whenever $f = f_1 f_2$, where f_1 and f_2 are analytic on $D \times D$ and satisfy (12), then either f_1 or f_2 is a constant of modulus 1. Forelli proved that, if $F \in \mathbb{R}$ \mathcal{P}_2 , then f is irreducible. We will show that

$$\tilde{f}_0(z, w) = z^n f_0(w/z)$$

is irreducible. Suppose that $\tilde{f}_0(z, w) = f_1(z, w)f_2(z, w)$, where f_1 and f_2 are analytic in $D \times D$ and satisfy (12). Letting $w = \lambda z$, we have

$$z^n f_0(\lambda) = f_1(z, \lambda z) f_2(z, \lambda z) = \left(\sum_{k=0}^{\infty} f_{1,k}(\lambda) z^k \right) \left(\sum_{k=0}^{\infty} f_{2,k}(\lambda) z^k \right),$$

where $f_{i,k}(\lambda)$ is a polynomial of degree $\leq k$ satisfying $\sup_{\lambda \in D} |f_{i,k}(\lambda)| \leq 1$ for i = 1, 2 and $k = 0, 1, 2 \dots$. Let p and q be, respectively, the first integers such that $f_{1,p}(\lambda) \neq 0$ and $f_{2,q}(\lambda) \neq 0$. Then we may write

$$f_0(\lambda) = f_{1, b}(\lambda) f_{2, a}(\lambda)$$

and assert that p + q = n. It is claimed that either p = 0 or q = 0. Suppose p > 0 and q > 0. Then $f_{1, p}$ and $f_{2, q}$ both have degree < n. Also, since $|f_{1, p}(\lambda_i)|, |f_{2, q}(\lambda_i)| \le 1$ and since

$$|f_{1, p}(\lambda_i)| |f_{2, q}(\lambda_i)| = |f_0(\lambda_i)| = 1,$$

it follows that

$$|f_{1, p}(\lambda_i)| = |f_{2, q}(\lambda_i)| = 1,$$

for $i=1, 2, \ldots n$. Thus, $1-|f_p(e^{it})|^2$ is a non-negative trigonometric polynomial of degree p < n having n zeros. It follows from the result of Fejer and Riesz that $|f_{1,p}(e^{it})| = 1$. Similarly, $|f_{2,q}(e^{it})| = 1$. It follows that $|f_0(\lambda)| = 1$ for $\lambda \in T$. But f_0 has the property that $|f_0(\lambda)| < 1$, for $\lambda \in T \setminus \{\lambda_1, \ldots, \lambda_n\}$. Thus, one of p, q, say p, must be 0. It has now been shown that

$$f_0(\lambda) = f_{1,0} f_{2,n}(\lambda).$$

Since $|f_0(\lambda_1)| = 1$, it follows that $|f_{1,0}| = 1$. From

$$|f_1(z, \lambda z)| \le 1, \quad z, \lambda \in D,$$

 $f(0, 0) = f_{1,0}$, and the maximum modulus principle, it follows that $f_1(z, \lambda z) \equiv f_{1,0}$. Hence, $f_1(z, w) \equiv f_{1,0}$.

Next, we show that $M_2(F_0)$ is absolutely continuous with respect to Lebesgue measure on T^2 . Define a measure σ on T^2 via

(13)
$$d\sigma = \operatorname{Re}\left(\frac{1 + x^n f_0(y\bar{x})}{1 - x^n f_0(y\bar{x})}\right) |dy| |dx|.$$

Note that

$$\int_{T} \text{Re}\left(\frac{1 + x^{n} f_{0}(y)}{1 - x^{n} f_{0}(y)}\right) |dx| = 1,$$

for $y \in T \setminus \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. Thus,

$$\sigma(T^2) = \int_T \int_T \operatorname{Re}\left(\frac{1 + x^n f_0(y\bar{x})}{1 - x^n f_0(y\bar{x})}\right) |dy| |dx|$$

$$= \int_T \int_T \operatorname{Re}\left(\frac{1 + x^n f_0(y)}{1 - x^n f_0(y)}\right) |dy| |dx|$$

$$= \int_T 1 |dy|$$

$$= 1$$

It follows that $\sigma(T^2)$ is a finite measure. We will show that the Poisson integral of σ is Re F_0 and, hence, that $\sigma = M_2(F_0)$. We have

$$\int_{T^2} P_z(x) P_w(y) d\sigma(x, y) = \int_{T} \int_{T} P_z(x) P_w(y) \operatorname{Re}\left(\frac{1 + x^n f_0(y\bar{x})}{1 - x^n f_0(y\bar{x})}\right) |dy| |dx|$$

$$= \int_{T} \int_{T} P_z(x) P_w(y) \operatorname{Re}\left(\frac{1 + x^n f_0(y)}{1 - x^n f_0(y)}\right) |dy| |dx|.$$

For all but finitely many values of $x \in T$, we have $x^{-n} \notin f_0(T)$. Consequently, we have

$$\int_{T} P_{w\bar{x}}(y) \operatorname{Re}\left(\frac{1 + x^{n} f_{0}(y)}{1 - x^{n} f_{0}(y)}\right) |dy| = \operatorname{Re}\left(\frac{1 + x^{n} f_{0}(w\bar{x})}{1 - x^{n} f_{0}(w\bar{x})}\right).$$

It follows that

$$\int_{T^2} P_z(x) P_w(y) d\sigma(x, y) = \int_{T} P_z(x) \operatorname{Re}\left(\frac{1 + x^n f_0(w\bar{x})}{1 - x^n f_0(w\bar{x})}\right) |dx|$$

$$= \operatorname{Re}\left(\frac{1 + z^n f_0(w/z)}{1 - z^n f_0(w/z)}\right)$$

$$= \operatorname{Re} F_0(z, w).$$

Unfortunately, F_0 is not an extreme point of \mathcal{P}_2 , as the following argument shows. By the result of Fejer and Riesz, there is an analytic polynomial g of degree $\leq n$ such that

$$1 - |f_0(e^{it})|^2 = |g(e^{it})|^2$$

We will show that

(14)
$$\operatorname{Re} \left(F_0(z, w) \pm \frac{1}{2} \frac{(z^n g(w/z))^2}{1 - z^n f_0(w/z)} \right) > 0,$$

for |z|, |w| < 1. To prove (14) we observe first that the left hand side of that inequality can be re-written in the form

(15)
$$\frac{1 - |z^n f_0(w/z)|^2 \pm 2^{-1} \operatorname{Re}((z^n g(w/z))^2 + z^n |z|^{2n} f_0(\overline{w/z}) (g(w/z))^2)}{|1 - z^n f_0(w/z)|^2}.$$

Thus, (14) will follow, if we can show that the numerator of (15) is non-negative when |z| = |w| = 1. Clearly, it suffices to show that the expression

(16)
$$1 - |f_0(e^{it})|^2 \pm 2^{-1} \operatorname{Re}(z^n((g(e^{it}))^2 + f_0(e^{it})(g(e^{it}))^2))$$

is non-negative, for |z|=1 and $t\in [0, 2\pi)$. But (16) is non-negative because the \pm term is dominated by the expression $1-|f_0(e^{it})|^2$. It follows that (14) holds and, hence that $F_0\in ex\,\mathscr{P}_2$.

While F_0 is not an extreme element of $\mathcal{F}(f_0, n)$, it suggests the following

QUESTION. Does $\mathscr{F}(f_0; n)$ have an extreme element F_1 such that $M_2(F_1)$ is absolutely continuous with respect to Lebesgue measure on T^2 ?

REFERENCES

- 1. F. Forelli, A necessary condition on the extreme points of class of holomorphic functions, P. J. M. 92 (1981), 277-281.
- 2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 3. J. N. McDonald, Measures on the torus, which are real parts of holomorphic functions, Michigan Math. J. 29 (1982), 259-265.
- 4. G. Polya and G. Szego, *Problems and theorems in analysis*, Vol. II, Springer, Berlin, 1976.
- 5. W. Rudin, Lectures on the edge-of-the-wedge theorem, CBMS conference series, No. 6.
- 6. ——, *Harmonic analysis in polydiscs*, Actes du Congrès, Int. des Mathématiciens (Nice 1970) Tome 2, Gauthier-Villars, Paris, 1971, 489–493.

 ARIZONA STATE UNIVERSITY, TEMPE, AZ 85287