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CONNECTEDNESS PROPERTIES OF SUPPORT POINTS 
OF CONVEX SETS 

GEORGE LUNA 

ABSTRACT. It is shown that the set of support points of certain 
convex subsets of a Banach space is #°°. 

Let E be a real Banach space and E* its continuous dual. The natural 
pairing between these spaces will be denoted by <x, x*> for x e E and 
x* e E*. If C Ç E, we will write M(x*, C) in place of sup {<x, JC*>: x e 
C}. The set of support points of C (written: supp C) is the collection of 
points x e C for which there exists x* e £*\{0} such that 

<JC, x*> = M(x*, C). 

The set Cis boundedly (weakly) compact if C Ç] Bis (weakly) compact 
for each closed ball in E. 

A space Y is said to be ^-connected, if it is homotopically trivial over 
the Â>dimensional sphere Sk. If Y is /c-connected, for each/: = 0, . . ., n, 
then Y is said to be <gn. An example, the «-dimensional Euclidean sphere 
Sn is ^n~l but not <£n. A space is said to be ^°° if it is <%» for every n. 

If C is a closed convex subset of E, then supp C is known to be a norm 
dense Fff subset of the boundary of C (written as bdry C). It is also known 
[4] that if C contains no hyperplane and is boundedly weakly compact, 
then supp C is connected. 

We show here, that under these same assumptions, supp C is actually 
arcwise connected. In addition, we show that if C contains no linear 
variety of finite codimension, then supp C is ^°°. We also show that if C is 
boundedly compact, then supp C is contractible. 

If a e C, we will use the notation Ca for the union of all open half-
spaces not containing C and which are determined by support functionals 
at a; that is 

Ca rs [J {(x* > <tf, x*>) : jc* * 0, <fl, JC*> = M(JC*, C)}, 

where (x* > <a, x*>) = {xe E: <x, x*> > <<z, x * » . 
We also use the notation Xa for the set a 4- U {«(C - à): n e TV}, and 

(x, y) for the open line segment {Xx 4- (1 — X)y: 0 < A < 1}. 
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In what follows, C will be a closed convex subset of the Banach space 
E\ without loss of generality we will assume 0 e C. 

Before we reach our main results, several lemmas are necessary. 

LEMMA 1. For each a e C we have Xa = E\Ca. 

PROOF. Assume, without loss of generality, that a = 0. Suppose x G C0. 
Then there exists a m * # 0 such that, for each be C and X > 0, 

<JC, x*} > 0 = M(x*, C) ^ Qb, **>; 

it follows that x $ X0. 
On the other hand, if x <£ XQ, then, since X0 is a closed convex cone, 

by [1, Corollary 1], there is a y e X0 and x* G £'*\{0} such that 

<*, **> > (y9 **> = M(x*9 X0) = 0. 

But then JC* supports X0 at 0 and so x G C0. 

LEMMA 2. Ifint Z0 # 0 , //ze« int C ^ 0 . 

PROOF. Let ^ ° = int Z0; then K° is a Baire space since it is an open sub
set of the Banach space E. 

Note that C f] K° is closed relative to K° and note also that K° = 
U {n(C f] K°): n^ 1}. Since AT0 is a Baire space, some n(C ft ^°) has 
nonempty interior relative to K°. But then n(C ft K°) has nonempty 
interior relative to E; so the same is true of C ft ^ ° , and hence of C. 
(We are grateful to Professor V. L. Klee for pointing out this simple Baire 
space argument.) 

LEMMA 3. If int C = 0 , then, for each a e supp C, we have Ca dense in E. 

PROOF, (contrapositive). Assume without loss of generality that 0 G 

supp C and that C0 ^ E. Then there is an e > 0 and an a e E such that 

(*) B(a; s) s £\C0 s £\C„. 

By Lemma 1, B(a; e) ^ X0 so that 

*(<*; e)\XQ s bdry X0. 

Since Z0 has interior, bdry Z0 = supp X0 ç C0. From (*) we must have 
that B(a; e) ^ ^ 0 and hence, from Lemma 2, that int C # 0 . 

Before proving our final lemma, we recall a definition and some facts 
from [4]. Suppose 0 G C\supp C and let 

Fffl = {jce C: 3x* G £*, ||jc*|| ^ /w, <x, x*> = 1 = M(JC*, C)}. 

Then each Fm is closed and U {Fm: m ^ 1} = supp C. 



CONNECTEDNESS PROPERTIES 149 

LEMMA 4. Suppose that int C = 0 and that 0 G C\supp C. Lé?/ S ie a 
compact subset of supp C; //ze/2 j/zere w an x e E\C such that, for each 
a e S, we have C f| (x, a) Ç supp C. 

PROOF OF LEMMA 4. For each m ^ 1, we have Fm f| S compact, hence 
separable. Let Am be a countable dense subset of Fm f] S and let A = 
U (y4m: m ^ 1}. Since each Ca is open and dense and A is countable, we 
have, by Baire's Theorem, that 

fi {Ca:aeA} # 0 . 

Let x be any element of this intersection and suppose a G S. Then a e 
^m H £> for some m è 1, and there exists a sequence (aw: n ^ 1} Ç 
i4m H £ converging to #. Since the normalized support functionals (say 
{a*\ n ^ 1}) corresponding to the sequence {an: n ^ 1} are uniformly 
bounded, some subnet converges in the weak* topology to an element 
a*. 

Now, 

|1 - <fl,a*>| = \<am a*y - <a, a*>| 

g |<a„ - a, a*>| + |<fl, A* - «*>| 

g ||ÛB - aII/it + |<fl, tf* - a*>| 

- 0 , 

so <<2, #*> = 1. If b e C, then for each «, <6, a*} g 1, hence, <ò, a*> g 
1 and <Ö, tf*> = M(a*, C). Also since x e CCn for each n, we have that 
<x, fl*> > 1 for each n, so <x, a*> ^ 1. 

If 6 e C fi (•*> #)> then, for some 0 < X < 1, 
<Z>, tf*> = Qx + (1 - A)a, a*> 

= A <*,<**> + (1 - ^)<fl, a*> 

^ 1 = M(a*, C) 

à <*, fl*>. 

Hence, b G supp C. 

THEOREM 1. Suppose E is an infinite dimensional Banach space and C 
is a boundedly weakly compact convex subset containing no linear variety 
of finite codimension. Then supp C is ^°°. 

PROOF. If int C ^ 0 , then supp C = bdry C and, since C contains no 
linear variety of finite codimension, supp C is an y4Ä(metric) [3, Corollary 
2]. 

If C = supp C, then supp C is convex. 
Thus we may assume int C = 0 and C ^ supp C. Also, using the 

techniques of [4, Theorem 9] we may assume the metric projection, p, 
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of E onto C is single valued and continuous and that p(E\C) ^ supp C. 
Let / : Sn -> supp C be continuous and let S = f(Sn). By Lemma 4, 

there exists x e E\C such that, for each a e S, 

(**) (*, a) fi C e supp C. 

Define the homotopy 

H: [0, 1] x S» -> supp C 

by H(t, s) = p(tf(s) + (1 — 0*)- This map clearly deforms / t o a con
stant map, and the deformation takes place in supp C because of (**). 

By using the same ideas, we get the following improvement of a result 
by Phelps [4, Theorem 9], who showed only that supp C is connected. 

THEOREM 2. Suppose E is a Banach space and suppose that C is a closed 
convex subset of E which is boundedly weakly compact. If C contains no 
hyperplane, then supp C is arcwise connected. 

PROOF. Let a, b e supp C and take S in Lemma 4 to be S = {a, b}. 
If x is as in Lemma 4, then p([x, a] U IX b]) is an arc joining a and b in 
supp C. 

It is clear from the above that the set of support points of a closed 
convex bounded subset of a reflexive Banach space is highly connected. 
In all the examples we have considered it is contractible ; but the following 
result is the best we have regarding contractability of supp C. 

THEOREM 3. Let C be a boundedly compact convex subset of an infinite 
dimensional Banach space E; then supp C is contractible. 

PROOF OF THEOREM 3. We assume without loss of generality that C is 
total and that 0 G C; otherwise there is an element of is* which vanishes on 
C. Hence, supp C = C is convex. 

By considering span C = span (C — C) we can suppose E is separable ; 
this is because C f] B [0; 1] is compact, hence separable, and span (C f] 
B[0, 1]) is dense in E, since C f] B [0; 1] is total. 

Since E is separable, we may assume E is locally uniformly convex and, 
hence, the metric projection/?: E -> C is single-valued and continuous. 

Because C is «^-totally bounded, we have, by [2, Theorem 13.3], that 
C - C is not radial at 0. Thus there is an 0 ^ x0 e E such that 

(*) (C - C) fi {tx0: t> 0} = {0}. 

If y G C, then (y, x0] ç E\C. Indeed, suppose x e (y, xQ] f| C; i.e., x = 
tx0 + (1 — t)y, where 0 < / g 1. We would then have 

tx0 = x - (1 - t)ye C - C, 
so, from (*), we would conclude that / = 0, which is impossible. 

The homotopy 
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H: [0, 1] x supp C -> supp C, 

defined by H(t, y) = p((l — t)y -f ta0), deforms the identity on supp C 
to the constant map y -> /?(•%)• Since (y, x0] ^ £\C, the deformation takes 
place in supp C; that is 

//([0, 1] x supp C) c supp C, 

as desired. 
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