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STATIONARY SPACIAL PATTERNS FOR A 
REACTION-DIFFUSION SYSTEM WITH 

AN EXCITABLE STEADY STATE 

GENE A. KLAASEN 

ABSTRACT. In this note, the existence of stationary patterns in 
n ^ 2 dimensional state space is established for a reaction-diffusion 
system which exhibits a single-globally attracting, excitable steady 
state. The system studied is dynamically like the FitzHugh-Nagumo 
model for nerve conduction but has a large inhibitor diffusion term. 
Variational methods are applied to an energy functional which 
give one pattern as a minimum and a second as a saddle point of 
the functional. 

1. Introduction. Consider the system 

ut = Au -b f(u) — v 
(1.1) 

vt = D Av 4- e(u — yv) 

where A = £?= 1 d
2j{dx% / i ^ U ^ O , (xl9 . . . , xn) e Q c R*, f(u) = 

w(l — u) (u — a), 0 < a < 1/2, D > 0, e > 0, and y > 0. Equations 
(1.1) are an extension of the simpler FitzHugh-Nagumo [3,10] equations, 
namely 

ut = Uxx + / ( w ) - V 
(1.2) 

vt = e(w - rv)-
The FitzHugh-Nagumo system serves as a prototype for nerve conduction 
and other chemical and biological systems. The interested reader is re
ferred to [6,11] for a review of results obtained to this date. 

Recently, Ermentrout, Hastings and Troy [2] have proposed system 
(1.1) as a prototype model for systems which exhibit lateral inhibition and 
excitability. In this setting u is interpreted as an activator concentration 
and v is interpreted as an inhibitor concentration. They discuss the phys
ical motivation for the existence of nonconstant stable time independent 
solutions of (1.1) when n = 1 and solutions u and v are defined on all of 
R with w(±oo) = v(±oo) = 0. Summarizing their discussion, if 0 < y 
< 4/(1 — a)2 then the dynamic equations 
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Ut = f(u) - V 
(1.3) 

Vt = £(u - Tv) 

associated with (1.1), have a unique globally attracting steady state (0, 0) 
as well as a threshold of excitation. If D = 0, as is the case in the Fitz-
Hugh-Nagumo model, a large enough initial concentration of u will 
trigger the formation of a travelling wave of u concentration. However, 
if D > 0 is large, the effective rapid diffusion of the inhibitor v should 
halt the u wave and produce a stable standing wave. Thus, nonconstant 
time independent solutions of (1.1) are expected either on Rn or on large 
bounded subsets Q ^ Rn with either Dirichlet or Neumann boundary 
conditions. In [2], such solutions are proved to exist for n = 1 on R, and 
numerical calculations are made on finite domains with Neumann bound
ary conditions which exhibit their profiles. For further discussion on 
these ideas, the reader is referred to Meinhardt [9], Gierer and Meinhardt 
[5]. 

The goal of the present article is to show that, in more than one space 
dimension, i.e., n ^ 2, if y > 0 is small and D > 0 is large, then system 
(1.1) has two nontrivial stationary solutions on sufficiently large space 
domains û ^ Rn. These solutions will satisfy either the Dirichlet or Neu
mann boundary conditions on dQ and are critical points of an energy 
functional associated with system (1.1). Variational methods are applied 
to show that one solution minimizes the functional while the second is 
a saddle point. 

These results compliment earlier work by Klaasen and Mitidieri [8] 
in which solutions of similar problems are shown to exist for the case 
when 7* > 0 is large. In that case the dynamic equations have three con
stant solutions—two of which are stable and one unstable. 

2. Statement and interpretation of main results. This paper is concerned 
with the Dirichlet problem for the elliptic system 

- Au = - og(u) - ßv 
(2.1) 

— Av = Xu — öv 

where a, ß, A, ö are positive constants and g(u) is a continuous function 
on R. The space domain QR is a bounded domain in RM, n ^ 2, containing 
a closed ball BR(0). We assume the boundary of QR, dQR is of class C2+a, 
for some 0 < a < 1. Then the boundary value problem consists of equa
tion (2.1) on Q, with Dirichlet boundary conditions 

(2.2) u = v = 0 on dQR. 

System (2.1) reduces to the steady state equations for (1.1) if 
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(2.3) a = ß = 1, g(u) = - / (w), À = eD'1 and d = erD-1; 

namely, 

- Jw = /(w) - v 
(2.4) 

— DAv = eu — £fv. 

The theorems below are stated for the general system (2.1), (2.2) and 
are followed by discussion and interpretation for the more specific system 
(2.4). 

The first theorem gives sufficient conditions for the existence of a 
nontrivial solution of (2.1), (2.2). 

THEOREM 1. Suppose g is Holder continuous of order a, 0 < a < 1 and 
satisfies 

(i) there is a b > 0 such that (g(ü))/u > (ß À)/(a S) for \u\ ^ b; 
(ii) there is a u0 > 0 such that Jg° g(s) ds < 0. 

If the parameters d, ß, 7% a and R > 1 are such that 

: ( * 4 T M « + - ^ + * K ( M 
(2.5) 

+ 2(7 1 g(s)ds < 0, 
Jo 

then (2.1), (2.2) has a nontrivial solution pair u, v e C2+a(QR). 

The second theorem guarantees the existence of a second nontrivial 
solution. 

THEOREM 2. If in addition to the hypothesis of Theorem 1, g(0) = 0 
and g'(0) > 0, then the BVP (2.1), (2.2) has a second nontrivial solution. 

As an example we wish to apply the results of Theorems 1 and 2 to 
the two diffusion FitzHugh-Nagumo model (2.4). The parameters are 
chosen in the following sequence of steps. 
(2.6) (a) 0 < a < 1/2 is fixed. 
(2.7) (b) 0 < 7* < 4/(1 — a)2 is chosen to ensure the existence of a 

single stable excitable steady state. 
(2.8) (e) e > 0 can be arbitrarily chosen. 

(d) Using (2.3), hypothesis (i) of Theorem 1 is satisfied if 

(u - a) (1 - u) < - -i-, for \u\ > Z>, 

which is equivalent to requiring that 

I + a ^ \ 
b > -i-^-ü- + f V(l - a)2 + 4T-K 
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(e) Choose uQ = 1 in hypothesis (ii). 
(f) Finally, inequality (2.5) simplifies to the requirement that 

R 

since \lf(s)ds = (1 

- 1 1 + 
eR* 

D + erR*+T{2-a\ 
I-2a 

2a)/12 and 

Çu Ca û 3 

max I - f(s) ds = ft - f(s) ds = - p r (2 - a). 
[0,1] JO J 0 12 

Thus, for a, y, e chosen as in (2.6)—(2.8), we must further restrict/) 
and R > 1 to satisfy (2.9). The first observation is that unless R > 1 is 
sufficiently large, even with eR*/(D + eyR2) missing, this inequality is 
not valid. This is consistent with earlier work of Klaasen and Mitidieri 
[8] showing that no nontrivial solution of (2.4) exists if R > 0 is small. 

Secondly, for R > 1 large with e and y fixed, eRA/(D + eyR2) will be 
small only if D is large. This is consistent with the interpretation of Er-
mentrout, Hastings and Troy [2] which suggests large diffusion is neces
sary for the formation of a standing wave. In particular, for fixed e and 
7-, if R is chosen so that 

R 
R - 1 

1 1 + ^ ( 2 - a) 
1 - 2a 

then inequality (2.9) is valid provided D is sufficiently large. We summarize 
this as 

COROLLARY 1. Let 0 < y < 4/(1 - a)2, 0 < a < 1/2 and e > 0. If 

R > 0 and D > 0 are chosen such that 

R 
R - 1 

1 1 + eR* 
D ^W + T^ a) 1 - la 

then, for any bounded region Q <= R" with C2+a boundary which contains 
a ball of radius R, the Dirichlet problem for (2.4) has two nontirvial solutions. 

The second solution of Corollary 1 follows from Theorem 2, since 
/(0) = 0and/'(0) = -a < 0. 

In a previous paper on this equation, Klaasen and Mitidieri [8] showed 
that, for D > 0 sufficiently small, no nontrivial solution exists for any 
R > 0. 

3. The proofs of Theorem 1 and Theorem 2. Verification of Theorems 1 
and 2 require three lemmas which are first proved. Based on these lemmas, 
the proofs of Theorems 1 and 2 are the same as the proofs of their cor
responding theorems in [8] and, hence, we only outline the remainder of 
the proofs here. 

Assume that Q is a bounded domain with dû of class C2+a, where a is 
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a constant and 0 < a < 1. A classical solution of (2.1) is a pair (u, v) such 
that u, ve C2+a(Q),and(w, v) satisfy(2.1) in Q and the Dirichlet boundary 
conditions (2.2). The first lemma establishes bounds on classical solutions 
of (2.1), for the Dirichlet BVP. 

LEMMA 1. Suppose there exists a b > 0 such that (g(u))/u > (ß X)j(a 5), 
for all \u\ ^ b. Then any classical solution (w, v) of(2.\) satisfies 

(3.1) \u\£band\v\£jrb on Q. 

PROOF. Let uM = max w, um = min w, vM = max v and vm = min v 

on Q. An application of a standard maximum principle argument to 
— Av — Xu — öv yields 

(3.2) vM ^ -jUM and-jww ^ vm. 

Hence, it is easily seen that \u\ ^ b implies |v| g X/ô b on Q and it suffices 
to prove \u\ g b o n û . Let w(xx) = uM ^ 0 and w(x2) = um ^ 0. Then 
— Au(xi) ^ 0 and — zfw(x2) ^ 0. Again, an application of a maximum 
principle argument to — au = — <7g(w) — /3v implies that ag(uM) + /3v(*i) 
5J 0 and ag(um) -f /3v(x2) ^ 0. Consequently, (3.2) implies 

(3.3) g(uM) ^ - -|g- wmand g(ww) ^ - ^ - « M . 

Suppose, for contradiction, that uM > b. Then the hypothesis of the 
Lemma and (3.3) imply (ßX)/(ad)uM g g(uM) é — (ßX)/(aö)um and, hence, 

(3.4) um g -uM S -b. 

But um^ -b implies similarly that(ßX)/(aö)um > g(um) ^ -(ßX)/(aö)uM 

and hence um ^ — wM which contradicts (3.4). Thus uM ^ b. A similar 
argument shows that um ^ — 6. 

If g satisfies the hypothesis of Lemma 1, let g be any function which 
satisfies 

(i) g is Holder continuous on R of order a; 
(ii)g(w) = g(u), for \u\ S b; 

(in) g(u)/u> (ßX)/(aö)Jor \u\ ^ b; 
(iv) \g(u)\ g ci + c2 M* on R, where cl9 c2, and /? are positive constants 

and 1 g /> ^ (/2 4- 2)/(/i - 2) if « > 2, but 1 ^ /? if n = 2. Such a modifi
cation of g is easy to construct. Consider the corresponding modified 
boundary value problem 

-Au = - ag(u) - ßv 
(3.5) on Q 

— Av — Xu — ôv 
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with Dirichlet boundary conditions. Lemma 1 implies that the Dirichlet 
problem for (2.1) and (3.5) have precisely the same classical solutions. 

Next, v is eliminated from BVP (3.5) by observing that equation — Av 
+ öv = Xu, together with Dirichlet boundary conditions, is equivalent 
to an operator equation v = Bu in an appropriate function space, where 
B = i(im(-A + ô)rK 

In the classical setting, B is a transformation from Ca(Q) into C2+a(Q) 
and, by substituting v = Bu into the first equation of (3.5), we obtain the 
system 

- au = -ag(u) - ßB(u) on Ö, 
(3.6) 

u = 0 on dû 

which is equivalent to (3.5) and, hence, to (2.1), (2.2). 
Our approach, however, will be to prove the existence of weak solutions 

(solutions in H$(Q)) of (3.6) by variational methods and then rely on 
standard regularity results to conclude that these solutions are in fact 
classical solutions. In this setting, B is viewed as an operator from H$(Q) 
into H^(Q), where the Sobolev space Hi(Q )is the completion of C^(Q) 
in the norm ||w||o = (J0 (Vw|2 dx)1/2. We will then use the notation that 
Ml = (SQ M2 dx)1/2 and (u, v) = J uv dx so that ||w||0 = ||Vw||. Then, as 
a consequence of the relationship — ABu + ôBu = Xu, it is easy to see 
that B is a positive self-adjoint operator on H](Q) in the sense that (u, Bv) 
= (Bu, v) and {Bu, u) ^ 0, for all u, v e H$(Q). The following inequality 
will be important later. 

LEMMA 2. There exists a constant c, depending only on 0, such that 

(u, Bu) = J uBu dx ^ X]^C2 II VwH2> f°r aìl u e Hi(°)-

In particular, ifQ = BR(0), then C = R, and we have 

f uBudxS 1 i ^ L II Vali2 Va G Hè(Q). 

PROOF. We multiply -Av + öv = Xu by v and integrate to obtain 
|| Viz||2 + ô || v||2 = X(u, v). Next, combine this with the Poincaré inequality 
[4], ||v|| ^ c||Vv||, and the Cauchy Schwarz inequality to obtain (1/C2 

+ ö) IMI2 ^ IIWII2 + a||v||2 = X(u, v) è X\\u\\ IMI or M ^ C2 A/(l + C2<?) 
||w||. Next, apply the Cauchy Schwarz inequality again and obtain 

$uBu = Jwv =(i/, v) g NI IIv|| g 1 ^ j 2 g Ml2 ^ r - < ^ | | V W | | 2 . 

For a discussion of the appropriate choice of C = R when £? = BR(0), 
see Gilbarg and Trudinger [4]. 
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Define $ on H^(Q) by 

(3.7) ^ ) . | J o | V « | « + 4f f l«Ai + aJ f lo(^ 
where G(u) = Jfj g(s) ds. 

LEMMA 3. Let BR(Q) a Q and define ü e H^{Q) by 

(uQ, for \x\ ^ R - 1 

ü{x) = w0 (R - |x|,) forR-l£\x\ £R 

10, |x| à Ä. 

Tfte« inequality (2.5) implies that (j>(ü) < 0. 

PROOF OF LEMMA 3. Estimating each term of <j>{ü) in succession, we have 

(3'8) T JjV ô '2 = T L,(o) |V"'2 = T JcÄ"8 = ^[^-(^-IH 
where C# = ##(0) — i ^ ^ O ) and wn = volume of 2?i(0). Secondly, using 
Lemma 2, 

Finally, 

<7 f Ö(Ö) = (7 f Ö(ß) = <7 f G(ü) + <7 f Ö(Ö) 
(3.10) J ß J BRÌO) JßR-i(O) J e * 

< a- wn(R - 1)« G(w0) 4- <7(max G(w)) wn[jR» - (1* - 1)»]. 
CO'KO] 

Combining (3.7)-(3.10) with the observation that G{u) = G(u) on [0, w0], 
we conclude that 

*3X=ff*» * KÄ)" - ']{•*+ ££ + * S3 M 
4- 2tf(7(w0) < 0, 

from inequality (2.5). 

PROOF OF THEOREM 1. See [8] for details. First one observes that there 
is a constant k > 0 such that 

<j>{u) ^ j - ||V||2 - ak \Q\ on H$(0) 

and, hence, <j> is bounded below and <f>(u) -> oo as ||Vw|| -> oo. 
Secondly, ^ is lower semicontinuous and Frechet differentiable on 

H%(Q) and, hence, ^ attains its minimum on H$(Q) at a function w0 e HUP). 
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Lemma 3 implies that <f>(u0) < 0 and hence uQ ^ 0. Thus, u0, v0 = B(u0) 
is a weak solution pair of (2.1), (2.2), and by a standard "boot strap" 
argument w0, v0 e C2+a(û) and are classical solutions of (2.1), (2.2). 

PROOF OF THEOREM 2. Under the additional hypothesis that g(o) = 0 
and g'(0) > 0, the function </> defined in (3.7) has a local minimum at 0, 
and, moreover, there is r > 0, p > 0 such that (j)(u) > 0 for all 0 ^ ||w|| 
S r, and (j>(u) ^ p for all \\u\\ = r. The mountain pass theorem of 
Ambrosetti and Rabinowitz [1] applies to conclude the existence of a 
second solution u\ which satisfies 

6(ui) = inf max 6(u) > 0, 
(76E K=a([0,l]) 

where £ = {a e C([0, 1], H^(Q))\a(0) = 0, <?(1) = t/0}. By similar argu
ments, ux is shown to be a classical solution. 

REMARK 1. Since the test function ü of Lemma 3 is spherically sym
metric, the existence of weak solutions could be established in the closed 
subspace of H$(Q) consisting of spherically symmetric functions. Then 
the resulting solutions are spherically symmetric. 

REMARK 2. Similar results can be established for the Neumann bound
ary value problem for (2.1) consisting of the restrictions du/dn = dv/dn 
= 0 on dû where d/dn is the outward normal differential operator on dQ. 
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