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ON THE QUARTIC CHARACTER OF CERTAIN QUADRATIC 
UNITS AND THE REPRESENTATION OF PRIMES 

BY BINARY QUADRATIC FORMS 

FRANZ HALTER-KOCH 

1. For a squarefree rational integer m > 1 let em be the fundamental 
unit of Q(*s/7n) normalized by em > 1. For a rational prime p = 1 mod 
4 let ( • Ip) be the quadratic and ( • //?)4 the quartic residue symbol modulo 
p. It is the aim of this paper to prove the following conjecture of P. A. 
Leonard and K. S. Williams ([8, Conjecture 3.6]): 

THEOREM. Let q, q' be primes, q = 3 mod 8, q' = 7 mod 8, (q'jq) = 1, 
and let s be the odd part of the class number of Q(\/qc['> V^-2)- Let p be 
aprirne such that (—l/p) = (2/p) — (q/p) = (q'/p) = 1 ; then 

ps = X2 + %qq'y2 = C2 + 8a>2 

with x, y9 e, d e Z and 

REMARK 1. When proving the Theorem it will be shown that for the 
primes p in question (eqq,/p) — (e2gr/p) = 1 and that the quartic symbols 
are well defined. 

REMARK 2. Perhaps the Theorem itself does not deserve an extra publi
cation but the proof is an interesting journey through various branches 
of algebraic number theory and is intimately connected with the so-called 
explicit decomposition laws in algebraic number fields which are not yet 
fully understood. 

2. The fields involved. 1 keep all notations of the Theorem and begin 
with the unit theory of the biquadratic field 

* = Q(Vqq\ VW), 

using methods and results of [7]. 

On account of (q\ qq'/p) = 1 for all primes p, there is an integral dqql 

zQ(\/qq~') with 
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§2 f 

NQ(Jqq~')/Q(àgq') = # ' £qq' = ~3~ \ 
q 

similarly, there are integral elements Ö2q^Q(\/2q) and 52q' £ Q(\/2qf) 
such that 

§2 
^Q(V2q)/Q(S2q) = 4, £2q = -J2", 

NQ(J2T')/Q(Ö2q>) = 2, Z>2q> = ~ y ^ • 

From [7], Satz 1, it follows that 

veqq,e2q, \eqq,e2qn v £2q£2q> 

is a system of fundamental units of K. For primes p with (q/p) = (q'/p) 
= (Ifp) = 1 it follows from the above formulae that 

(THtMTH-
and if in addition ( — l/p) = 1, i.e., p = 1 mod 8, then the quartic symbols 

( £w' ) (HA (ew\ 
\ P A> V P A> V /? A 

are well defined. 
In the following we consider the unit 

e=V7^=^eK. 

Then the second assertion of the Theorem is equivalent with 

i. e., it remains to show: 

(1) p splits completely in K(^/ls~), if and only if y + d = 0 mod 2. 

Instead of the field K( ̂ /T) I shall consider its normal closure, and 
for this reason I first consider the extension K( V~ë~)IQ(V~qq~')- As 

JV*/QUWO U) - ^ 5 ^ -5 2 g ,VV~ *«" 

the extension K( y /T)/Q( v7^7) *s n o t normal and its normal closure L 
is a dihedral extension of Q(Vqq1) with [L: Q(\/qq7)] = 8. The interme
diate fields of L/Q(^/qq7), which are quadratic over Q(^/qq7)y are K = 
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y/ _ 2). L/Q is cyclic and L/Q( ^qq') is also the normal closure of a quartic 
extension QCV^7» A / 3 ? 7 » A/ÖO/Q( V W ) f o r 

some a G Q(^\/qq', V — qf) 
(see [2, §1]). 

ßfv 'qq^/^q 1 ") 

<H{/W) 

® ( /qq1" , /^cf , /^) 

The conjugates of e (over Q) are the three numbers 

~2q' 

, = fi-(-2).^, 

and 
àqqrò2q^2q r =e'(-2qf)'(8^ö2qd~2, 

öqq,^2q = = e q -t qqf-

Therefore the normal closure of K{ ̂  e ) (over Q) is the field 

L = KWT, V^2, Vq7) = L(V~\l 

and L/Ö is an abelian extension of type (4, 2). L is also the normal closure 
of L over Q, thus of the form 

L = L-U, 

where Z/ is a field conjugate to L. 

The primes JP as in the Theorem split completely in Q( \ / -T^ A/—~2> 

A/1T> A / ? ) = Q( V -q'> A/--T), anc* they split completely in #( ^/T) if and 
only if they do so in £. Therefore it remains to show: 
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If a prime p splits completely in Q(^/ — q\ V—~ï)» tnen 

(2) ps = x2 + %qq'y2 = c2 + Sd2 with x, y, c, d e Z, and 
y + d = 0 mod 2 if and only if p splits completely in L. 

3. Arithmetic characterization of LjQ. In this section I shall prove : 

.-. L is the maximal 2-extension which lies in the ray class field 
modulo 2 of Q. 

Qi^/qcf, V — qOIQiVqq7) *s obviously unramified outside infinity, and 
thus Q{^ — q')IQ is also unramified (later on I will show that Q( ̂  — q') 
is the Hilbert 2-classfield of Q). As L = Q(X/ — q', ^/~ë~), L/Û is unramified 
outside 2. Let m be the prime divisor of 2 in Q (2 £ m2 and m has degree 
2) ; then the conductor / of LjQ is a power of m, and as it is an ideal of 
QiVqq7) ([2, Satz 7]) it is a power of 2, say 

/ = 2s, s ^ 0. 

As L and U are conjugate over Q, the conductor of L'/Q is also 2s and 
thus the extension LjQ has conductor 2s too. 

To calculate/, I use the field Q( ̂ ^q7, \J — q\ \/lx) and [2, Satz 24] (see 
also [3, (3.4)]), which implies 

f2 = NQ(^r, v^/QU^?) (b) • ~-, 

where b, bi, bo are the relative discriminants of 

QWqq'> V ^ ? , V^)/Q(vW> V^q7), Q(\/qq~', V^'VQWqq')* 

Ü / Q ( V ^ ) . 

2 splits in Q( A/<7<P> V — q') m t o two prime factors 5ls $2 of degree 2 and 
I suppose that exactly $•$• divides 6. Then, by [3, Lemma 2], 

S\ ^ 3 , s2 ^ 3, 

and exacty 251^52 divides JVv*(b). As Q(\/qc[', V-q'i/QiVqq7) is un
ramified, 2 does not divide bi and, again by [3, Lemma 2], 23 exactly 
divides bo- Putting everthing together I obtain 

s = i-C?! + s2 - 3 ) ^ ^ - , 

so 

s = 1 or s = 0. 

And if 0 denotes the maximal 2-extension lying in the ray class field mod
ulo 2 of Q, then, by the above, 
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L c Q. 

Then for the proof of (3) it suffices to show 

[Q: Q] è 8, 

i.e., the ray class number modulo 2 of Q is not divisible by 16. Let A2 be 
this ray class number ; then A2 is a divisor of Aö-^ö(2), where <j>Q is the 
Euler phi function of Q, and thus <f>0(2) = 3 • 22 . 

It follows from [7] that the class number hQ of Q is given by 

(as AQ( v=2) = 1 and the unit index Q equals 1 in this case). Now, A Q ( v ^ ) is 
odd [4, ch. 29], and 4 A|QU=2^o exactly [6, §11]; thus 

hQ = 2s 

with s = 1 mod 2, and 

Afl.0û(2) = 23-3^, 

which was to be proved. 

4. Weak decomposition laws and end of proof. The ideal class of order 
2 in Û contains an ideal which is ramified over Q(y /ZT2) [5] § 13], that 
is, a prime divisor of q or q'. We have q' inert in Q( V—"2)» a n d the prime 
divisor of q' in Q is already a prime of Q( A/qcf') and thus a principal prime 
(AQ(V—0 is odd). Now, # splits in Q(V

/TT2) in the form q = (u + v^/~^2) 
(u — v \/^2) = w2 + 2v2 with u, v e Z, u = v = 1 mod 2, and 

(w ± vv^I) = SO-, 

where St± are prime ideals of Q which lie in the ideal class of order 2. 
I have to investigate ray classes modulo 2 in Û, and thus I will first 

determine generators for the prime residue classes modulo 2. Let m = 
(^/"Z2) be the prime divisor of 2 in Û and co a primitive root modulo m; 
I may assume that w is an integer of Q( ̂ /qq7) which implies cos = 1 mod 
2. The association 1 + a«J~^2 •-» a defines an isomorphism of (1 +m)/ 
(1 + m2) and the residue class field modulo m (which is F4), so that the 
prime residue class group modulo 2 is of type (3, 2, 2) with generators 

co, 1 + \/~^2 and 1 +<o V - 2 . 

As u ± \><J~^2 = 1 4- V--2 mod 2, I obtain the following description 
of the ray classes modulo 2 in 0: 
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For every fractional ideal tyofQ which is prime to 2 there 
is a representation 

8P = Ä£ . (1 + Û> \/~=2)B • dafia), 

(4) with uniquely determined exponents A G {0, 1, 2, 3}, B G 
{0, 1}, an {not necessarily uniquely determined) exponent 
ß e { 0 , 1,2} and an a G Q {integral with respect to m) 
with 

a = 1 mod 2. 

If the fundamental unit rj of Q{Vqq7) has half-integral coordinates, I 
may take œ = 7] and assume Q = 0. 

Let »S be the group of fractional ideals prime to 2 of Û, and let 

K:S-> Gal(L/A) 

be the Artin map. As in (4), I write for an ideal « G S 

«« = « $ • ( 1 + 0 ) y ^ 2 ) ß - ( ^ a ) , 

and then /c(«) = ztìfc if and only if A = B = 0. 
As Q{*J — q\ V ^ D is the maximal elementary abelian extension of 

Q inside L, G a ^ L / ^ y ^ ' , y ^ ï ) ) = {<72k G Gal(L/fl)}, and thus, for 
« G S as above, *(«) G Gal ( 1 / 0 ( ^ ^ 7 ' , V ^ D ) i f and only if A e {0, 2} 
and £ = 0. 

As Q{ *J — q')jQ is unramified and h0 = 2 mod 4, ö( A/ — #') is the Hilbert 
2-class field and thus for « G S, as above, *(«) G Gal(L/fl( y/^q')) if and 
only if A G {0, 2}, i.e., « s is a principal ideal. 

For the proof of the Theorem I have to show (2). So let/? be a rational 
prime which splits completely in Ö(V — q', V^-l)l then p also splits 
completely in Q and in Q{*/ — q'). Let p be a prime divisor ofp in 0; then 
p* = (77) with 77 G Q, N0/Q{II) = ps, and *(p) G Gal(L/fl(A /^?, V ^ D X 
i. e. 

(77) = (w + v ^ ^ M û / t e ) 

with C G {0,1}, g G Z and a = 1 mod 2. Furthermore, p splits completely 
in L if and only if /r(p) = /rf̂ , i.e., if and only if 

(77) = (ûftr) 

with a = 1 mod 2. The units of Q are already in QWqq') (see [7]), and 
so they are congruent to some power of œ modulo 2. Thus it remains to 
show: 
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Let II eu be integral and 

n s oP • (1 + V~=2)c mod 2 

WJYÄ C e {0, 1} #«*/ ß e Z ; /Ae« fAere IJ a representation 

N0/Q(II) = x2 + 8 ^ y = C 2 + W 2 

with x, y, c, deZ and 

y + d = C mod 2. 

To see (5), set 

ÛT<?# = (1 + ^/~2)c + 2/3 

with ßeQ, ß integral with respect to 2; from [9] it follows that 

ß = y (*o + &ivW + W ^ + h^^îffî), 

with &f e Q, 6, integral for 2 and ô0
 s *i m ° d 2, Z>2 = &3 mod 2. Taking 

norms I obtain 

^ / Q U ^ O ( # ) = * + 2yj-2qq'9 

^W^)(/D = c + 2</V^2, 

with jc, j , c, of e Z and 

>> 4- d = C mod 2. 

Taking further norms to Q gives the assertion. 
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