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THE ARITHMETIC RING AND THE KUMMER RING
OF A COMMUTATIVE RING

D. K. HARRISON

The Witt ring of a commutative ring is a functorial construction which:
(1) gives a commutative ring for a commutative ring; (2) has nontrivial
value at the field Q, or at any number field; and (3) has value at Q, or a
number field, which is equivalent to a basic circle of successful ideas
from classical number theory (see [5] and its references). The purpose of
this note is to package another problem of classical number theory in this
way.

We begin with a general construction, then define what we call the
“Kummer ring”, K(R), and finally define what we call the “arithmetic
ring”, A(R). For the special case of R a field whose multiplicative group
has an element of order n, for all positive integers n, A(R) is naturally
isomorphic to K(R), by the Merkurev-Suslin theorem ([6]). We use “ring”
(respectively “ring homomorphism™) to mean “‘ring with one” (respec-
tively “‘ring homomorphism taking one to one”).

Let m be a nonnegative integer.

Let X, Y, Z be functors from the category of commutative rings to
the category of (Z/m Z)-modules. For each commutative ring R, suppose
we have a (Z/m Z)-bilinear map

dr: X(R) x Y(R) > Z(R)

which is functorial in R. By this we mean, if f : R — k is a homomorphism
of commutative rings, then

Z(f) (gr(x, y)) = GX(N)(), YD,
for all x € X(R), y € Y(R). First let m = 0. We define M(R) to be
Z x X(R) x Y(R) x Z(R).
We define operations on M(R) by

(n1, X1, ¥1, 21) + (12, X2, Y2, 23) = (1 + Ny, X1 + X2, Y1 + Yo,
Z1 + zz + ¢r(x1, y2) + Pr(x2, y1)),
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(11, X1, Y1, 21) + (Mg, X2, Y2, 22) = (Ming, MXy + NyXy, MY + MYy,
ny(ny — Dr(x2, y2) + nalng — 1) r(x1, 1) + (mng + Dhp(x1, y2)
+ (mng + 1) dr(xz, ¥1))-

THEOREM 1. With the above notation, M(R) is a commutative ring. Also,
M(R) is functorial in R.

ProOOF. Define
V=V({R) = X(R) ® Y(R),
¢V x V- Z(R)

by ¢((x1, y1); (x2, ¥2)) = Pr(x1, ¥2) + ¢r(x2, y1). One checks that ¢ is
biaddititive and symmetric. Define

P = PR) =V x Z(R),
(v1, z1) + (v2, 2) = (V1 + vz, 21 + 22 + G(v1, V2)),
(v1, 21) + (v2, z2) = (0, B(v1, v2)).
One checks a commutative prering (i.e., ring not necessarily with one)
results and n(v, z) = (nv, nz + (n(n — 1)/2)¢(v, v)), for all neZ,veV,

z € Z(R). One adjoins an identity in the usual fashion to get M(R). Now
let f: R — k be a homomorphism of commutative rings. Define

V(f) : V(R) - V(k)
by V(f) (x, ») = (X(f)(x), Y(f)(»)). Define

P(f) : P(R) — P(k)
by P(f)(v, 2) = (V(f)(¥), Z(f)(2)). Define

M(f) : M(R) — M(k)

by M(f)(n, w)=(n, W(f)(w)). One checks that M(f) is a ring homomor-
phism and that k = R and f = 1 imply M(f) is the identity map. If
t :k - S is a homomorphism of commutative rings, one checks M(t) o
M(k) = M(t - k). The Theorem is proven.

We call the ring M(R) of Theorem 1, the first version of the construction
ring of X(R), Y(R), Z(R), and ¢z. We now define a second version, which
it a little easier to work with because it does not involve ¢ in the addition.
M(R) is the same set, but the operations are defined by

(nla X1, Y1, zl) + (nZ’ X2, V2, 22) = (nl + ng, X1 + X2, Y1+ Y2, 21+ 22)3

(n1, X1, y1, 21) * (2, X2, Y2, 22) = (ming, Xy + noXy, N1Y2 + N2y,

mzz + npzy + dr(x1, y2) + ¢rlxz, y1)-
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THEOREM 2. With the above notation M(R) is a commutative ring. Also,
M(R) is functorial in R.

Proor. This is easily checked along the lines of the proof to Theorem
1.

Let R be a commutative ring. Write U(R) for the units of R and S(R)
for the set {a € U(R)|l — a € U(R)}. The permutation group S3, has a
natural action on S(R) defined by

12) - a = a7}, 2)-a=1-a.
We write D(R) for
(U(R) @z U(R) ®z (Q/Z))/rel(R),

where rel(R) is the subgroup generated by all a ® (23) - a ® (1/n+2Z),
for « € S(R), n a positive integer. Note we are being forced to write
U(R) additively. Write ¢, for the natural map

¢r: UR) x (U(R) ®z (Q/Z)) - D(R).

The second version construction ring of U(R), U(R) ®4(Q/Z), D(R), and
&g, is what we call the Kummer ring of R and denote by K(R).

The arithmetic ring is more subtle. Write T(R) for the abelian group
T(Q/Z, R) of [2). T(R) is functorial in R, and if R is a field, then the finite
subgroups of T(R) correspond bijectively with the finite Galois field ex-
tensions ¢: R — K (up to isomorphism) which have abelian Galois groups,
by o goes to ker(7(c)). Write B(R) for the Brauer group of R [1]. Let

acUR), y=IG, [4]eT(R).

Then G is a finite subgroup of Q/Z, and 4 is a Galois (G — R)-extension.
Let n be the cardinality of G, and write ¢ for

In+ZeQ/Z

which is a canonical generator of G. Write (o, 4, «) for the cyclic algebra
> A,

where i =0,...,n — Lu* =a -4 u-a= o(a) - u, and write ¥p(c, y)
for its Brauer class in B(R). A long check gives that ¥ is biadditive
and functorial in R. The construction ring of U(R), T(R), B(R), and ¥'p
(second version) is what we call the arithmetic ring of R and denote by
A(R). For m a nonnegative integer, we replace Z, U(R) by ( )/m( )
and T(R), B(R) by ( ), to get A(m, R).

In the definition of K(R) replace Z, U(R) by ( )/m( ), and with
D(R) make the obvious adjustment, to get K(m, R). If R is a field which
has a primitive m-th root of 1 (all of them if m = 0), then by [6] the natural
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isomorphisms of Kummer theory and of algebraic K-theory give a ring
isomorphism between K(m, R) and A(m, R). This is natural, but rather
complicated, so in the interest of brevity we simply refer to [6].

The arithmetic ring A(R) has a natural ideal which we denote by B(R)
and which may be identified with the Brauer group of R. It also has natural
ideals I(R), J(R), and natural group homomorphisms

In : U(R) — I(R),
tn : T(R) — J(R),

with obvious natural properties. If f: R — k is a homomorphism of com-
mutative rings, and 7€ T(R), we have a group homomorphism from
U(R) to B(k) which takes u to A(f) (In ) - (tn ¢)). Hence we have a group
homomorphism

¢s: T(R) = Hom(U(R), B(k)).

If R is a number field, and f varies over all the completions of R, this can
be used to characterize T(R), but this is both a very long story and equiv-
alent to a more or less standard story. We end this note with a discussion
of A(Q), K(Q), and W(Q). For W(Q), we draw from page 25 of [3],
which is somewhat inaccessible.

We will state X = U(Q), Y = T(Q) (the group of Dirichlet characters),
Z = B(Q), ¢ = ¢qexplicitly and then apply the construction of Theorem
2. We use the fact that the non identity elements of X have an action by
S3 (i.e., is the S(R) defined above, for R = Q). Let P be the set of all
prime numbers. Let P¥ = P |J {—1} and N* be the set of all positive
integers. To avoid confusion we write u(p) for a p in P* when considered
in X (i.e., additively). Every x € X can be written uniquely

x = 25 vy(x)u(p),

the sum over all p € P#, where all but finitely many of the v,(x) are 0,
for p € P each v,(x) € Z, and v_y(x) € Z,. For each p € P, n € N¥,

Up.m) = {0} U {xeX|x # 0, n < v(23) %)}

is a subgroup of X (even of ker v, in which it is of finite index). According
to [4], Y can be characterized by the properties that follow. Y is a direct
sum of subgroups D,, one for each p € P. For each p € P we have an
infinite strictly increasing sequence

G(p, 1) = G(p,2) = G(p,3) = -+

of finite subgroups of D, whose union is D,. For each p € P* we have a
biadditive map

$,: UQ) x Y > Q/Z.
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Furthermore:
() VaeUQ), VyeY,¢/la, y) = 0 for all but finitely many ¢, and

Z qu(aa y) =0,

the sum over all g € P¥#;
(Q peP,de Dy, qe P* q # p, acker v, imply

¢yla, d) = 0;
(3) p € P, a € ker vy, n € N¥, imply
dya, d) =0 YdeG(p, n)

if and only if a € U(p, n); and
(4 pe P, de Dy, ne N*, imply

¢dp(a, d) =0 VaeU(p,n)

if and only if d € G(p, n).

For p € P4, if p = —1, then write (Q/Z), for {0 + Z, 1/2 + Z}, and
otherwise write (Q/Z), for Q/Z. B(Q) is the set of all b = (..., by, .. .)
in the direct sum of the(Q/Z), such that 33 b, = 0. For ae U(Q), ye Y,
one checks that

C..o¢pla p),..))

is in B(Q); this is ¢(a, y).
Using the theorem on page 101 of [7], one checks D(Q) = 0. U(Q),
we have discussed above, and

U(Q) ®z(Q/Z)

is obvious from it. Hence K(Q) is obvious.

Let M (respectively N) be the set of all finite sets of prime numbers
(respectively, of odd prime numbers). With symmetric difference both M
and N are abelian groups, isomorphic respectively to

Z, ®4 (ker v_y), Z, ®4 (ker v_; ) ker v,).
Ford = {ay,...,a,},B={by,...,b,} € M, write [4, B] for
{pePlp#2,(a...a,by...b,;, pp=-—1},
where (, ;) is the Hilbert symbol. Define operations on M x N by
(4, A) + (B,B)=(A + B, A + B' + [A4, B)),
(4, 4') - (B, B') = (2, [4, B).

Let Z x M x N be the usual adjunction of a one; this is W(Q). For
ae U(Q), let
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A(a) = {plvy(a) is odd};
if 0 < g, then {a) = (1, A(a), [A(a), A(a)]) and { —a) = (—1, A(a), @).
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