
ROCKY MOUNTAIN
JOURNAL OF ffiATHEMATICS
Volume 17, Number 1, Winter 1987

COMPLEXITY OF COMPUTER ALGORITHMS

RONALD J. LEACH

Introduction. This paper is intended to provide an introduction to the
study of complexity of computer algorithms. No special knowledge of
computers is needed; the emphasis is on the ideas involved in algorithms
and not on any special features of any particular computer or computer
language. Our viewpoint is that a computer is a large, dumb machine
capable of doing arithmetic and comparisons at an extremely rapid rate.
It performs these operations according to a precisely given set of instruc
tions called a computer program.

We will not attempt to survey the entire field of algorithm complexity
in this paper; instead we will concentrate on a few algorithms indicating
some current problems and directions in computer science and related
problems in mathematics.

The paper is divided into four parts. Part one contains a very brief
discussion of von-Neumann's model of a computer (as a sequential rather
than a parallel machine). It also includes an introduction to measurement
of the complexity of an algorithm. Part two is concerned with arithmetic
complexity theory, i.e., minimizing the time required by an algorithm
which computes something. It begins with a discussion of a simple prob
lem : evaluation of a polynomial of degree N at a point with as few multi
plications as possible. Evaluation of the polynomial at N points is then
discussed briefly en route to a discussion of the Fast Fourier Transform,
which is developed using the important technique of divide-and-conquer.
This leads naturally to a discussion of recursion and recursive algorithms.

In part three we consider some non-arithmetic algorithms. Several sort
ing algorithms are discussed and a lower limit on the number of com
parisons for sorting an arbitrary file is given.

Part four will include a summary and some speculations about the
direction of research in complexity theory.

In this survey we will only consider a few problems and techniques; it
is not the intention to provide a complete description of current work on
complexity theory. For additional surveys see [4, 8, 42]; for a leisurely
introduction to some of the ideas in algorithm design see [20]; and for the

Received by the editors on April 23,1985 and in revised form on June 24,1985.
Copyright © 1987 Rocky Mountain Mathematics Consortium

167

168 R. J. LEACH

state of the art of NP problems see [16] and the series of articles by D.
Johnson [21] in the Journal of Algorithms.

Finally, any author purporting to show a connection between some
areas of computer science and mathematics would be remiss if s/he did
not mention the excellent series by D. Knuth [27].

1. Complexity measures and von-Neumann machines.

1.1 Algorithms. An algorithm is a definite procedure for solving a
problem in a finite number of steps. Often the terms algorithm and pro
gram are used interchangeably. We will be considering the complexity of
algorithms as being defined relatively : algorithm A is more complex than
algorithm B if the time to run program A is longer than that of program B.

Note that is possible that algorithm A runs faster than algorthm B
for some inputs, but runs considerably slower than B for other inputs. We
will be concerned primarily with the worst case performance of the run
time on inputs of the same length, although average case and best case
performance are also considered briefly. On an absolute scale, we often
are interested in the run-time as a function of the length of the input. The
simple example given below indicates how these ideas are used in a practi
cal situation.

Suppose we have a set of three numbers, say 1, 3, 2 and wish to find their
mean and median, and to sort them. To most mathematicians, this is an
easy problem. Note that computing the mean requires slightly more work
(two additions, one division and a count of the elements) instead of three
comparisons. If we had 100 numbers, we would need 99 additions and one
division to compute the mean but a large number of comparisons to find
the median. (We will see later any method of sorting N numbers using
comparisons must make at least O (N log N) comparisons.)

For small sets of numbers it is clearly faster to find the mean and
median by hand than to use a computer. To find the median of the set
{1, 2 , . . . , 99} is still easier for us than it is for the computer. We can
recognize that the set is given in increasing order while a computer cannot
unless we have already programmed it with instructions for determining
if a set is already sorted.

We assume that a computer has a memory which is an n x 1 vector
whose entries are binary numbers. The number of binary digits or bits in
each number depends on the particular computer. All numbers, letters,
symbols, instructions, etc. that the computer understands are encoded
into these binary numbers. A complete collection of instructions to per
form some task is called a computer program, which is stored in memory
in the form of these binary numbers. The computer has a central pro
cessing unit (cpu) in which all arithmetic operations and comparisons are
performed. Any two numbers in memory can be added by first moving one

COMPLEXITY OF COMPUTER ALGORITHMS 169

number to a special register, the accumulator, of the cpu, adding the
second number and storing the results somewhere in memory. Thus the
statement

x = x + 1

in a computer program does not indicate an equation with no solutions;
rather, it indicates that the number in location x is brought to the ac
cumulator, added to 1 and the result is stored back in location x. This
use of variable names is of course different from the usual use in mathe
matics. (See the recent article [40] for an excellent short discussion of
possible uses of variable names in a computer.) Comparisons between the
contents of the accumulator and those of location x are done similarly.
This is the classic von-Neumann model of a computer.

A von-Neumann machine is a sequential machine; it executes in
structions in the sequence required by the program and it considers data
one "data unit" (= one integer or one decimal representation or one
character, etc.) at a time. A considerable amount of work is being done
currently on parallel or distributed processing where there can be multiple
processors acting simultaneously on the same "data unit" or a single pro
cessor acting upon many "data units" or even many processors working
on many streams of "data units". In this paper we consider only sequential
algorithms for sequential (von-Neumann) machines. The analysis of par
allel algorithms is in its infancy compared to the analysis of sequential
algorithms which itself is less than 20 years old. A good survey article on
parallel algorithms is [7].

One final comment on parallel processing is in order. Many computer
systems have the ability to perform a limited number of operations in
parallel. For example, the representation of a complicated object such as
the space shuttle on a computer terminal screen requires a large number
of line segments just to represent the shape. Showing the effects of rotation
requires many repetitions of multiplications of vectors by certain matrices.
Computing the entries of the product using several processors in parallel
can speed up the display so that motion is shown in real-time rather than
being delayed. In general, when we say parallel processing we mean
general purpose machines acting together rather than just special purpose
arithmetic processors.

1.2. Computer arithmetic. A few comments on computer arithmetic are
in order. Most computers store integers differently from the way they store
decimals, or reals as they are usually called in computerese. In many per
sonal computers an integer must have absolute value at most 215 since it is
stored in 16 bits or binary digits, with the first reserved for the sign.
A "real" is stored in 32 bits with the first bit for the sign, the next 11

170 R. J. LEACH

for a "base-2 characteristic" which can represent positive or negative
powers, and the remaining 20 for the "base-2 mentissa". Addition re
quires many onebit additions and carries. Multiplication on the other hand
requires many shifts (multiplication by single bits) and many additions.
Overflow is checked for after the operation is performed. Thus, in general,
multiplication takes longer than addition. All other things being equal,
fewer multiplications mean faster algorithms.

(Knowledge of the way a computer stores numbers helps to point out the
difficulties in doing arithmetic on a computer. We should not expect to
find the repeating digits in the expansion of say 11/89, in the limited
amount of space available for storage of numbers. Even using a computer
whose design permits "double precision" numbers with a total of 64 bits
for storage obviously cannot resolve all problems of this type. Rational
arithmetic is therefore not usually done in hardware ; rather, it is done by
using software such as LISP. The list structure of LISP is well suited to the
representation of rational numbers and to the representation of decimals
to arbitrary precision. See [41] and [40] for a more complete discussion.)

2. Arithmetic complexity theory.

2.1. Polynomials. Suppose we have a polynomial P of degree N and we
wish to evaluate this polynomial at many points, perhaps in order to plot
its graph. A first attempt at an algorithm might be something like the
following.

For each value of x between - 10 and 10 with increment .1, compute

P = a0

P = ax • x + aQ

P = a2 • x2 + a\ • x + a0

P = an • xn + an-i • xw_1 + • • • + a0.

This is written succintly in the computer language BASIC as

FORJT= - 1 0 TO 10 STEP .1

P = 0

For K = 0 TO N

P = A(K) * X~K + P

NEXT K

NEXT ^

A few words on notation are in order. Most programming languages do
not accept subscripts. It is easy to get around this by writing A(K) instead
of ak. The symbol " A " means "raised to the power" ; tnis is a feature of the

COMPLEXITY OF COMPUTER ALGORITHMS 171

language BASIC as implemented on a particular computer, and we will
follow this notation rather than the "**" notation of FORTRAN. The
"*" denotes multiplication.

Notice that this algorithm requires the computation of xk at each step.
A faster algorithm for an arbitrary polynomial of degree TV is

FOR X = - 1 0 TO 10 STEP .1

P = 0

Y = 1

FOR K = 0 TO N

P = A(K) * Y + P

Y= Y*X

NEXT K

NEXT X

This speeds up the program by a considerable factor. In one test example
involving a 10th degree polynomial, the author noted a running time
decreasing from 44 to 16 seconds. An analysis of these algorithms will lead
us to the important idea of an essential multiplication or division step
which is developed in the next section.

In the first algorithm, the outer loop is executed 201 times since there
are 201 points at which p(x) is evaluated. For each one of these points, the
inner loop is executed 11 times. Each pass through the inner loop means
an addition to P and the computation of xk. This computation is per
formed either by repeated multiplication or, more commonly, by the
formula

xk = exp(/c log x)

which involves a fair amount of work for the computer using the built-in
functions exp and log. For the purposes of this note we assume that the
two methods are similar in the amount of time that a computation takes,
at least for "most" small exponents. We simply call such exponentiations
"multiplications". A more detailed explanation will be given later in this
section.

Thus, in the first algorithm there are 201 evaluations from the outer
loop, each of which requires 1 -f- 2 -h • • • 4- 10 = 55 multiplications to
compute the powers of x and 10 multiplications by the various coefficients
or 65 multiplications. There are also 10 additions per evaluation so that the
first algorithm requires (65) (201) or 13065 multiplications and (10) (201)
or 2010 additions.

In the second algorithm, there are still 201 evaluations. The number

172 R. J. LEACH

of additions per evaluation is still 10, but there are now 22 multiplications
per evaluation for a total of 22 x 201 or 4422 multiplications.

There are algorithms for evaluating polynomials of degree « at a single
point using fewer than In + 1 multiplications. Thus the test polynomial
of degree 10 could be evaluated using fewer than 21 multiplications at
each point. One such algorithm is commonly known as Horner's method,
although it was originated by Newton. The polynomial is written in the
form

P(x) = (. . . ((anx + ûw_i) x + an-2)x + • • • + axx) + a0.

This method still requires N additions for a polynomial of degree N, but
only N multiplications.

A BASIC program for this algorithm for a polynomial of degree TV is :

FOR X = - 1 0 TO 10 STEP .1

P = A(N)

FOR K = N - 1 TO 0

p = p*X + A(K)

NEXT K

NEXT X

For our example of a polynomial of degree 10 with 201 evaluation
points, we have 10 x 201 or 2010 multiplications and 10 x 201 or 2010
additions. This program took about 8 seconds to run.

Simply counting the number of multiplications indicates that the se
cond and third algorithms should run 13065/4422 = 2.95 and 13065/
2010 = 6.5 times as rapidly as the first for a 10th degree polynomial.
Observed run time ratios are 44/16 = 2.75 and 44/8 = 5.5, surprisingly
good agreement since an ordinary watch was used to estimate time. This
reinforces the statement made in §1, that minimizing multiplications is
essential to improving the runtime of the algorithm.

2.2. Formal definition of arithmetic algorithm. It is possible to formalize
several of the ideas of the previous subsection. We note that the increase
in speed seemed to be caused by reducing the number of multiplications
needed. Following Winograd [42], we make the following definitions.

The inputs to an algorithm are a set B = {xXi . . . , xn). We suppose
that both B and a field G called the field of constants both belong to a field
H. An algorithm A over the set B is a finite sequence hl9 . . . , hn of ele
ments of H such that either

hteB

or

COMPLEXITY OF COMPUTER ALGORITHMS 173

hi = hj o hh

wherej, k < iand "o" is either 4-, —, * or /. An algorithm A = (Ax,
hn) is said to compute a set F = {/Ì,. . . , / J if F ç A.

An At- is said to be a non-multiplication—division step (non m/d step)
if either

(i)A,eJ?;
(ii) There arey, & < i so that h{ = Ay ± hk\ or

(iii) There is a y < i and g e G so that h{ = g • Ay.
Otherwise A,- is called an essential m/d step.

Thus #i/*2» x2 • x7 and xf are essentially m/d steps, while 2x\ — 5
and *i — x2 are not, since they involve either addition or substraction
or one of the operands is from the field of constants. The distinction be
tween multiplications and divisions with constants and the essential
m/d steps defined above is made primarily for empirical reasons. In many
cases, constants are either positive or negative powers of 2. Multiplying
or dividing by a power of 2 means performing a "shift" operation on the
binary digits in some register, which is often faster than normal multi
plication. There are often other small gains in fetching and operating on
constants as opposed to operations on variables. For these and other
reasons, we only consider the essential m/d steps as defined above rather
than simply counting multiplications and divisions, thus distinguishing
the field G of constants from H.

One aim of arithmetic complexity theory is to minimize the number of
m/d steps in an algorithm. Note that this goal is in agreement with the
empirical evidence observed in the previous section.

Using our new terminology, we can say that Horner' method requires
n m/d steps and n additions. These are the smallest numbers possible,
unless we "pre-process" the polynomial before the evaluations. As an
example of this "pre-processing" consider the 4th degree polynomial

P(x) = tf4x
4 + • • • + a0.

An example of Motzkin and Todd (see [20]) shows that we can write

P(x) = ai((x(x + CXQ) + ai) (x(x + CCQ) + x + <x2) + or3)

= «4(x
4 + (2a0 + l)x3 + (ax + a2 + a0(a0 + l))x2

+ (tfo#2 + OCQCXI 4- <xi)x + (aia2 + a3)),

where

«o = («3 - aA)l2aA,

« i - - ^ - - ^ («afa+ 0)

174 R. J. LEACH

<*2 = -r- - oc\ - a0(a0 + 1), aA

a3 = -y- - axa2.

After the "preprocessing", the algorithm is

Si = x(x + aQ)

52 = (S1 + ai) (5i + x + a2)

5 3 = #4(S2 + 0C3)

which requires 3 m/d steps and 5 additions.
The best result for evaluating a general nth degree polynomial at a

single point is (see [20], and [42])

n adds, n m/d steps (no pre-processing)

at least n adds, [(« + l)/2] + 1 m/d steps (with pre-processing).

The lower bound given in the case of pre-processing is nearly best possible.
In [21, vol. 2, p. 474-478], it is shown that every polynomial u of degree n
(n larger than 2) can be evaluated by the scheme

y = x + c, w = y2;

z = (uny + ^o)v + A) (n even);

z = uny + i?o (n °dd),

i<*) = (• • .(z(w - ^x) + 5 0 (w - ^2) + Bd- • -)(w - ^ J + 5W

for suitably chosen c, 4̂̂ and Bk, giving a total of [n/2] + 2 multiplications
since m = [n/2] + 1. The details of the computation of c, the Ak and the
Bk can be found in the reference cited above.

Reducing the number of multiplications is especially important if we
must evaluate the polynomial at a large number of points. If the points
form an arithmetic progression, then as was pointed out in [27, vol. 2,
p. 469], the evaluation can be reduced to addition only after the first few
steps. In the next section we will consider the Fast Fourier Transform
which involves evaluating terms of the form wj for w = exp(2ici/N) for
0 ^ j ^ N — 1. We close this subsection with an example involving the
Tchebycheff polynomials and a slightly different view of pre-processing.

The nth Tchebycheff polynomial Tn(x) on the interval [—1, 1] is defined
by

Tn(x) = cos(« arccos x).

The first few polynomials are

COMPLEXITY OF COMPUTER ALGORITHMS 175

T0(x) = 1,

Tx(x) = x,

T2(x) = 2x2 - 1,

T3(x) = 4JC3 - 3JC,

T*(x) = 8X4 - 8x2 + 1.

Suppose we wish to evaluate the polynomial

p(x) = ox4 + bx3 + ex2 + dx + e

at a number of points on the interval [—1, 1]. Solving of the system of
rw's for 1, x, x2, *3> x± gives

p(x) = (1 + c/2 + 3a/8) r0(x)

+ (d + 3Ò/4) 7\(x)

+ (a/2 + c/2) r2(x)

+ (b/4) T3(x)

+ (a/8) Ux).

Note that all the multiplication of the TVs are by constants and hence
these are not essential m/d steps in the sense of Winograd. The difficulty
is in the evaluation of the Tn(x). Recall that, on the interval [—1, 1],
Tn(x) = cos(w arccos x). Evaluation of cosines and inverse cosines can be
quite time consuming. However, if we know in advance the values of x
which we will use to evaluate /?, then a table of values of cosines and
inverse cosines can be set up in advance with the desired accuracy. The
value of arccos x is obtained from the table. Values of n arccos x are then
computed, which involves either multiplication by constants or repeated
addition. Neither of these relatively fast computations involves an es
sential m/d step. The value of Tn(x) is then obtained by looking it up in
a table of cosines. Finally, p(x) is computed by using the expansion into
the TVs. The computation of p(x) involves the construction of two tables,
multiplications by constants and additions, but no essential m/d steps.
This situation is highly dependent on the interval [—1, 1] and has obvious
round-off and truncation errors which can be easily estimated for any
polynomial p(x). We invite the reader to experiment with this and similar
algorithms for polynomial evaluation.

2.3. The Fast Fourier Transform. From §2.2, we see that evaluation of
a polynomial P of degree N at TV points can be performed in 0(N2)
operations. An extremely important special case occurs when P has terms
of the form w> for w = t\p{2itijN\ 0 g j <> N - l.

176 R. J. LEACH

The discrete Fourier transform (DFT) of a function a with sample points
a0, ax, . . . , aN-i is defined by

Aj = 2 «* exp(2icijk/N)9 0 ^j ^ N - 1,

with the inverse transform given by

ÖJk = (i/N) £ Aj exp(-2icijk/N), 0 ^ k ^ N - Ì.

The evaluation of a discrete Fourier transform is precisely the same as the
evaluation of a polynomial at N distinct points and thus by Horner's
method can be done in 0(N2) operations. The Fast Fourier Transform
(FFT) is a method for computing the DFT in 0(N log N) operations, an
incredible speedup. The FFT came into common use in 1965 when it was
popularized by Cooley and Tukey [10]. See [9] for a history of the FFT.

We describe the procedure for computing the FFT. The algorithm is
written in a language similar to Pascal. The feature of the language we will
use is recursion—ability to define a function or procedure in terms of
itself. For a more complete discussion of these ideas, see [20, Chap. 9]
from which most of this material is taken. The article [40] contains an
elegant example of a recursive program written in LISP.

We assume for the moment that N is a power of 2. Note that if N = In
and w is a primitive N-th root of unity, then — y?i = wJ+n.

We will use the technique of "divide-and-conquer" :
1. Divide the problem into simpler sub-problems.
2. Continue the subdivision until all sub-problems can be solved.
3. Generate a solution to the original problem from the solutions to

the sub-problems.
Let ÛJV-I> . . . , öo be the given coefficients. Then we break up a poly

nomial a with coefficients aj as follows :

a(x) = aN^xN-1 + aN-2x
N~2 + aN-Sx

N~3 + • • • + a0)

= [aN-XxN-1 4- aN-3x
N-s + ... + aix]

+ [aN-2x
N~2 + aN-4pcN~*+ • • • + a2x

2 + a0]

= [as-iy1 + <*N-3y*~2 + • • • + «J • x

+ [aN-2yn'1 + aN-iyn~2 + • • • + axy + aQ]

= [c(y)] • x + b(y)9

where y = x2 and N = In. Thus we have written a(x) as the sum of two
polynomials. We have

a{wJ) = C02>)H>' + b(w2i)

and

COMPLEXITY OF COMPUTER ALGORITHMS 177

a(w'+») = c(w2('+n))w'+rt + b(w2(J+n))

« c ((- wO2) (- w O + 6((-w-02) = - c(w2>>' + 6(w20

for 0 ^ 7 ^ /i — 1 since — w' = H>'+*.

Hence in the case that N is even, N = 2«, we can reduce the evaluation
of the N values of the Ak to the evaluation of the N/2 values of similar
expressions for the polynomials b(x) and c(x). If TV is a power of 2, this
procedure can be continued until the polynomials b(x) and c(x) have
degree 1.

A program to use this divide-and-conquer technique is now given.
Since divide-and-conquer is naturally suited to recursion, the program is
written recursively. Note also that the program is written requires that N
is a power of 2. Notation is as follows : a(x) is the polynomial mentioned
above, w is a root of unity and A is an array to hold the coefficients of
a(x).

1 Program FFT (TV, a(x), w, A)

2 BEGIN

3 IF TV = 1 THEN A(0) = aQ

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

ELSE
BEGIN

END

n = N/2

b(x) = aw_2*M_1 + • • • + a2x + ao

c(x) = aN-.ix«-x + • • • + a3x + ax

CALL FFT («, Hx), w2, B)

CALL FFT («, c(x), w\ C)

WP(-l) = 1/w

FOR 7 = 0 TO n DO

BEGIN

WP(j) = W* WP(j - 1)

AU) = *(/) + WP{j)*C{j)

A(j+n) = B(j)- WP(j)*C(j)

END

19 END.

178 R. J. LEACH

The BEGIN-END pairs indicate logically grouped blocks of statements.
Let us examine this program line by line.
1-4. We are given N and the aj and wish to find the Ak. If N = 1, the

problem is trivial. A is an array which will hold the coefficients of a(x).
6-8. Split the evaluation into two parts.
9-10. Call the procedure FFT again to act on the smaller inputs b(x),

c(x). B and C are arrays that will hold the coefficients of b{x) and c(x)
11-17. This loop actually evaluates the coefficients. Notice that the

first time through the loop n = N/2 and so lines 15 and 16 refer to the first
and second halves of the array ,4(1),. . . , A(N). The main idea being used
here is that, for N = 2«, if w*\ 0 ^ j ^ N — 1 are the primitive N-th
roots of unity, then w2', 0 ^ j ' ^ n — 1 are the primitive n-h roots of
unity. The recursion proceeds until the procedure is invoked with n = 1.
At that point, line 3 applies and the program continues until the FFT is
evaluted.

How do we measure the computing time for this algorithm? The answer
is obtained by noting the recursive structure of the program.

Let T(n) be the time for the algorithm to work given n inputs. We wish
to find T(N) in terms of the initial number N of points. Let us examine the
key step of dividing a problem of size n into two problems of size n/2. Let
b(x) and c(x) be the two polynomials given by this division of a polynomial
of degree n. Then b(x) and c(x) have degree n/2 and hence, by Horner's
method, the number of essential m/d steps is 2(«/2) for evaluation of both
b(x) and c(x). The number of m/d for the loop in lines 12-17 is n. Thus

T(n) = 2T(n/2) + (time for b(x), c{x\ loop).

The second term in the sum is no larger than a constant times ££=i n{k)
where n(k) is the value of n during the kth procedure call. But n(k) =
N\2k and hence this sum is O(N). Thus the recursive formula for the run
time is T(N) = 2T(N/2) + cN, where c is a constant. Suppose N = 2m.
Then

T(N) = 2T(2m~1) + c2"
= 2[2r(2"-2) + c2»-i] + c2m

= mc2m + 7X1)2»».

Since T{\) is also a constant, we have with N = 2m,

T(N) = cN log2 N + T(1)N

= 0(Nlog2N).

REMARKS. 1. For a more complete introduction to the method of divide-
and-conquer, see [20, Chap. 3].

COMPLEXITY OF COMPUTER ALGORITHMS 179

2. The previous analysis ignores to a large extent the considerable
amount of overhead involved in a computer's keeping track of recursive
calls of procedures. Many algorithms were first developed recursively.
They were then rewritten to replace the recursion with explicit iteration.
Computers keep track of the procedures that are being called in a special
are which is usually called the system stack. Many small computers have
small system stacks and so recursive programs which work well on large
computers fail on small personal computers even though the personal
computer has sufficient memory.

Also, a computer must do a considerable amount of housekeeping while
keeping track of a program calling itself with other parameters.

In the procedure given by this program for example, the initial para
meters are N, a(x), w, and A. If N = 4, the program continues execution
until it reaches line 9. The procedure is then called again with parameters
4/2 = 2, b(x), w2, and B. Execution of the program statements continues
again until we reach line 9 in which we call the procedure with parameter
2/2 = 1, etc. Since the value of the first parameter is now 1, line 3 takes
effect and appropriate values of other variables are computed. Keeping
track of these values requires a large amount of storage space and a
reasonably large amount of time. These are perhaps the major reasons
that recursion is not used more in the non-mathematical programming
community. Recursion certainly allows the writing of elegant, easy to
understand programs. With the rapid decrease in computer prices and the
increase in power and speed, programming time becomes a major con
sideration.

3. The program can be modified to work on inputs with any value of N,
not just a power of 2. A simple way to do this is by adding new points ak

which are 0. This is not the most efficient way to proceed ; however, the
running time is still 0(N log N).

4. This completes our discussion of arithmetic complexity where we
are concerned with minimizing the number of arithmetic operations. We
began with the simple problem of evaluation of a polynomial and pro
gressed to the Fast Fourier Transform and the divide-and-conquer
technique. A large amount of work is currently being done on arithmetic
complexity; see [42] for a representative sample. See also [22] and [38]
for an example of a simple problem for which the commonly taught al
gorithm can be improved—the problem of multiplying two m—digit
numbers.

3. Sorting.

3.1. Some sorting algorithms. In the introduction we found the median
of a set of numbers by sorting the set and then counting. In spite of the
incredible calculations being performed on some modern computers,

180 R. J. LEACH

much of the time computers spend on programs is on sorting data. Es
timates of the amount of time vary from 35 to 80%. Thus many sorting
methods have been developed.

Among the more common methods are : insertion sort, Shell sort (also
called diminishing increment sort), bubble sort, Hoare's quick sort,
straight selection sort, quadratic selection sort, heap sort, binary tree
sort, merge sort, radix sort. We will analyze two of these methods. For a
more complete discussion of sorting, the reader is advised to read volume
3 of Knuth's book [27]. Our measure of complexity will now be the num
ber of comparisons.

A von-Neumann machine performs a comparison between objects in
locations A and B in roughly the following way. Move the contents of A
to the accumulator of the cpu and compare the contents of the accumu
lator bit by bit with the contents of location B. The time for the com
parison, including the movement of the contents of A to the accumulator,
is greater than the times for most other operations used in sorting. Using
the number of comparisons as the measure of complexity provides fairly
good agreement between theoretical estimates and actual run-time per
formance in many cases.

Note that the length of the objects of "records" to be sorted need not
be bounded by the maximum number of bits that can be stored in a
memory location. In this case, we often simply change the addresses of
records rather than moving the records from one memory location to
another. More complications arise if the file of records to be sorted is too
large to fit into memory at one time but must be stored in part in secondary
storage such as a disk or tape. In any event, the number of comparisons
provides a very good first approximation to running time in many situa
tions ; it is the only measure we consider in this paper.

The first method we consider is the bubble sort which is the one most
commonly found in textbooks (see for example [20], [3], [11]). The object
is to sort a set of numbers Ri, . . . , Rn in increasing order. We introduce a
new number called BOUND. At each step of the algorithm, BOUND will
represent an upper bound on the number of elements still to be sorted.
The algorithm is given below.

1. BOUND = TV
2. T = 0
3. FOR j = 1 TO BOUND-1 DO

if Rj > Rj+i, interchange Rj and Rj+i, set T = j
4. If T = 0, we are done

ELSE
BOUND = T
GOTO Step 2.

COMPLEXITY OF COMPUTER ALGORITHMS 181

We pass through the loop at step 3 (BOUND-1) times; at each step we
make a comparison. On average, step 4 sends us back to step 2 N/2 times
for an average and maximum run-time of 0(N2). The minimum time is
0(N).

As an example of bubble sort consider the action of a bubble sort on
{All mathematicians should learn about computers}. We wish to have the
set sorted in alphabetical order. In order to do this we must place the
words in an array R{\) = All, R{2) = mathematicians, . . . , R(6) =
computers. The array entries must then be translated into a binary rep
resentation. This translation is usually done automatically. The pro
grammer indicates the number of characters in the longest expression
expected (this is necessary in standard Pascal and FORTRAN, not in
BASIC) and the translation is done automatically. The most common
scheme is called ASCII. ASCII (pronounced Askey) stands for the
American Standard Code for Information Interchange. For example, the
ASCII codes for space, A, Z, a, and z are 32, 65, 90, 97 and 122, respec
tively. Thus a statement such as

All < mathematicians

follows from the fact that ASCII 04) < ASCII (m). If the first letters
agree, then the computer will look at the next letter, etc.

Let us examine bubble sort on the set. Initially we have

1 2 3 4 5 6
All mathematicians should learn about computers

Here BOUND = 6 and T = 0. Is "All" < "mathematician"? Yes. Is
"mathematician" < "should"? Yes. Is "should" < "learn"? No. Inter
change "learn" and "should", setting T = 3. Is "should" < "about"?
No. Interchange "should" and "about", setting T = 4. Is "should" <
"computers"? No. Interchange "should" and "computers", setting
T = 5. Now set BOUND = 5 and GO TO step 3. At this point we have

1 2 3 4 5 6
All mathematicians learn about computers should.

We continue the process. After the second "pass" through the loop we
have

1 2 3 4 5 6
All learn about computers mathematicians should

with BOUND = 4 and T = 4. Successive passes give
1 2 3 4 5 6

All about computers learn mathematicians should

182 R. J. LEACH

with BOUND = 3 and T = 3,

1 2 3 4 5 6
All about computers learn mathematicians should

with BOUND = 3 and T = 0,

with the program terminating because no interchanges were made.The
sort is called bubble sort because elements "bubble up" to their correct
positions one at a time. Note also that "All" is the first word in the sorted
list. This is because upper case letters have ASCII numbers between 65
and 90 while lower case letters have ASCII numbers between 97 and 122.
It is reassuring to know that even nonsense sentences will begin with
upper case letters.

A more elegant sorting method is the merge sort. The idea is very
simple. Suppose we had two sets A and B of n numbers which were already
sorted in increasing order. We could merge them together by comparing
(say) the first element a of A with the elements of B until we find its proper
place and then insert it. Continue this with A — {a}, etc. If we get to the
end of B before exhausting A, the remaining elements of A simply wind
up at the end of the now sorted set A \J B. If the number of elements in
each is n, the time needed for the sort is 0(n) since there are between n
and In comparisons.

How do we relate the merging of two sorted sets to the sorting of a
large unsorted set? Answer-keep breaking up the set until we get to
subsets of one element and then merge these (already sorted) subsets. If
we call the procedure for merging already sorted subsets MERGE and the
general procedure MERGESORT, the algorithm for MERGESORT
can be written recursively as

MERGESORT (Xl9 . . . , XN) = MERGE(MERGESORT(Ar
1,. . . ,

MERGESORT(ZCW2]+1, . . . , XN)).

Each MERGE requires O(N) and there are log2N recursive calls of this
procedure, each one dividing N by 2 until we get to single element sets
which are already sorted. This sorting method requires a running time of
0(N log N), a considerable improvement over the 0(N2) required for
the bubble sort. The author has been told of a sort of approximately 5000
items which was speeded up from 5 hours to 30 seconds by replacing the
0(N2) bubble sort with a 0(N log N) merge sort.

3.2. A lower bound on the number of comparisons. It is natural to ask
if the lower limit on the number of comparisons is O(NlogN). The follow
ing well-known argument shows that this is the case, at least for any
method based on comparisons.

COMPLEXITY OF COMPUTER ALGORITHMS 183

A bit of terminology is in order. The items to be sorted by some sorting
method are called keys. A key is generally associated with a unique re
cord; think of Social Security numbers as keys and employment histories
as records.

Suppose we wish to sort a set Jfl5 . . . , Xn. We set up a tree to indicate
the comparisons. The internal nodes of the tree are comparisons between
keys. The leaves of the tree are permutations of the indices and represent
the order we have if we choose a particular path. For n = 3, we have

{k\MM}\ \{ki,h,k2} or {ksMM}] IfafaM} o r {hhM}\ \{hMM}

Jc3<kx k2<k5

{kh A;3, k2) {k3, &i, k2) {k2, &3, ki} {ks, k2, kx}

There are three elements to be sorted using this comparison tree. The
height of this tree is 3 ; there are 11 nodes and 6 leaves.

If this comparison tree is to represent a sort which works in all possible
cases, then all n\ permutations of the keys must be present in the leaves.
Hence the number of leaves is ^ n\. Let S(n) = minimum number of
comparisons to sort all possible sets of n element using comparisons. The
minimum number of comparisons S(n) that will work on the arbitrary
ordered set is the longest path from the root to a leaf; that is, S(n) is the
height of the tree.

Recall that a binary tree of height h has at most one node (the root)
at level 0, at most 2 nodes at level 1, at most 4 nodes at level 2, etc.
Hence a binary tree of height h (level at most h) has at most 2h+1 — 1
nodes. Similarly, a binary tree of height h has at most 2h leaves. Thus a
tree of minimum height S(n) which contains all n ! permutations of the
keys as leaves has

2s(n) è ni

184 R. J. LEACH

or

S(n) è log2«!

- lo&iVïân (n/e)n)

^ C(n log n)

by Stirling's formula.

REMARKS 1. There is a lot of recent work on parallel algorithms for
searching and sorting. The reference [7] is a good starting point; however,
the reader should keep in mind that new algorithms are being discovered
almost monthly. To see the difficulty in designing a parallel sorting
algorithm, write the numbers 1, 7, 13, 9, 24, 17, 18, 26, 11, 3, 55 on cards
and try to find an optimal method of sorting if you and a friend are each
given a subset of the cards.

2. While the order of magnitude of the number of comparisons is
known, the choice of algorithm and its implementation on a particular
machine with a particular storage device for a particular file is as much an
art as it is a science.

4. Concluding remarks.

4.1. Complexity in a model of computation. We have used two measures
of run-time complexity in this paper: the number of "essential m/d steps"
for arithmetic algorithms and the number of comparisons for sorting
algorithms. A more detailed study of complexity theory would begin with
the work of Turning [39] on machine models. Many other models such as
finite automata and various types of pushdown automata have been
developed since then for special purposes (see [17], [19], [23], [28]). For
examples of such ideas and their use in the design of compilers, see [2],
[12], [13], [26].

Empirical evidence shows that most algorithms fall into one of two
categories : run-time is bounded by a polynomial of low degree (eg [12],
[29], [30], [36], [37]) or run-time that is not bounded by any polynomial
(see [16] for a large collection). This has lead to a large amount of work
on the topic of JVT-completeness and the P # NP conjecture. (See [6],
[8], [16] and [23] for an introduction to this subject.)

4.2. Other measures of complexity. In this note we have been primarily
concerned with the idea of run-time complexity, with particular emphasis
on arithmetic complexity. We have only considered computers and models
which performed computations sequentially. Parallel algorithms which
assume that many comparisons and arithmetic operations can be per
formed at the same time were not considered. The survey article by S.
Cook [7] has a good set of references for such algorithms.

COMPLEXITY OF COMPUTER ALGORITHMS 185

Another topic not considered here is that of probabilistic algorithms.
Perhaps the first discussion of such algorithms is the paper [4] where the
goal was to factor polynomials over the field GF(p). The algorithm has a
probability ^ 1/2 that it will find a correct factorization. The use of the
algorithm is as follows. If the algorithm finds a factorization, then we are
done. If not, repeat the algorithm. Suppose that we apply the algorithm
n times without finding a factorization. Since the trials are independent,
we eventually obtain the result that the polynomial cannot be factored,
with a high probability of success. The article [35] describes a probabilistic
algorithm for determining if an integer is prime.

Finally we mention the notion of the complexity of the program itself.
Much of the emphasis in programming is on structured style. Languages
such as Pascal encourage the programmer to write programs in "modules"
which can be easily understood. These modules are much easier to test
for correctness than a large unstructured program. This is a great ad
vantage since the time when all programs were written in machine lan
guages, driving programmers crazy bit by bit.

Acknowledgements. I would like to thank John Cherniavsky and John
Sadowsky for introducing me to this subject. Many thanks also to Sam
Lomonaco and Brooke Stephens for criticizing an earlier version of this
paper. Special thanks to Mary Leach for many helpful suggestions on
improving the organization of this manuscript.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer
algorithms, Addison Wesley, Reading, Mass., 1974.

2. A. V. Aho and J. D. Ullman, Principles of Compiler design, Addison-Wesley,
Reading, Mass., 1977.

3. R. Bent and G. Sethares, FORTRAN with problem solving: a structured approach,
Brooks/Cole, Monterrey, California, 1981.

4. E. Berlenkamp, Factoring polynomials over large finite fields, Math. Comp. 24
(1970), 713-735.

5. A. Cobham, The intrinsic comptational difficulty of functions, in Proc. International
Congress for Logic Methodology and Philosophy of Science, Y. Bar-Hillel, ed., North
Holland, Amsterdam, 1965.

6. S. Cook, The complexity of theorem proving procedures, Proc. Third ACM Sym
posium on Theory of Computing, 1971, 151-158.

7. 9 Towards a complexity theory of synchronous parallel computation, L'Ensei
gnement Mathématique, XXVII (1981), 99-124.

8. , An overview of computational complexity, Comm. ACM 26 (1983), 401-
408.

9. J. W. Cooley, P. A. Lewis and P. D. Welch, History of the fast Fourier transform,
Proc. IEEE 55 (1967), 1675-1679.

10. J. M. Cooley and J. W. Tukey, An algorithm for the machine calculation of com
plex Fourier series, Math. Comp. 19 (1965), 297-301.

186 R. J. LEACH

11. D. Cooper and M. Clancy, Oh Pascal, W. W. Norton, New York, 1982.
12. F. DeRemer and T. Pennello, Efficient Computation of LARL(l) Look Ahead

Sets, ACM Trans, on Prog. Lang, and System 4 (1982), 615-649.
13. J. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (1970),

94-102.
14. J. Edmonds, Paths, trees and flowers, Can. J. Math. 3 (1965), 449-467.
15. R. Fourer, Technical Correspondence, Comm. ACM 26 (1983), 382-84.
16. M. Garey and D. Johnson, Computers and Intractability: A guide to the theory

of NP-completeness, Freemen and Co., San Francisco, 1979.
17. M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading,

Mass., 1978.
18. S. Hartmanis and R. Stearns, On the computational complexity of algorithms,

Trans. AMS 117 (1965), 285-306.
19. J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages and

computation, Addison-Wesley, Reading, Mass., 1979.
20. E. Horowitz and S. Sanhi, Fundamentals of computer algorithms, Computer

Science Press, Rockville, Md., 1978.
21. D. Johnson, Journal of Algorithms.
22. A. Karatsuba and Yo. Offman, Multiplication ofmultidigit numbers on automata,

Doklady Akad. Nauk, SSSR. 145, 2 (1962), 293-294, Translated in Soviet Physics
Doklady. 77 (1963), 595-596.

23. R. M. Karp, Reducibility among combinatorial problems, in Complexity of com
puter computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York,
1972, 85-104.

24. L. G. Khachian, A polynomial time algorithm for linear programming, Doklady
Akad Nauk SSSR 244 (1979), 1093-96. Translation : Soviet Math. Doklady 20, 191-194.

25. S. Kleene, Representation of events by nerve nets, in Automata studies, C. E.
Shannon and J. McCarthy, eds., Princeton University Press, Princeton, New Jersey,
1956, 3 ^ 2 .

26. D. Knuth, On the translation of languages from left to right, Information and
Control 8 (1965), 605-639.

27. , The art of computer programming, Addison-Wesley, Reading, Mass.,
2nd ed., 1981.

28. H. R. Lewis and C. H. Papadimitrious, Elements of the theory of computation,
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

29. E. H. McCall, Performance results of the simplex algorithm for a set of real-world
linear programming problems, Comm. ACM 25 (1982), 207-212.

30. , Technical Correspondence, Comm. ACM 26 (1983), 384-85.
31. C. Papadimitrious and K. Steiglitz, Combinatorial optimization: algorithms and

complexity, Prentice Hall, Englewood Cliffs, New Jersey, 1982.
32. M. O. Rabin, Complexity of computations, Comm. ACM 20 (1977), 625-633.
33. A. Schonhage and V. Strassen, V. Schnelle Multiplication grosser Zahlen, Comput

ing 7 (1971), 281-292.
34. C. Shannon, The synthesis of two terminal switching circuits, Bell Systems Technical

Journal 28 (1949), 59-98.
35. R. Solovay and V. Strassen, A fast Monte-Carlo test for primarlity, SIAM J.

Comp. 6 (1977), 84-85.
36. J. Schwartz and M. Sharir, On the piano movers problem ll-General Techniques of

computing topological properties of real algebraic manifolds, Adv. Appi. Math 4 (1983),
298-351.

37. and , On the piano movers problem I. The case of a two dimensional

COMPLEXITY OF COMPUTER ALGORITHMS 187

body moving amidst polygonal barriers, Comm. Pure Appi. Math. 36 (1983), 345-398.
38. A. L. Toom, The complexity of a scheme of functional elements realizing the

multiplication of integers, Doklady Akad. Nauk SSSR 150, 3 (1963), 496-498. Trans
lated in Soviet Math. Doklady 3 (1963), 714-716.

39. A. M. Turing, On computable numbers with an introduction to the Entscheidungs
problem, Proc. London Math. Soc. (2) 42 (1936-7), 230-265. (Correction ibid 43 (1937),
544-546.)

40. M. Wand, What is LI SPt, Amer. Math. Monthly 91 (1984), 32-42.
41. H. S. Wilf, The disk with the college education, Amer. Math. Monthly, 89 (1982).
42. S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Regional

Conference Series 33, SLAM, Philadelphia, 1980.

DEPARTMENT OF SYSTEMS AND COMPUTER SCIENCE, HOWARD UNIVERSITY, WASHINGTON,

D.C. 20059

