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Since A. Connes in [1, 2] defined the C*-algebra of a foliation for the 
purpose of studying index theory on foliated manifolds a number of C*-
algebraists have worked to obtain the necessary geometric prerequisites 
in order to understand these new examples of C*-algebras. One of the first 
conceptual difficulties encountered is the notion of holonomy as defined 
by C. Ehresmann. Connes based his operator algebra constructions on 
the holonomy groupoid (or graph) of the foliation as defined by H. E. 
Winkelnkemper in [9]. In fact this groupoid (and its topology) had already 
been defined in the very general setting of topological foliations by Ehres-
mann himself [3, pp. 130-132]. The C°° structure of this groupoid was in­
troduced by J. Pradines in [6] although no details or proofs have appeared. 
Besides the timeliness of his rediscovery of the holonomy groupoid for 
C°° foliations, one of the merits of Winkelnkemper's paper [9] is its con­
crete constructions and concise proofs. 

Now, even though holonomy is natural enough from a differential 
equations point of view [5, p. 377] and is useful in the study of foliations 
per se, one wonders whether it is really necessary for the groupoid and 
hence the C*-algebra. We put the question "why holonomy" to Georges 
Skandalis and he replied that one is "forced" to consider the concept when 
one tries to make the graph (of the equivalence relation defined by the 
leaves) into a manifold. After thinking about this for some time we 
came up with a theorem which justifies his remark. We hasten to add that 
Georges Skandalis also has a theorem justifying his remark (private com­
munication) which predates ours—the private communication tarried 
on the desk of an intermediary colleague for some months during which 
time we had begun the fomulation of our own theorem. Of course, the 
two theorems are similar but not identical. The main point of our theorem 
is to show how the holonomy groupoid fits naturally between two group-
oids canonically associated with the foliation, namely, the equivalence 
relation and the homotopy groupoid (in Skandalis' theorem, no mention 
is made of the homotopy groupoid). As byproducts of this investigation 
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we show: (1) the homotopy groupoid has an essentially unique manifold 
structure (not necessarily Hausdorff, even when the holonomy groupoid 
is Hausdorff); and (2) if the foliation is given by the locally free action of 
the simply connected Lie group H on the connected manifold V, then the 
homotopy groupoid is just H x V. This latter result shows that the 
transformation groupoid, H x V, is naturally obtained from the foliation, 
even if it does not equal the holonomy groupoid. 

In fact, the minimality of the holonomy groupoid also appears in [6, 
Theorem 1]. Moreover, the homotopy groupoid and its C°° structure 
(under the name "monodromy groupoid") were introduced in [6] together 
with a universal property which implies its maximality. With some effort, 
our main theorem could probably be deduced from Pradines' results 
[6, 7]. However, at the time this paper was written we were ignorant of 
Pradines' work and so we took a more "nuts and bolts" approach. We 
hope that this approach has the advantage of clarity and accessibility to 
non-specialists. On the other hand, Pradine's approach does generalize 
to certain singular foliations [8]. 
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1. Definitions and notations. Let V be a connected C°° «-manifold where 
n = p + q. Let F = {(/*,, U/)}i(El be a maximal family of charts covering 
V, with the property that, for each (/, j), the change of coordinates hj o 
hj1 : R ^ x R ^ R ^ x R ? has the form (hj o hj1) (x, y) = (<f>(x), <p(x, y)Y 
That is, the <?-plane {x} x R<? is sent to the #-plane {<j)(x)} x R? by the 
coordinate change hj o hj1. Such charts will be called foliation charts. 
If we give R^ the discrete topology and R^ the usual topology, then we can, 
for the moment, topologize V by letting the U/s be basic open sets with 
the topology transported from R£isc x R? via the h^vs. This is called the 
leaf topology on V, and the arc-components of V in this topology are 
called the leaves of the ^-dimensional foliation (F, F). Each leaf, L is 
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naturally an immersed (but not usually embedded) ^-dimensional sub-
manifold of V. 

If (/z, U) is a foliation chart of (V, F) and L is a leaf, then the connected 
components of L f] U are called the plaques of L in U. If h(U) c R/> X 
R? is the product of an open set in R^ with a connected open set in R?, 
then the maps %x ° /* : U -> R^ are a C°° parametrization of the plaques in 
£/. This idea is formalized in the notion of distinguished functions. 

DEFINITION. Let(K, F)be a foliated manifold of dimension n = p + q, 
with leaves of dimension q. A distinguished function is a map/from an 
open set O of K to R^ which is locally of the form %x ° h for foliation 
charts, (A, U). That is, for each a in O we can find a foliation chart (/*, U) 
with aeU ^ O so that/(ô) = TTI ° A(ft) for all 6 in 6/. 

For a G K, we denote the set of germs of distinguished functions at a by 
Da and denote the germ of a distinguished function / defined in a neigh­
bourhood of a by [/]ß. For these bacteriological purposes we can assume 
any such / h a s the form %x o h for some foliation chart (h, U), and hence if 
[sìa is another element of Da, we can assume g = $ of for some local 
diffeomorphism <f> of R .̂ Another way of saying this is, that the group of 
germs of local diffeomorphisms of R^ which fix 0 acts transitively by com­
position on Z>2 = {[/]ö e Da \f(a) = 0}. 

Another notion we need is that of a C°°-groupoid. Apparently this was 
first introduced by C. Ehresman in [4]. 

DEFINITION. A (not necessarily Hausdorff) topological groupoid G is a 
C°°-groupoid if it is also a C°°-manifold with the property that the sets G(0) 

and G(2) are embedded submanifolds (not necessarily closed) and the maps 
composition G(2)-> G, inversion G -~"1> C7, range G r > G(0) and source 
G _i_> G(0) are C°°. 

As we shall see, both the homotopy groupoid and Winkelnkemper's 
holonomy groupoid are examples of C°°-groupoids. On the other hand, 
if G is a C°°-groupoid then it easily follows that the maps s and r are sub­
mersions and so G is foliated by the components of Ga — s-\d) as a 
varies in V : = G(0). If we assume that s x r : G -* V x Kisan immer­
sion, then s x r (and hence r) is locally 1:1 on Gö, and so Kis foliated by 
the components of r(Ga) as a varies in V. One can then show (as Skandalis 
does) that a quotient of G naturally lies inside his "groupoid of all possible 
holonomies" and contains the holonomy groupoid. Thus, under the 
assumption that s x r : G -> G(0) x G(0) is an immersion, we see that G 
is intimately connected with the holonomy groupoid of a certain natural 
foliation of G(0). 

Of course, s x r need not be an immersion, in general. For example, 
let H be a Lie group acting on a manifold K and let G be the transforma-
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tion groupoid H x V9 where s(h, a) — a and r(h, a) = h(d) and (g, b) 
(h, a) = (gh, a) provided h(a) = b. In this case it is easily seen that r x 
s : H x V-+ V x V defined by (r x s)(h, a) = (h(a), a) is an immersion 
if and only if, for each fixed ae V, the map H -+ V given by h -• /z(a) 
is an immersion. That is, if and only if the action of H on K is "locally 
free". So, for example, if //acts trivially on V then H x V -± V x Kis 
not an immersion. 

2. The homotopy groupoid of a foliation. We let ^ ç F x V be the 
equivalence relation defined by the leaves, i.e., & = {(a, 6) e V x V\a 
and & are in the same leaf}. It is easily observed that <% is not, generally, 
a manifold. For example, let V be the open Moebius band foliated by 
circles where the centre circle "goes around once" but all other circles 
"go around twice". If we consider <% as fibred over V by the projection 
onto the first coordinate & -> V, then over each point ae Vsits {a} x L 
where L is the leaf containing a. In case V is the Moebius band, each L 
is a circle and if L0 denotes the centre circle then f% is the union of two 
3-manifolds in V x V whose singular intersection is the 2-manifold L0 x 
A). 

Of course, in the trivial case V = RP x R? with leaves of the form 
{x} x R<?, we see that <% = {(x, y, x, z)eRP x Ri x RP x R?} and the 
map(s) ûë -• V x R?: (x, y, x, z) -• (x, y, z) (or, (% -> Rq x V: (x, y, x, z) 
-+ (>', x, z)) give t% a natural manifold structure. 

In general, one would like to "enlarge" ^ to a (2q + /?)-dimensional 
manifold covering ^ . One concrete way of enlarging <% is to consider 
Hom( V, F), the groupoid of all homotopy classes of piecewise C°° paths 
which lie within a leaf. 

DEFINITION. Let (V, F) be a foliated manifold. Let L be a leaf of this 
foliation and let y be a piecewise C°° path lying in L. Let (y} denote the 
homotopy class of y of all paths in L with the same initial and final points 
as y. We define the homotopy groupoid of the foliation ( V, F) to be the 
groupoid, Hom(K, F) of all such classess, <p>. 

We topologize Hom(F, F) in the following way. Let y be a path in a 
leaf, y; a->b. Let (hh Ui\ (h2, U2) be foliation charts at a and b respec­
tively, with /*i(£/i) = Op x 0\ and h2(U2) = Op x 0\ where Op is a con­
nected open neighbourhood of 0 in R^ and 0\ and 0\ are simply connected 
open neighbourhoods of 0 in R?. Furthermore, we assume that hi(a) = 
(XQ, 0) = h2(b), for some xQ e Op, and that we have a continuous family 
of paths yx each lying in a single leaf parametrized by x in Op so that 

(i)r*° = r; 
(ii) s{yx) e U± with /ziOCr*)) = (x, 0); and 

(iii) r(T-) e t/2 with *2(r(r)) = (*, 0). 
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To see that, given 7% we can construct such data, let y = yk • • • j-2Ti, 
where each y{ lies in a foliation chart (A,., Ut). Then (TT#. ° Af-_i) = fc ° 
(TTI ° A,-) in a neighbourhood of r(?V-i) ^ (̂77)» f° r s o m e local diffeomor-
phism ^ of R*\ Thus, by successively modifying the R^ coordinates for 
A2, A3, . . . , hk we can assume that %i ° ht~i = TTI ° h{ in a neighbourhood 
of K?7-i) = s(ïi)' One c a n n o w inductively construct the continuous 
family of paths {7-*} with respect to (a possibly shrunken version of) the 
pair of charts (Ax, Ui) and (hk, Uk). In this setting, we define a basic neigh­
bourhood of <7*> by 

W = W(r, (hh Ux), (A2, U2), {7-}) 

= {<r'> e Hom(F, F) | s(f) e Ul9 r(f) e U2, 

and 7-' is homotopic to (s(y') -> $(7-*) -^U r(yx) -• r(y'))}, 

where the arcs s(f) -> (̂7-*) and r^*) -> r^ ' ) lie in hil({x] x 0J), 
A^x({x} x Ol), repectively. As 0\ and 0\ are simply connected, the neigh­
bourhood W is in bijective correspondence with Op x 0\ x 0* 

PROPOSITION. 7Ae sef of such neighbourhoods, W — W(y, (Al5 L^), (A2, 
£/2), {7**}) form a basis for a topology on Hom(K, F). With the obvious 
coordinate maps W -» Op x 0\ x 0\, Hom( V, F) becomes a C°°-groupoid 
of dimension (2q + p) with Hom(F, F) (0 ) = V. 

PROOF. First we observe that if (f}e W = W(y, (A1? U{), (A2, U2), 
{yx}) so that (without loss of generality) f = 0(7-') -• s(yx) r* , r(yx) -» 
r^ ')) , then we can shrink Ui and £/2 about ^T-') and r(f), respectively, 
and modify Al5 A2 and the family {7-*} so that 

<r'>ew(r\ (hi u[), (A2, t/2), {r'*}) s w. 

Now, if <7̂ '> is in the intersection of two basic neighbourhoods, then 
by the previous observation we can assume they are of the form 

w = wif, (hi, u{), (hi, u& if*}) 

and 

W" = W(f, (K, U'l), (hi JJ"2), {fx}), 

where <7"'> = <7*">- Now, by shrinking the L -̂'s and the U'fs and modify­
ing {?"*} and A2 we can assume 

W" - W(f, (hi, Ui), (hi, Ul), {f*}) 

so that, in particular, s(fx) = s(fx). At the moment, we do not yet know 
that we have r(fx) and r(fx) in the same plaque of, say, U2. However, 
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as f is homotopic to f\ we can cover the homotopy by a finite family of 
foliation charts and can then find a finite family yx = f, y2, . . . , yk — 
y" of paths in this homotopy such that any pair 77, j J + 1 are both covered 
by the same finite sequence of foliation charts. From this, we now see 
that, by shrinking the t/'s and modifying {y"x} we can assume r(j-'x) = 
r(f"x) and also that fx is homotopic to f'x. Hence, we can arrange, by 
shrinking, a basic neighbourhood 

W» = W(r\ (Af, U'O, (hi U'ï\ {f*}) £ W fi W\ 

Thus we have a well-defined topology on Hom(K, F). It is not hard 
to show that the coordinate maps W -• Op x 0\ x 0\ are local homeo-
morphisms. For example, if W c w are basicneighbourhoods and (7-) 6 
W', then the argument above shows that we can find another basic neigh­
bourhood W" containing <T*> with W" ç W = W f] W so that the 
data defining W" are merely restrictions of the data defining W. The image 
of W" in Op x 0\ x 0\ is then clearly open. Thus, the coordinate maps 
are open and similar sorts of considerations show that they are con­
tinuous. 

It is fairly evident that the coordinate changes are C°° and so Hom(K, 
F) is a C°°-manifold of dimension (2q + p). That Hom(K, F) is actually a 
C°°-groupoid is also straightforward. 

REMARK. AS in the case of the holonomy groupoid, Hom(K, F) is not 
Hausdorff, in general. However, the two phenomenon are somewhat 
distinct. For instance, in Winkelnkemper's example where the holonomy 
groupoid is not Hausdorff, V is the punctured plane, C \ {0} foliated in 
the following way. 

Here the lack of Hausdorff-ness is caused by a sequence of loops with 
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trivial holonomy converging to a loop with nontrivial holonomy. How­
ever, by the next proposition, Hom(F, F) = R x V which is certainly 
Hausdorff. In order to get an example where Hom(F, F) is not Hausdorff 
we need a sequence of paths which are homotopically trivial converging 
to a path which is not trivial. This is easy to arrange. Let V be punctured 
3-space, R3\{0), foliated by the horizontal planes and let y be a loop 
around the origin in the plane z = 0 so that y is not homotopically trivial. 
By translating y parallel to the z axis we can get a sequence {yn} of loops 
each of which is contractible in its own leaf and yn -> y. If we let % denote 
the trivial loop with the same basepoint as 7% then we can easily show that 
<T»> -* <T> a n d (yny -+ <T> 7e if} ln Hom(F, F). In this example, 
however, all loops are holonomically trivial and so the holonomy groupoid 
is Hausdorff! 

In the case of the Reeb foliation of S3 [5], we see that Hom(F, F) is the 
holonomy groupoid. In fact, there is a sequence yn -> y where all the yn 

are homotopically trivial, but y is not even holonomically trivial so that 
the class of y cannot be separated from the class of the trivial path. 

REMARK. The definition of this topology on Hom(K, F) is, of course, 
modelled on the usual definition of the topology on the homotopy 
groupoid of a manifold (without foliation). Viewed in this light, the 
machinations required to define the topology are very easy to understand. 
We note that we have not seen this topology explicitly constructed before, 
but it must be known to J. Pradines and others in the field. When we come 
to the main theorem however, we will not use the full force of this con­
struction which is tantamount to the construction of holonomy, but 
we will use a trivial special case. As a corollary to the main theorem we 
will show that the C°°-groupoid structure on Hom(K, F) is essentially 
unique. 

Concerning the homotopy groupoid, we have two positive results which 
deserve to be recorded. 

PROPOSITION. Let H be a connected Lie group acting locally freely on the 
connected manifold V, and let H -• H be the simply connected cover of 
H. Let F be the foliation of V induced by this action. Then Hom( V, F) s 
H x V as C°°-groupoids. 

PROOF. Since H acts locally freely if and only if H acts locally freely, we 
can assume that H is simply connected. Let <^> e Hom(F, F) and let 
a = s(y). Now the map H -> H • a has kernel Ha = {he H\ h • a = a] 
and since Ha is discrete, H/Ha -> Hoa is a diffeomorphism and H -> H • a 
is a covering map. Since y is a path in H • a, starting at e • a = #, there is a 
unique lifting to a path f in H with initial point e and so that y(t) = 
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f(t) • a for all t in [0, 1]. Thus, we map <r> in Hom(F, F) to (f(l), %) ) 6 
H x V. This clearly depends only on the class <^> and not on y itself. 

On the other hand, if (A, a) e H x V, then there is a unique path f 
(up to homotopy) starting at e and ending at A. Let j-(t) = f(t) • a. Then, 
(A, a) -» <f> is a well-defined inverse of the previous map, and so Hom(F, 
F) -+ H x F is a bijection. It is clearly an isomorphism of groupoids. 

To see that it is a diffeomorphism we take a point (7-) in Hom(F, F) 
and construct a neighbourhood W of <7*> and a neighbourhood JV of 
its image (g, a) inside the image of W and give coordinates for N and W 
so that the diagram 

N > ^ 

\ / 

commutes. 
To this end let f be the unique path in H with initial point e such that 

f(t) • a = 7*(f ) and let g = f (1) so that (g, 0) is the image of <7*> in Hom(F, 
F). Let (Al5 t/i) be a foliation chart at a with A^a) = (x0, 0) e R^ x R*. 
Then (A2, U2) = (Ai ° g -1 , g • C/i) is a foliation chart at b = r(y) and 
(Ai " S"1) <*) = (A i - r 1 ) (r(0) = (Ai " g"1) ( * • « ) - Ai(a) = (*0, 0) 
as required in the definition of the topology on Hom(F, F). Now, we 
suppose hi(U{) = Op x Oq, where O^ is open in R ,̂ Oq is open and simply 
connected in R?, and h2(U2) = Op x Oq as well. For x e Op, let a* = Af 1(x, 
0) and define ^ ( / ) = f (f ) • Ä* SO that f* = r- N o w w(r> (*I> ^I)> (A2» ̂ 2)» 
{7-*}) is a basic open neighbourhood of <^> in Hom(F, F). We wish to 
shrink Ux and C/2 and modify hl9 A2 (without affecting the R^-coordinates) 
to obtain the W we require. Now, let O be a simply connected neighbour­
hood of e in 7/such that O • T £ O2 • T ç l^ where T = A f 1 ^ x {0}). 
Then 0 • r and O2 • 7* are open neighbourhoods of T. Shrinking O, if 
necessary, we can assume that O2 x 7* -• O2 • T is a diffeomorphism, 
so that we get coordinates for O2 • T (and hence 0 • T) by taking co­
ordinates for O2 and r separately which will not affect the R^-coordinates 
of 7 ç Ui (nor its R^-coordinate, namely zero, of course). Let h{ be the 
modified version of Ab and let W = W(y, (h[, O • T), (h{ <>g-\ gO2 • J ) , 
{7**}), a neighbourhood of <f>. Let N = (g - O) x (O - T) which is a 
neighbourhood of (g, a) in H x K. To see that TV gets mapped into W, let 
(g', a')e N = (g- O) x (O- T) so that c' = g"ax and g' = g • g"\ for 
someg", gm G 0 and some x in O^. Let f " denote the path 

in O in gO2 

in / /and let f{t) = fiOig'T1 so that f :e-+ gg'" = g' in H. If we define 
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f(t) = f (t)a', then f : af -* g'a'. Since r ' ( 0 = fVWT1^ = f"(0 • «* 
we see that 7-' is given by 

a' = g"*g*-—>g-a* - ^ g • a* > gg"' g"ax = g'a'. 

in 0 • T in gO2 • T 

This is just 

a' > a* -Ü-* r(f*) >gV 

ìiTò • r in go2 • r 
so that (fy e W as desired. If we have chosen coordinates for O2 (that 
is, R^-coordinates) as above, then we have R? coordinates for 0, g • O2, 
g - O, O • T, 02T and gO2 • T. Then, clearly, we have coordinates for N 
so that 

N • W 

\ 1 
commutes. 

EXAMPLE. Bundles with discrete structure group [5]. Let X and F be 
connected C°° manifolds and let p : X -> X be the universal cover of X 
Let Ä̂  = 1Z\(X) so that X = X/K and suppose Ä̂  acts as diffeomorphisms 
of F. Then K acts o n F x î discretely, and V = F x X/K is a C°°-
manifold. The product foliation o f F x Î with leaves {/} x X passes to a 
foliation of V since the action of K maps leaves to leaves. Moreover, the 
projection F x X -+ X induces a map q : V -* X which makes V into 
a fibre bundle over X with fibre F and structure group K. The fibres are 
transverse to the foliation and the restriction of q to a leaf is a covering 
of X. 

In this example, one can show that the homotopy groupoid is diffeo-
morphic to (F x X x X)jK which is a Hausdorff manifold. This example 
was pointed out to me by Bill Phillips. In case X is a Lie group, this folia­
tion is induced by the locally free action of X on V = (F x X)/K : g • 
(/, h)K = (/, gh)K where g,heX a n d / 6 F. Thus, the homotopy group 
oid is also diffeomorphic to V x X = (F x X)j(K x X). To realize the 
diffeomorphism (F x X x X)jK = (F x X)/K x X concretely, we just 
map (/, g, h)K -> ((/, g)K, g^h) fo r / e F and g,heX. 

REMARK. It is curious that Hom(F, F) can be non-Hausdorff when the 
foliation is trivial (i.e., given by a submersion) but that it is always Haus­
dorff in the two (most?) important classes of examples: locally free actions 
of Lie groups and bundles with discrete structure group. 
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3. The Main Theorem. Before embarking on the main theorem we out­
line the proof of a result which is implict, perhaps, in [9] but which deserves 
more attention as it clarifies the notion of holonomy and shows that 
homotopy need not be included in the definition of holonomy. Recall that 
if a e V, a foliated manifold, then Da denotes the set of germs of distin­
guished functions at a. 

PROPOSITION. There is a unique family of maps Hr: Da -> Db, one for each 
piecewise C°° path y:a-+b lying within a leaf with the following two prop­
erties : 

l.Hrm = Hr^Hnifr{ri) = s(j2\ 
2. Hr([f]a) = [f]b ify^ do rn / This family automatically satisfies: 
3. Hr = Hr,ify and y' are homo topic, 
4. Hr{[(j) of]a) = [<f>]f(a)Hr([f]a) if § is a local dijfeomorphism ofRP in a 

neighbourhood off (a). 

PROOF. We show uniqueness by giving a procedure to calculate Hr([f]a). 
Let fi=f and let y = yk • • • 7-27̂ , where each y{ lies in dorn f for some 
distinguished functions/. Then, f_x — fa°f in a neighbourhood of 
K77-1) = sifj), for some local diffeomorphism fa of R .̂ Repeated ap­
plications of 1 and 2 yield Hr([f]a) = [fa ° fa° • • • ° 0* ° AL, and so the 
family is unique. 

In order to see that this procedure is well-defined, a standard sort of 
refinement argument allows us to restrict to two cases : (a) subdividing y 
at one new point while retaining the same distinguished function for the 
two new segments of y ; and (b) leaving the subdivision of y alone, but 
changing one distinguished function, other than f = f of course. It is 
easy to verify that the calculated value Hr([f]a) does not change by an 
application of (a) or (b) and so the family Hr is well-defined by this pro­
cedure. 

To see property 4, we apply Hr to cj> o/and get 

Hr([<j) °f]a) = [{(j) ° fa) ° fa c • • • ° fa °f*lb 

= ifaf^lfa ° • • • ° fa ° / d * = [ f l / ( , ) # r ( [ / U 

as required. 
To see homotopy invariance, it suffices to see that Hr = Hr>, if y and 

y' are homotopic and very close. In this case, we can cover both y and y' 
by the domains of the same sequence of distinguished functions {fl9 . . . , 

fk}9 and so Hr([f]a) = [fa o . . . o J>k ofk]b = Hr,([f]a). 

DEFINITION. Let (V, F) be a foliation. We define Hol(F, F) to be the 
groupoid of equivalence classes of paths in Hom(F, F), where 7̂  ~ 7-2 
if and only if Hn = Hrr Clearly, Hom(K, F) -» Hol(F, F) is a surjective 
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groupoid morphism. A neighbourhood of [y] e Hol(K, F) is obtained by 
fixing a distinguished function/in a neighbourhood U of a = s(y) and a 
second distinguished function/' in a neighbourhood £/' of b = r(^) and 
such that Hr([f]a) = LH*- We then define W(f / ' ) = {[r'] | *(r') e dorn / 
Kr') e dorn / ' and J/ r , (L/V)) = [/'W')}- I f / = *i ° * a n d / ' ^ i ° Ä' 
for foliation charts (A, [7), (A', £/'), then 

W ) = W » , *2 o A(j(r')), ^2 ° * W » ) 

= < / W ) ) > ^2 « W » > 7C2 o A'(Kr'))) 

defines R29+^-coordinates in a neighbourhood of [7-]. With these coordi­
nates, Hol(K, F) becomes a C°°-groupoid and Hom(F, F) -» Hol(K, F) 
is a C°° map. 

DEFINITION. If (A, LO is a foliation chart of V with A(£/) = Op x Oq, 
where Oq is simply connected in R<?, then the set TV = «7-) G Hom(F, F) | 
y c ^7} is called a trivial neighbourhood in Hom(K, F). Clearly, TV ^ 
Op x Oq x Oq, and such neighbourhoods form an open cover of V -» 
Hom(F, F). 

THEOREM. Le/ F be a codimension p foliation of the connected (p 4- q)-
dimensional C™-manifold, V, and let & £ V x V denote the equivalence 
relation determined by the leaves. Let G be a C^-groupoid of dimension 
(2q 4- p) such that G{0) = V and sxr:G^>^^Vx V is surjective 
and C°°. If there is a groupoid morphism Hom(F, F) -» G which is C°° on 
trivial neighbourhoods and so that 

Hom(K, F) >̂ G 

\ 1 
commutes, then there is a unique morphism G -» Hol(F, F) so that 

Hom(K, F) >̂ G 

\ / 

Hol(K, F) 

commutes. Moreover, 
G -» Hol(K, F) 

\ / 
m 

commutes also, and if G -» 01 £ V x V is an immersion, then G -» 
Hol(K, F) w # /ÖOZ/ diffeomorphism. 
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PROOF. We take the notationally convenient point of view that elements 
of G are just paths lying in a leaf modulo some equivalence relation. Our 
job is to show that this relation is at least as fine as holonomy. 

Before we begin the main part of the propf, we recall that the maps r 
and s : G -» Kare submersions; this follows easily from the axioms for a 
C°°-groupoid. Now, let y be in G and let (h, U) be a foliation chart in a 
neighbourhood of a = s(y). Since r is a submersion, we can find an open 
neighbourhood O of y in G so that r : O -+ r(0) Ç F is a product 
projection ; that is, O is diffeomorphic to N x r(O) and 

O ^ N x r(0) 

\ / 
r(0) 

commutes. By shrinking, if necessary, we can assume that O (and hence 
r(0) and N) are connected and that s(0) = U. Now, let p: r(0) -> O be 
any C°° section for r so that %x o h o s o p : r(0) -• R^ is C°° and well-defined. 
To see that this map does not depend on p, we observe that, for b' e r(0), 
r~\b') is connected. Then s{r~l{b')) is connected and lies in a single leaf 
and so in a plaque for (/*, U). Thus, j r ^ A o s{r~l{b')) is a singleton and 
it\° h o s o p does not depend on the choice of p. Another way of saying 
this is that the following diagram commutes : 

0 *lo*0S> RP 

Since r and ic\ ° /* ° s are submersions, we see that m ° /* ° .s ° p is also a 
submersion. To see that 7rio/zo^O|0isa distinguished function, we only 
need show that it is constant on plaques. But, if P is a plaque in r(O), then 
r~\P) is connected in O, and ^(r_1(P)) is connected and lies in a single leaf 
and so in a plaque for (h, U). Thus, %x o h o ^ ( r - 1 ^) ) is a singleton, as 
required. In summary, we have found a neighbourhood 0 of 7- in G so that, 
for y1 G O, the map r(f) - + ^ 0 ^ .$(7-') : r(O) -• R^ is a distinguished 
function in a neighbourhood of b — r{f) in K. By its very form, the germ 
of this distinguished function at b depends only on y and the germ of 
%x o h at a. We suggestively denote the germ of this distinguished function 
at b by /^(fri ° h]a). To see that H'rm = H'n ° H'n, let 7- = 7*27̂  : a -+ b, 
where 7̂  : a -» ^ and 7*2 : èi -* ô. Let O, Ol9 0 2 be neighbourhoods of 
7-, 7 ,̂ 7*2 as in the construction above and assume that 02 - Oi^ O. Now, 
Z>! e r(Oi) fi ^(^2) is open in V, and so, by shrinking 0\ and 02 , we can 
assume that r(Oi) = s(02). Then, r(02 • Ox) = r(02) is an open neighbour­
hood of b in V. Now, let/i be any distinguished function in a neighbour­
hood of a and let/2 be the distinguished function in a neighbourhood of 
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h given by r(r{) - fMri)) ; that is, f2(r(n)) = fMri)), and so /^(L/ÌL) = 
L/2V Then, let fz be the distinguished function in a neighbourhood of b 
given by r(r2) -*/2(*(rä), that is,/3(Kr2)) = MfaS), and so H'n([f2]h) = 
[/3]j. Now, for y' = 7-27-ie 0 2 • 0 i £ 0 , we have 

/aMr')) = /sWrô) =/2(^(r2» =/2(KrO) 
= AMn'))=/i(*(r')), 

and since r(02 • 0X) is an open neighbourhood of b, we see that 

H'M]a) = L/J» = H'rz([f2)h) = H'4H'n<\f£ft 

as required. 
Now, if p lies in a foliation chart for F, (h, U) with /*(£/) = Op x 6>9, 

where Og is simply connected in R?, then <f> lies in a trivial neighbor­
hood N of Hom(K, F). Since N -> & is a diffeomorphism onto a submani-
fold of K x V, we see that ft, the image of TV in G, must also be diffeo-
morphic to this submanifold of V x V since 

N >ft 

\ / 

commutes. Also, since N -* ft is bijective, C°° and full rank, JV" is open in 
G. Hence, to compute H^([7Ui ° h]a) using the open set ft, we could equally 
use N as 

N >N 

\ / 

commutes. But then f2(r(f)) = %\ ° /*0(r')) = ^ i ° Kr(T'))> anc* s o 

^;([7T1oAL) = [7T1o% 
Therefore, by the previous proposition, H'r — Hr, for all 7*, and so the 

map y -> <7*>: G -» Hol(F, F) is well-defined. It is clearly a groupoid 
morphism and 

G -> Hol(K, F) 

\ / 
m 

commutes. Moreover, it is clear that 

Hom(F, F) -» G 

\ 1 
Hol(K, F) 
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commutes and so we must have that G -» Hol(F, F) is unique. 
If G -» @ Ç V x F is an immersion, then given y in G we can find a 

neighbourhood 0 of y in G so that 0 ' , the image of 0 in F x K, is a sub-
manifold of V x V and 0 -• Ö' is a diffeomorphism. By shrinking, if 
necessary, we can also assume that 0 , a neighbourhood of <f> in Hol(F, 
F), is also diffeomorphic to 0 ' via 0 -> O''. Since 0 -> 0 is bijective and 

0 >0 

\ i 
0 ' 

commutes, we see that 0 -> 0 is a diffeomorphism. 

COROLLARY. There is a unique C°°-manifold structure on Hom(F, F) 
making it into a C°°-groupoid over V which has the obvious structure on 
trivial neighborhoods and so that Hom(F, F) -*> & £ V x V is an im­
mersion. 

PROOF. If we had a second such structure on Hom(K, F), then, letting 
G = Hom(K, F) with this structure, we would get 

Hom(F, F) — ^ - Hom(F, F) 

\ j 
Hol(K, F) 

commuting, so the two vertical maps would be the same and both would 
be local diffeomorphisms. Thus, the identity map on Hom(F, F) would 
be a diffeomorphism between the two structures. 

COROLLARY. Suppose the connected Lie group H acts locally freely on 
the connected manifold V and let ( V, F) be the induced foliation. Then there 
is a local diffeomorphism H x V -» Hol( K, F) which is a diffeomorphism 
if H acts freely. 

PROOF. Since Hom(F, F) ^ H x V, where His the simply connected 
cover of H, we have that 

H x V^ H x V 

\ J 
commutes. Since H x V -» ^ £ V x F is an immersion, the theorem 
applies. If H acts freely, then H x V -» @ is a bijection, and so H x V -» 
Hol(F, F) is also a bijection. 

REMARK. Just as in the case of the holonomy groupoid [1, 2], we can 
associate a normed *-algebra with Hom(F, F) which we can complete 
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in either the universal C*-norm or the "reduced" C*-norm. In case the 
foliation is given by a locally free action of a simply connected Lie group 
H on K we obtain the crossed product C0(V) x H and the reduced crossed 
product Co(V) x red if respectively. Hence, both these algebras are anoni-
cally determined by the foliation itself. 

Concluding Remarks. The main theorem gives two justifications for the 
term "holonomic imperative". The first and most obvious explanation is 
that the holonomy groupoid is the "smallest manifold" which removes the 
singularities of the equivalence relation. The second, less obvious, ex­
planation is that the homotopy groupoid, which is certainly a natural 
object to study, has a unique C°°-groupoid structure and the construction 
of this differentiate structure uses holonomy in an essential way. 
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