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ON S U M S OF S I X T E E N S Q U A R E S 

JOHN A. EWELL 

ABSTRACT. The author shows that the function riß, which 
counts the totality of representations of a natural number by-
sums of sixteen squares, is expressible entirely in terms of real 
divisor-functions. 

1. The main result . It is the purpose of this paper to prove 
the following formula for the number rie(n) of ways of representing a 
positive integer n by sums of sixteen squares: 

(i) 
32 

rie(n) = — [<r7(n) - 2<r7(n/2) + 28a7{n/4) 

• f ( - l ) n - 116(2 3 6^V 3 (0(n)) 
n - l 

+ 16 ^ ( - l ) d d 3 J2 236(w- fcdV3(0(n - kd)))], 
d = l fc=l 

where for positive integers r, ra,<rr(ra) denotes the sum of the rth 
powers of all positive divisors of ra, otherwise ar(x) := 0;6(n) denotes 
the exponent of the highest power of 2 dividing n; and, 0(n) is then 
defined by the equation n = 26(n)0(n). (By convention the sum on the 
right side of (1), indexed by &, extends over all positive integral values 
of k for which n — kd > 0.) 

Proof of (1): We, first of all, recall that the modular function / is 
defined on the open unit disk of the complex plane (i.e. x G G \x\ < 1) 
by: 

OO 

f{x) = x^24l[(l-xn). 
1 
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Our point of departure is then the following statement of Van der Pol 
[4, p. 359]. 

rie(n) = ^ [ * 7 ( n ) - 2a7(n/2) + 28<r7(n/4) 

-hcoeff. of xn in 16/ 8 (z 2 ) / 8 ( -z)] . 

(Here it is tacitly assumed that n > 0, since ri6(0) = 1.) What identity 
(1) accomplishes is a closed-form expression for the coefficient of xn in 
16/8(z2)/8(-a;). Our argument is further based on the following three 
identities, each of which is valid for each complex number x such that 
Id < 1. 

(2) n t 1 - * 2 ^ 1 * * 2 * " 1 ) 2 ^ ^ 2 ' 

(3) n ^ 
1 _ r2n J2. 
1 X _ V^Tn(n+l)/2 

r 2n- l Z ^ 
X" 

00 °° 3 n 
i (n+l) /2\ 8 V^ n x (4) x ( ^ x n ( « + i ) / 2 ) 8

 = ^ J L : 
0 

Identities (2) and (3), due to Gauss, are now classical, e.g., see [3, p. 
282-284]. Identity (4) is not as familiar as the other two; see [5 p. 144]. 
Identity (2) is especially important for our discussion; for, the eighth 
power of the right (hence also the left) side of (2) generates rsfo), the 
number of representations of a nonnegative integer n by sums of eight 
squares. 

We temporarily suppress the factor 16 in Van der Pol's statement, 



ON SUMS OF SIXTEEN SQUARES 297 

OO 

and write: 

/V)/*M 
OO 

= (**/" n(i - z*»)n(-x)w U(i - H)"))8 

1 1 
OO 

= xl[(l-x2n)ie(l + x2n-1)8 

1 
OO 

(1 - x2n) 2n\S °° 

OO OO 

= x(j2(-x)n{n+1)/2)s • X>(n)*n ^ (2)and (3)) 
0 0 

0 0 ^ 3 / „\n °° 

- E i ^ - E * " CM*». 
o 

But, 

OO q „ OO 

— ndxn — E r ^ = E "3*n E *2nfc = E E "3*n(2fc+1) 

1 n = l fc=0 n = l f c = 0 
oo 

= E %m E (m/d)3 = E 236(mV3(0(m))x" 
7 n = l d\m 

d odd 

Hence, 

/V)/8(-*) 
OO OO 

= - E s36(iWo«)(-*) E rsOV 
t = l i = 0 

oo n—1 

= E H ) " " 1 1 " E 236(n-i)<73(0(n - j))(-l)Jra0'). 
n = l j = 0 

To eliminate rs(j) from this expression, we use the well-known formula 
[3 p. 314]: 

r8(n) = 16(-l)"X>l)d<*3 (neZ+) . 
d\n 
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First, however, we define e(j,d) for j G Z+ and d G {1,2, ...,j} by: 

£ U ' d J \ 0 , if d + j . 

Then, 

n - l 

^ 2 3 6 ^ - ^ a 3 ( 0 ( n - y ) ) ( - l ) ^ 8 ( i ) 
i=o 

= 23fe^c73(0(n)) + 16 £ £ 23 6("- 'V3(0(n - i ))s( i ,d)(- l)dd3 

= 23fe("V3(0(n)) + 16 ]T ( - l ) d d 3 J2 e(j,d)23b^a3(0(n - j)) 
d=l j=d 

n - l 

= 23b^a3(0(n)) + 16 ^ ( - l ) d d 3 ^ 236(n"fcdV3(0(n - *d)). 
d = i fc=i 

Hence, the coefficient of xn in 16/8(z2)/8(-:z) is: 

n - l 

16(-l)n-1(23 6 ( nV3(0(n)) + 16 ^ ( - l ) d d 3 £ 236(n" fcdV3(0(n - kd))). 
d=l k=l 

2. Concluding remarks. The author has also established the 
following result. 

THEOREM. For each nonnegative integer m, 

ri2 (2ra + 1) = 8a5 (2m + 1) + 16(ai(2ra + 1) 
m 

+ 1 6 ^ ( - l ) d d 3 £ V i ( 2 m - 2fcd + 1)), 
d = l fc=l 

ri2(2m + 2 = 8(<r5(2m + 2) - 64a5((m + l)/2)). 

Following the notation of Hardy [2, p. 136], we write 

r2s(n) = 629{n) + e2s(n) ( s , n 6 ^ + ) , 
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where r2S(n) denotes the cardinality of the set 

{(xi, X2, ...x2a) e Z2s\x\ +x% + ... + x\s = n}, 

^2s(^) is a divisor-function and e2S(n) is much smaller than ^ ( n ) for 
large n, so that 

r2s(n) ~Ô2s{n) 

when n tends to infinity. Jacobi studied the functions V2S for 2s = 
2,4,6,8, and showed for these cases e2S(n) = 0, for each positive integer 
n. (These results are now part of the folklore.) According to Hardy and 
Wright [3, p.316], Liouville gave the formulas for rio and ri2. Glaisher 
[1, p.479-490] studied r2s up to 2s = 18, and Ramanujan [5, p. 157-
162] continued Glaisher's table up to 2s — 24. Up to the present time 
most workers in this field have held the view "whenever s > 4,e2s(^) 
cannot for all values of n be expressed entirely in terms of real divisors." 
(Here, the quoted statement means that for some value of n and some 
k E {1,2, . . . ,n}, complex divisors of k are required to express e2S(n).) 
Our results contradict this view for s = 6,8. 
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