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SUPERNORMAL CONES A N D FIXED POINT THEORY 

G. ISAC 

1. Recently, we defined in [5] an interesting class of convex cones 
imposed by the theory of Pareto optimization, by the study of critical 
points of dynamical systems and by the study of conical support points. 
This convex cone was called, in [5], "nuclear cone" since every normal 
cone in a nuclear space is a nuclear cone in our sense. We also note 
that in [8], this cone was called "supernormal" cone, since we observed 
that the nuclear cone, by its properties, seems to be a reinforcement 
of concept of normal cone. We adopt in this note the concept of 
supernormal cone. Applications of supernormal cones may be found 
in [5, 6, 7, 8]. 

In this paper, we give an interesting application of supernormal cones 
to fixed point theory. 

2. We will use the concept of locally convex space defined by Treves 
[14], that is, a couple (£, Spec(£')), where E is a real vector space and 
Spec(E) is a set of seminorms on E such that 

(1°) VA G R+ and Vp G Spec(£), Ap G Spec(£); 
(2°) If p G Spec(J£ ) and q is a seminorm on E such that q < p, then 

q G Spec(£); and 
(3°)Vpi,p2 GSpec(£),sup(pi,p2) G Spec(£), where sup(pi,p2)(x) = 

sup(pi(x),p2(a;)), for any x G E. 
If Spec(22) is given, then there exists a locally convex topology r on 

E such that E(r) is a locally convex vector space and a seminorm p on 
E is r-continuous if and only if p G Spec(i£). 

A subset B C Spec(i£ ) is called a basis of Spec(E ) if and only if, for 
every p G Spec (12), there exists q G B and a real number A > 0 such 
that p < Xq. We suppose that the Spec(ü? ) has a Hausdorff basis, that 
is, kerS = {0}, where 

kerS = {x G E\p(x) = 0,Vp G B }. 

Received by the editors on March 11, 1985 and in revised form on July 25, 1985. 

Copyright ©1987 Rocky Mountain Mathematics Consortium 

219 



220 G. ISAC 

For our terminology on convex cones, we refer to [10,12]. 
If (E, SpecE) is a locally convex space, we denote by E' the topolog

ical dual of E. 
A subset K e E is called a convex cone if, 
(i) K + K C K, 
(ii) V À G R + , À K c K . 
If K C E is a convex cone, we denote by K' the dual cone of K with 

respect to the duality < E,E' >, that is, K' = { y G E'\ < x, y > > 0 : 
V X G K } . 

Let r be the locally convex topology defined on E by the set Spec(i£ ). 
We say that the convex cone K c E is normal (with respect to r), if 
one of the following equivalent assertions are satisfied: 

(ni) There exists a basis B of Spec(E) such that Vp G B and 
Vx, y G K, x<y=> p(x) < p{y), 

(n2) if {xi}iEI, {yi}iei are two nets of K such that Vz G / , 0 < Xi < 
yi and limz€ j yi = 0, then lim î€/ Xi = 0. For other properties of normal 
cones see [10, 12]. 

DEFINITION 1. A convex cone K C E is called r-supernormal (or 
nuclear) if and only if there exists a basis B of Spec(i£) such that 

(1) Vp G S, 3/p G K' such that Vz G K, p(x) < fp(x). 

PROPOSITION 1. / / (E{r),Spec{E)) is a Hausdorff locally convex 
space, then any r-supernormal convex cone K C E is a r- normal 
cone. 

PROOF. Indeed, let {a:^}^/, {yijiei be two nets of K, such that, for 
any i G / , 0 < x» < 2/», and l im^j yi = 0. Since K is a r-supernormal 
cone, there exists a basis B of Spec(i£) satisfying formula (1), and we 
have 

0<p(xi) < fp(xi) < fp(yi), 

for any p G B and i G / . Now, since lim^T fpiVi) = 0, we obtain 
that limicip(xi) = 0, and, because S is a basis of Spec(^), we have 
limiçj Xi = 0, that is, B is a r-normal cone. 

PROPOSITION 2. If (E(r),Spec(E)) is a Hausdorff locally convex 
space, then any r-normal convex cone K C E is cr(^, E')-supernormal. 

PROOF. If p is a seminorm a(E, I?')-continuous, then there ex
ists a constant C > 0 and / i , / 2 , - - . , / n £ E' such that p(x) < 
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Cs\iv?=1(\fi\(x)) for any x G £ . 
Since K is a r-normal cone, there exist for every i = 1,2,... , n , hi 

and Qi G K' such that fi = hi — gf, hence, for any x G K, we have 

p(x) < CsSp( IMz)) < CsMiM + \9i\)(x)) 
i=l i=l 

n 

= Csup(hi(x) + gi(x)) < cY](hi + 9i){x), 

that is, K is a(E, ü7')-supernormal. 

COROLLARY. A convex cone K C E is a(E,E')-supernormal if and 

only if it is a(E, E')-normal. 

EXAMPLES. (1°). A convex cone K e E is called "well-based" if 
there exists a closed, convex, bounded set A C E such that 

( b ! ) 0 ^ 1 ; 
(ba)K = UA € R +AA 
In any locally convex space E(T), any well based convex cone is r-

supernormal [5]. 
(2°). In a normed space (E, ||||), a convex cone K C E is supernormal 

if and only if it is well based. 
(3°). In a locally convex space (£'(r),Spec(£')), a locally compact 

(or weakly locally compact) convex cone K C E is r-supernormal. 
(4°). In a nuclear space (l£(r),Spec(Z£)), a convex cone K c E is 

r-supernormal if and only if it is r-normal. For nuclear space, see [13, 
15]. 

(5°). Let (J£(r), Spec(2? )), be a locally convex space and let {fn}neN 
be a sequence of continuous linear forms. 

Consider K C E a convex cone and suppose that / n , for any n G N, 
is positive with respect to the order defined by K. 

The convex cone K is called semicomplete with respect to {fn} if 
and only if, for any sequence {xm}meN C K such that ]C£Li fn(xm) < 
+00, Vn G N, we have that {xm}meN is summable and Ylm=i x™> ^ ^ . 

In [5], we proved that if K C E(r) is a semicomplete convex cone with 
respect to {fn}neNi then K is r-supernormal. 

(6°). Let (£(r) ,Spec(£)) be a Hausdorff locally convex space and 
suppose that K C E is a convex cone such that KH(—K) = {0}. 

If K is a(E, l^-complete, a(E, ü^-normal, and there exists a count
able fundamental system of weak neighborhoods of zero with respect 
to K, then K is a r-supernormal cone. 
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(7°). The convex cone # + of positive harmonie functions on a locally 
compact space Q, with respect to an axiomatic theory (Bauer, Brelot, 
Constantinescu - Cornea or Mokobodzki - Sibony) is a supernormal 
cone. 

We can also obtain other examples of supernormal cones using the 
order topology [10, 12, 16]. 

Let < £ ^ , F > b e a dual system of vector spaces and suppose that E 
is ordered by K and F by K'( the dual cone of K). If E is generated by 
K, then the locally convex topology defined by the basis {[—/, / ] ° } / € K ' 

on E is called order topology. We denote this topology by 0(E,F). 
If F = Ef and E is generated by K, then the topology 0(E,E') is 

defined by the family of seminorms { P / } / G K ' 5 where 

Pf(x)=sup{\g(x)\\ge [ - / , / ]} Vx € E. 

For other details on 0{E, F), we refer to [16]. 

PROPOSITION 3. If E(r) is a locally convex lattice [12], then K = 
{x G E\x > 0} is 0 (E, E')-supernormal 

PROOF. Indeed, in this case { P / } / € K ' is a basis of Spec(0 {E,E')) 
and it is well known [12, Corollary 2.6] that 0(E,E') is consistent 
with the duality < E,Ef >. Moreover, the definition of p / implies that 
V x € K p / ( x ) < / ( x ) . 

PROPOSITION 4. Suppose that E is a regularly ordered vector space 
(that is, the points of E are separated by the order dual E~*~ ) . Ifi£cE 
is a generating convex cone, then it is 0{E,E+)-super nor mal. 

PROOF. In this case 0(E,E+) is well defined and consistent with 
dual system < E,E+ > [12]. 

Let E(T) be an ordered locally convex space for which K = {x G 
E\x > 0} is a generating cone and let p be a seminorm on E. We say 
that p is a (PL)-seminorm if there exists an / G K' such that 

(*) p(x) < inî{ f(w)\w ±xeK,VxeE. 

PROPOSITION 5. Let (E(T), Spec(E )) be a locally solid space /12/ and 
K = { Ï 6 E\x > 0}. / / every equicontinuous subset of E' is ordered 
bounded, then K is r-supernormal. 

PROOF. From [16; Corollary 3.1.4, p. 109] we have in this case that 
any continuous seminorm p on E is a (PL)-seminorm, and hence / 
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satisfies the formula (*). 
A locally convex space E(r) is an (L)-space if, it is a locally convex 

lattice possessing a Spec(E) with a basis B such that, for any p G S, 
the following properties are satisfied: 

(*i) Vx,yGE, \x\<\y\, => p(x) < p(y); 
(£2) Vx, y G K, p(x + y) = p{x) + p(y). The (L)-spaces were studied 

in [4, 9]. 

PROPOSITION 6. / / (E(T), Spec(E)) is an (L)-space, then K = {x G 
E\x > 0} is a T-supernormal cone. 

PROOF. In this case, E(r) is a locally solid space, and if p G S, 
where S is a basis of the Spec(i?) satisfying (£1) and (£2), then from 
[16 Corollary 3.2.6, p.131], we have that p is a (PL)-seminorm, which 
implies (as in the proof of Proposition 5) that K is r-supernormal. 

COROLLARY. If(E, ||||) is a normed (L)-space, then K = {x G E\x > 
0} is a well based convex cone. 

3. Now consider (E, Spec(jK)), a locally convex space, and M c E, 
a non-empty subset. We say that <j) : M —• Ä is lower semicontinuous 
(lsc) if, for every À G R, the set S\ = {x G M|0(x) < A} is closed with 
respect to M. 

As in our paper [5], we use the following concept of a dynamical 
system. We say that T is a dynamical system on M if, 

(si) r : M — 2 M 

(s2) Vx G M, r(aO i=- $. 
A point x* G M is called a critical point of V if r(x*) = {x*}. The 

concept of critical point is a very important concept in the theory of 
dynamical systems. 

We use in this paper the following result proved in our papers [5, 6]. 

PROPOSITION 7. Let (E,Spec(E)) = {pa}a€A be a locally convex 
space. Consider M C E a complete nonempty subset and T : M —• 2 M 

a dynamical system. If, for each a E A, there exist an lsc function 
$a : M —» R+ and a constant ca > 0 such that 

Vx G M and Mu G T(x), capa(x — u) < $a(x) — $ a(ti) , 

£/aen T has a critical point in M. 
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REMARKS. 

(1°). This result is the Corollary 3 of Theorem 1 of our paper [5]. 
(2°). If r is a point-to-point mapping, then a critical point of T is a 

fixed point. 

THEOREM 1. Let (E,Spec(E)) = {pa}aeA) be a locally convex space 
ordered by a supernormal convex cone K C E, and let S G E be a 
subset. A mapping f : S —• E has a fixed point in S if and only if there 
exist a complete subset So C S and a continuous mapping <j> : S —> E 
such that 

(1°) / ( S o ) c S o ; 
(2°) <j)(So) is bounded; 
(3°) <£(/(x)) > <£(x), Vx G So; and 
(4°) Va G A, 3ß E A and cß > 0 such that Vx G So, 

Pa{x — fix)) 5i CßPß (4>(f{z))-<Kx)). 

PROOF, (a). Suppose that / has a fixed point in 5, that is, there 
exists x* G S such that /(x*) = x*. In this case the assumptions (1°) -
(4°) are satisfied if we put, So = {x*}, <ß = I s , and if, for relation (4°), 
we consider, for every a G A, ß = a and Cß = 1. 

(b). Suppose now, assumptions (1°) - (4°) are satisfied; we will prove 
that / has a fixed point in S. Indeed, since K is a supernormal cone, 
we have that, for every a E A, there exist ß E A, Cß > 0 and fß E E' 
such that 

Pß(x - /(x)) < CßPß[(j){f{x)) - (/>(x)J = cßpß{kx) 

v1) < Cßfß(kx) = Cßfß(kx + 0(x) - 4>(x)) 

= Cßfß(kx + (j)(x)) - cßfß((j)(x)), 

for any x G So- In these relations, kx = </>(/(x)) — 0(x) and kx E K. 
Since <p and fß for all ß E A are continuous and </>(So) is supposed 

bounded, the number rrtß — s u p ^ ^ Cßfß((ß(x)) for all ß G A is well 
defined; we have, using (1), 

pa(x - f(x)) < Cßfß{kz + 4>{x)) - Cßfß{(j){x)) 

(2) = \mß - c/?//?(0(x))J - (rnß - Cßfß{kx -h </>(x))J 

= [rriß - cßfß((t){x)yj - [mß - cßfß{<i>{f(x)))j. 
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Because ß is dependent on a G A, we put for all a G A, 

$a(x) = mß(a) - Cß{a)fß{a){<l>{x)), Vx € S 0 , 

and from (2) we obtain 

(3) p*(x - f(x)) < K{x) - *a ( / (« ) ) , Va eA^xe S0. 

Since $ a is a continuous function for all a € A, the formula (3) proves 
that we can use Proposition 7 which implies that / has a fixed point 
in S0 C S. 

COROLLARY 1. Let (E,Spec(E) = {pa}aeA) be a locally convex 
space ordered by a supernormal convex cone K C E and let S C E be a 
complete subset. Consider a continuous mapping g : S —» E, such that 

(1°) g (S) is bounded; 
(2°) g(x) < g(x - g(x)), Vx G S; and 
(3°) Va G X, 3/3 G X and c^ > 0 «ticA that Vx G 5, 

Pa(0(aO) ^ cßPß\9(x - g(x)) - g(x)j. 

If / (S ) C 5 , where f(x) = x - a(x), Vx G 5 , then there exists xo G S 
such that tf(xo) == 0-

PROOF. AU assumptions of Theorem 1 are satisfied for f(x) = x—g(x) 
if we consider <j>{x) = x — /(x) = tf(x), Vx G S. Thus we obtain that / 
has a fixed point xo G S, that is, o(xo) = 0. 

COROLLARY 2. Let (E,Spec{E)) = {pa}a€A) be a locally convex 
space ordered by a supernormal convex cone K C E and let S C E be 
a complete subset. If, for a continuous mapping f : S —• S, there exist 
r, p > 0, p > r such that 

(1°) {fP(x) - / r (x) |x G S} is bounded; 
(2°) / p + 1 (x ) - f*(x) > / r + 1 ( z ) - f ( x ) , Vx G S; and 
(3°) Va e A, 3ße A and Cß > 0 sucfc Mat Vx G S, 

Pa(s - /(*)) < c ^ ( r + 1 ( x ) - r + 1 ( x ) - fP{x) + fix)), 

then f has a fixed point in S. 
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PROOF. The corollary is a consequence of Theorem 1 if we consider 
4>{x) = fP(x)-fr{x), V x e S . 

REFERENCES 

1. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. 
Amer. Math. Soc. 215 (1976), 241-251. 

2. C. Const ant inescu, Spaces of Measures, Walter de Gruyter, Berlin, New York, 
1984. 

3. A. Dvoretzky, and C.A. Rogers, Absolute and inœnditional convergence in normed 
linear spaces, Proc. Nat. Acad. Sci. (USA) 36, (1950), 192-197. 

4. Gh. Grigore, La representation des espaces réticulés localement convexes de type (L), 
St. Cere. Mat. 22 Nr 8 (1970), 1182-1188, (en Roumaine). 

5. G. Isac, Sur l'existence de l'optimum de Pareto, Revista di Mat., Univ. di Parma. 
(4) 9 (1983), 303-325. 

6. , Un théorème de point fixe de type Caristi dans les espace localement convexes. 
Applications, to appear in Balcanica Math. 

7. , Un critère de sommabilite absolue dans les espaces localement convexes or
donnes. Cones nucléaires, Matematica 15 (48) Nr 2 (1983), 159-169. 

8. , Supernormal cones and absolute summabüüy, preprint, 1984. 
9. , The (M) — (L)-type duality for locally convex lattices, Rev. Roum. Math. 

Pures et Appi. X V I (1971), 217-223. 
10. G.J.O. Jameson, Ordered linear spaces. Lecture Noes in Math, 141, Springer-

Verlag, 1970. 
11. G. Mokobodzki, Cones normaux et espaces nucléaires. Cones semicomplets, Semi

naire Choquet. Initiation à l'analyse. 7eme année (1967-1968) Nr. B-6. 
12. A.L. Peressini, Ordered Topological Vector Spaces, Harper & Row, New York, 

1967. 
13. A. Pietch, Nuclear locally convex spaces, Springer-Verlag, 1972. 
14. Fr. Treves, Locally convex spaces and linear partial differential equations, Springer-

Verlag, New York, 1976. 
15. Ch. Wong S., Schwartz spaces, nuclear spaces and tensor products. Lecture Notes 

in Math 726, Springer-Verlag, 1976. 
16. , Convergence on order-bounded sets. Lecture Notes in Math. Nr 531, 

Springer-Verlag (1976). 

D E P A R T E M E N T DE MATEMATIQUES, C O L L E G E MILITAIRE ROYAL D E SAINT-
J E A N , S A I N T - J E A N , Q U E B E C J O J IRÒ 


