COMPLETELY MONOTONIC FUNCTIONS OF THE FORM $s^{-b}\left(s^{2}+1\right)^{-a}$

DANIEL S. MOAK

Abstract

The function $s^{-b}\left(s^{2}+1\right)^{-a}$ is shown to be completely monotonic for $b \geq 2 a \geq 0$, for $b \geq a \geq 1$. or for $0 \leq a \leq 1, b \geq 1$. Moreover this function is proven not to be completely monotonic for $0 \leq b<a$, nor for $a=b, 0<a<1$. This proves some conjectures of Askey [1], and extends some of the results of [2], [3], and [4].

1. Introduction. In recent years Askey, Gasper, Ismail, and others have looked into the problem of determining the nonnegativity of the Bessel function integrals $\int_{0}^{t}(t-s)^{c} s^{d} J_{\nu}(s) d s$, as well as some ${ }_{1} F_{2}^{\prime} s$. See $[2,3]$. This is related to the complete monotonicity of $s^{-a}\left(s^{2}+1\right)^{-b}$ as we shall see in this article.
The definition of complete monotonicity used in this paper is:

DEFINITION. A function $f(s)$ is completely monotonic (C.M.) if

$$
(-)^{n} f^{(n)}(s) \geq 0, s>0, n=0,1,2, \cdots
$$

The main result we will need is the Hausdorff-Bernstein-Widder theorem [8].

THEOREM A. $f(s)$ is completely monotonic if and only if it is the Laplace Transform of a positive measure on $(0, \infty)$.

Accordingly, we will make the following definitions.

DEFINITION. Let \mathcal{L} denote the Laplace transform operator and let \mathcal{L}^{-1} denote its inverse. We define:

$$
\begin{equation*}
S_{a, b}(t)=\mathcal{L}^{-1}\left(s^{-a}\left(s^{2}+1\right)^{-b}\right) \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
f * g(t) & =\int_{0}^{t} f(s) g(t-s) d s \tag{1.2}\\
{ }_{1} F_{2}(a, b, c ; x) & =\sum_{n=0}^{\infty} \frac{(a)_{n} x^{n}}{(b)_{n}(c)_{n} n!}, \tag{1.3}
\end{align*}
$$
\]

where $(a)_{0}=1$, and $(a)_{n}=a(a+1)(a+2) \cdots(a+n-1), n \geq 1$.
The other Series ${ }_{2} F_{1,3} F_{2}$, etc., are defined similarly.

Using the elementary theory of Laplace transforms, these results follow immediately:

$$
\begin{align*}
& \text { (1.4) } \quad S_{a, b}(t)=\frac{t^{2 a+b-1}}{\Gamma(2 a+b)}{ }_{1} F_{2}\left(a, a+b / 2, a+b / 2+1 / 2 ;-t^{2} / 4\right) \tag{1.4}\\
& (1.5) \tag{1.5}\\
& S_{a, b}(t)=\frac{\pi^{\frac{1}{2}} t^{a+b-1 / 2}}{\Gamma(a) \Gamma(b) 2^{a-\frac{1}{2}}} \int_{0}^{1}(1-u)^{b-1} u^{a-\frac{1}{2}} J_{a-\frac{1}{2}}(t u) d u \tag{1.7}\\
& \text { (1.6) } \quad S_{0, b}(t)=\frac{t^{b-1}}{\Gamma(b)} \\
& \text { (1.7) } \quad S_{a, 0}(t)=\frac{\pi^{\frac{1}{2}} t^{a-\frac{1}{2}}}{\Gamma(a) 2^{a-\frac{1}{2}}} J_{a-\frac{1}{2}}(t) \\
& \text { (1.8) } \quad S_{a, b}(t) * S_{c, d}(t)=S_{a+c, b+d}(t)
\end{align*}
$$

The problem is to determine the set of all (a, b) such that $S_{a, b}(t)$ is nonnegative on $(0, \infty)$. One result that follows immediately from the above equations is:

LEMMA 1. If $s^{-b}\left(s^{2}+1\right)^{-a}$ is C.M. then $s^{-c}\left(s^{2}+1\right)^{-a}$ is C.M. for all $c>b$.
2. The positive results. There is a useful sum due to George Gasper [5, (3.1)],

Theorem B.

$$
\begin{align*}
& { }_{1} F_{2}\left(a, a+b / 2, a+b / 2+1 / 2 ;-x^{2} y\right)= \tag{2.1}\\
& \Gamma^{2}(\nu+1)\left(\frac{2}{x}\right)^{2 \nu} \sum_{n=0}^{\infty}\left(\frac{(2 \nu+1)_{n}(2 n+2 \nu)}{n!(n+2 \nu)} J_{n+\nu}^{2}(x)\right.
\end{align*}
$$

$$
\left.{ }_{4} F_{3}\left(\begin{array}{c}
-n, n+2 \nu, \nu+1, a \\
\nu+1 / 2, a+b / 2, a+b / 2+1 / 2
\end{array} ; y\right)\right), \nu \geq 0
$$

One result that can be obtained from Theorem B is:

Theorem 1.

$$
s^{-b}\left(s^{2}+1\right)^{-a} \text { is C.M. for } b=1 \text { and } 0 \leq a \leq 1
$$

Proof. Using (1.4) and (2.1) with $b=1, \nu=a / 2$, and $y=1$, it suffices to show that:

$$
{ }_{4} F_{3}\left(\begin{array}{c}
-n, n+a, a / 2+1, a \tag{2.2}\\
a / 2+1 / 2, a+1 / 2, a+1
\end{array} ; 1\right) \geq 0,0 \leq a \leq 1, n=0,1,2, \cdots
$$

Now we use a result of Bailey [7, (4.3.5.1)]: ${ }_{4} F_{3}\left(\begin{array}{c}x, y, z,-n \\ u, v, w\end{array} ; 1\right)=$ $\left.\frac{(v-z)_{n}(w-z)_{n}}{(v)_{n}(w)_{n}} 4 F_{3} \begin{array}{c}u-x, u-y, z,-n \\ 1-v+z-n, 1-w+z-n, w\end{array} ; 1\right)$, provided $u+v+w=1+x+$ $y+z-n$. Set $x=n+a, y=a / 2+1, z=a, v=a / 2+1 / 2, w=a+1 / 2$, and $u=a+1$, and the ${ }_{4} F_{3}$ becomes

$$
\frac{(1 / 2-a / 2)_{n}(1 / 2)_{n}}{(a / 2+1 / 2)_{n}(a+1 / 2)_{n}} 4^{4} F_{3}\left(\begin{array}{c}
1-n, a / 2, a,-n \\
1 / 2+a / 2-n, 1 / 2-n, a+1 / 2
\end{array} ; 1\right) .
$$

For $0 \leq a \leq 1$, the terms of the ${ }_{4} F_{3}$ series are positive which implies that (2.2) holds. The theorem is proved.

One result proved by Fields and M. Ismail [3], is:

Theorem C.

$$
s^{-b}\left(s^{2}+1\right)^{-a} \text { is C.M. for } b \geq a \geq 1
$$

Also, Askey and Pollard [2] proved that $s^{-b}\left(s^{2}+1\right)^{-a}$ is C.M. for $b \geq 2 a$ using a theorem of Schoenberg:

ThEOREM D. Let $f(s)$ be a continuous function defined on $[0, \infty)$ such that $f(0)=1$. Then $(f(s))^{\lambda}$ is C.M. for all $\lambda>0$ if and only if there is a completely monotonic function $g(t)$ such that:

$$
\begin{equation*}
f(s)=\exp \left(-\int_{0}^{s} g(t) d t\right) \tag{2.3}
\end{equation*}
$$

Figure 1.
Now all the positive results have been established.
3. The negative results. The main tool we will use is the following:

ThEOREM E. (Watson's lemma for loop contours) Let f be analytic in an open neighborhood, U, of $(-\infty, 0]$ except for a branch cut at $(-\infty, 0]$. Suppose that

$$
\begin{equation*}
f(s) \sim \sum_{n=0}^{\infty} a_{n} s^{n-a}, \text { as } s \rightarrow 0 \tag{3.1}
\end{equation*}
$$

in a neighborhood of 0 , and let Γ be the loop that starts at $-\infty$, goes around the origin then goes back to $-\infty$ as depicted in Fig. 1. Then,

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{\Gamma} e^{s t} f(s) d s \sim \sum_{n=0}^{\infty} \frac{a_{n}}{\Gamma(a-n)} t^{a-n-1} \tag{3.2}\\
& \text { as }|t| \rightarrow \infty,|\arg (t)| \leq \pi / 2-\varepsilon, \varepsilon>0
\end{align*}
$$

A proof of this theorem can be found in Olver [6]. One important consequence of this theorem is

ThEOREM 2.

$$
\begin{align*}
& S_{a, b}(t) \sim \frac{2^{1-a}}{\Gamma(a)}\left(\cos (t-\pi a / 2-\pi b / 2) \sum_{n=0}^{\infty} \frac{(-)^{n}(a)_{2 n}(1-a)_{2 n}}{2^{2 n}(2 n)!}\right. \tag{3.3}\\
& \cdot{ }_{2} F_{1}(-2 n, b, 1-a-2 n ; 2) t^{a-2 n-1}+\sin (t-\pi a / 2-\pi b / 2) \\
& \left.\cdot \sum_{n=0}^{\infty} \frac{(-)^{n}(a)_{2 n+1}(1-a)_{2 n+1}}{2^{2 n+1}(2 n+1)!}{ }_{3} F_{1}(-2 n-1, b,-a-2 n ; 2) t^{a-2 n-2}\right)+ \\
& \frac{1}{\Gamma(b)} \sum_{n=0}^{\infty} \frac{(a)_{n}(1-b)_{2 n}(-)^{n}}{n!} t^{b-2 n-1}, \text { as }|t| \rightarrow \infty,|\arg (t)| \leq \pi / 2-\varepsilon, \varepsilon>0
\end{align*}
$$

Proof. We use the inversion formula for the Laplace transform:

$$
\begin{equation*}
S_{a, b}(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{s t} s^{-b}(s+i)^{-a}(s-i)^{-a} d s, c>0 \tag{3.4}
\end{equation*}
$$

We will assume throughout that the principal values of the powers and logs will be taken. The contour can be deformed into $\Gamma \cup(\Gamma+i) \cup(\Gamma-i)$. Translating the integrals over $\Gamma+i$ and $\Gamma-i$ to integrals over Γ, we obtain

$$
\begin{gather*}
S_{a, b}(t)=\frac{1}{2 \pi i} \int_{\Gamma} e^{s t} s^{-b}\left(s^{2}+1\right)^{-a} d s+ \tag{3.5}\\
2 \operatorname{Re}\left(\frac{1}{2 \pi i} \int_{\Gamma} e^{s t+i t}(s+i)^{-b} s^{-a}(s+2 i)^{-a} d s\right)
\end{gather*}
$$

We now use:

$$
\begin{equation*}
\left(s^{2}+1\right)^{-a}=\sum_{n=0}^{\infty} \frac{(a)_{n}(-)^{n}}{n!} s^{2 n},|s|<1, \text { and } \tag{3.6}
\end{equation*}
$$

$$
(s+i)^{-b}(s+2 i)^{-a}=e^{-\pi(a+b) i / 2} 2^{-a}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(b)_{n}}{n!}(i s)^{n} \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!}\left(\frac{i s}{2}\right)^{n},|s|<1 \tag{3.7}
\end{equation*}
$$

$$
(s+i)^{-b}(s+2 i)^{-a}=e^{-\pi(a+b) i / 2} 2^{-a}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a)_{n}}{n!2^{n}} F_{1}(-n, b, 1-a-n ; 2) i^{n} s^{n},|s|<1 \tag{3.8}
\end{equation*}
$$

Now use Theorem E on each integral in (3.5) with the series expansions obtained in (3.6) and (3.8) and the result follows.

Theorem 2 has some interesting consequences, among them being:

COROLLARY 1. $s^{-b}\left(s^{2}+1\right)^{-a}$ is not C.M. for $0<b<a$.

Proof. It is evident from (3.3) that

$$
\begin{equation*}
S_{a, b}(t) \sim 2^{1-a} t^{a-1} \cos (t-\pi b / 2-\pi a / 2) / \Gamma(a), \text { as } t \rightarrow \infty \tag{3.9}
\end{equation*}
$$

i.e., the ratio of the two sides goes to one as $t \rightarrow \infty$. There are arbitrarily large values of t where the right side of (3.9) is negative, so the same is true for $S_{a, b}(t)$. Hence $S^{-b}\left(s^{2}+1\right)^{-a}$ is not C.M. for $0<b<a$.

Another consequence of Theorem 2 is,

COROLLARY 2. $s^{-b}\left(s^{2}+1\right)^{-a}$ is not C.M. for $a=b, 0<a<1$.

Proof. The two dominant terms of (3.2) yield:

$$
\begin{equation*}
S_{a, a}(t) \sim\left[2^{1-a} \cos (t-\pi a)+1\right] t^{a-1} / \Gamma(a) \tag{3.10}
\end{equation*}
$$

For $0<a<1,2^{1-a}>1$ which implies that there are arbitrarily large values of t for which the right side of (3.10) is negative. Hence $S_{a, a}(t)$ must be negative somewhere. So $s^{-a}\left(s^{2}+1\right)^{-a}$ is not C.M. for $0<a<1$.
4. Conclusion. At this point we know where $s^{-b}\left(s^{2}+1\right)^{-a}$ is or is not C.M. in the first quadrant of the (a, b) plane, except in the interior of the triangle with vertices $(0,0),(1,1)$, and $(1 / 2,1)$. In that triangle there is a boundary curve of complete monotonicity, where $s^{-b}\left(s^{2}+1\right)^{-a}$ is C.M. on or above it, but not C.M. below it. There the numerical evidence suggests that this curve increases monotonically from $(0,0)$ to $(1,1)$ in a concave down fashion with a slope of 2 at $(0,0)$. It remains an open challenge to determine this curve more explicitly.

Figure 2.

References

1. R. Askey, Summability of Jacobi Series, Trans., Amer., Math., Soc., 179 (1973), 71-84.
2. R. Askey and H. Pollard, Some absolutely and completely monotonic functions, SIAM J. Math. Anal. 6 (1975), 551-559.
3. J.L. Fields and M.E. Ismail, On the positivity of some ${ }_{1} F_{2}$'s, SIAM J. Math. Anal. 5 (1974), 58-63.
4. functions, Spline Functions and Approximation Theory. A. Meir and A. Sharma, eds. ISNM vol. 21, Birkhauser Verlag. Basel. 1973, 101-111.
5. G. Gasper, Positive integrals of Bessel Functions, SIAM J. Math. Anal. 6 (1975), 868-881.
6. F.M.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
7. L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, 1966.
8. D.V. Widder, Laplace Transforms, Princeton University Press, Princeton N.J., 1946.

Mathematics Department, Michigan Tech. University, Houghton, MI 49931

[^0]: Received by the editors on October 31, 1984 and in revised for on January 23, 1986.

