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GENERALIZED HOMOGENEITY OF FINITE A N D 
OF COUNTABLE TOPOLOGICAL SPACES 

J.J. CHARATONIK AND W.J. CHARATONIK 

A B S T R A C T . Finite and countable topological spaces are 
investigated which are homogeneous, homogeneous with re
spect to open mappings or with respect to continuous ones. 
It is shown that for finite spaces all three concepts of homo
geneity coincide, while for countable or for uncountable ones 
they are distinct. Some characterizations of countable spaces 
that are homogeneous in either sense are found for the metric 
setting. 

0. Introduction. A topological space X with a topology (i.e., the 
family of open sets) T(X) is said to be homogeneous with respect to 
a class M of mappings of X onto itself provided, for every two points 
p, q E X, there is a mapping / € M such that /(p) = q. If M is 
the class of all homeomorphisms, we get the well-known concept of 
homogeneity of a topological space. A larger class of mappings than 
that of homeomorphisms (but not as large as the class of all continuous 
mappings) is one of open continuous mappings. Recall that a mapping 
f : X —> Y between topological spaces is called open if images under 
/ of open subsets of X are open in Y. And, finally, if M denotes the 
family of all continuous mappings of X onto X we get the concept of 
homogeneity with respect to continuity, that is due to David P. Bellamy. 

Given a cardinal number fc, let D(k) and I(k) denote a set of cardi
nality k equipped with the discrete and with the indiscrete topology, 
respectively. J. Ginsburg has proved in [5] that a finite topological 
space is homogeneous if and only if it is homeomorphic to the product 
D(m) x I(n) for some natural numbers m and n. The present paper 
has been inspired just by that short and nice result. 

The paper is divided into two parts that concern finite and countable 
spaces, respectively (the term countable means of cardinality of the 
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integers). At the beginning of the first part the authors prove that 
Ginsburg's characterization of finite homogeneous spaces is valid in 
a much more general case, namely for spaces that are homogeneous 
with respect to continuity. It is also indicated how deep finiteness 
of the space is essential in the result by showing some obstacles in 
obtaining a similar characterization for infinite-in particular countable-
spaces. Taking homogeneity with respect to various classes M as a 
distinctive feature, we consider four classes of topological spaces, each 
being a subset of the next one: the class A of homogeneous spaces, 
B-of homogeneous with respect to open continuous mappings, C-of 
homogeneous with respect to all continuous mappings, and finally the 
class D of all topological spaces. While for finite spaces the classes A, B 
and C coincide, for countable ones example are presented at the end of 
the first part of the paper showing that the differences B\A, C\B and 
D\C are nonempty, i.e., that the discussed concepts differ from each 
other if finiteness of the spaces is not assumed. 

The second part of the paper is devoted to countable spaces. Anal
ysis of some basic properties of the examples discussed at the very 
end of the previous part enable us (for the case of countable spaces) to 
characterize homogeneous spaces and-simultaneously-spaces which are 
homogeneous with respect to the class of open continuous mappings, 
under an additional assumption of metrizability: namely such a space 
is either discrete or dense in itself. Further, examples are constructed 
showing how far metrizability is an essential assumption in this result. 
For countable regular Xi-spaces, equivalences are proved between ho
mogeneity with respect to continuous mappings, noncompactness and 
some other properties, and necessity of all assumed conditions is inves
tigated in detail. At the end of the second part of the paper examples 
are provided of countable spaces and of locally connected metric curves 
displaying differences between all three concepts of homogeneity (i.e., 
classes A, B and C above) for the general setting, i.e., without any 
additional assumptions. Some open questions are also asked in the 
paper. 

Since the terminology concerning such concepts as regular, normal 
or compact spaces is different in references [4], [8] and [9], we note 
that the one used in this paper follows the Kuratowski monograph [8] 
rather than [4] or [9]. In particular the definitions of regularity and 
normality do not include the Ti axiom; similarly, for compactness, we 
do not assume the T2 (Hausdorff) axiom. 
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We denote the sets of natural (i.e., positive integer), of integer and 
of rational numbers by N, Z and Q respectively. They serve as under
lying sets for various topologies. However, if nothing is said about the 
topology, they are considered as equipped with their usual topologies 
coming from the Euclidean metric on the real line. Although N and Z 
with the usual topologies are homeomorphic, we use both of them to 
simplify descriptions of some examples. 

1. Finite spaces. The main result of this part says that, for finite 
topological spaces, there is no difference between the three kinds of 
homogeneity discussed in the introduction. We have the the following 
observation. 

PROPOSITION 1.1. Each continuous mapping from a finite topological 
space onto itself is a homeomorphism. 

Indeed, let a continuous surjection / : X —• X on a finite topological 
space X be given. Thus / is one-to-one. To prove that / is a 
homeomorphism it is enough to show its openness. By continuity of / , 
to each open set V C X corresponds, in a one-to-one way, an open set 
f~x(V). Since the family of all open subsets of X is finite, we conclude 
that each open set is of the form f~x(V) for some open set V, and 
therefore its image under / is open. 

As an easy consequence of Proposition 1.1 and of Ginsburg's char
acterization [5] of finite homogeneous spaces we get the following result. 

THEOREM 1.2. For finite topological spaces X the following condi
tions are equivalent: 

(1) X is homogeneous; 

(2) X is homogeneous with respect to the class of open continuous 
mappings; 

(3) X is homogeneous with respect to the class of continuous map
pings; and 

(4) there are natural numbers m and n such that X is homeomorphic 
to the product D(m) x I(n). 
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Now we shall try to examine how far finiteness of the space is an 
essential assumption in Theorem 1.2. This will be done in a sequence 
of remarks below, where suitable examples are constructed. 

REMARK 1.3. The reader can easily verify that finiteness is an essen
tial assumption in Proposition 1.1. Even if the mapping under consid
eration in Proposition 1.1 is additionally assumed to be one-to-one, the 
conclusion is not valid if the spaces are not finite. To see this, consider 
the set Z of all integers equipped with a topology generated by a base 
consisting of the set of all negative integers and of all singeltons for 
nonnegative ones. A mapping / : Z —• Z which assigns to each number 
n G Z a number / (n) = n — 1 is a one-to-one continuous surjection but 
it is not open. 

REMARK 1.4. Since the spaces D(m) and I(n) are homogeneous for 
all cardinal numbners m and n, and since the product of homogeneous 
spaces is homogeneous, finiteness of the space is a superfluous assump
tion in the implication from (4) to (1) in Theorem 1.2. However, in the 
opposite implication it is a necessary condition, as one can see by the 
example of rationals with the usual topology. 

REMARK 1.5. Finiteness is also an essential assumption in the equiv
alence of (1), (2) and (3) of Theorem 1.2. Namely, for countable topo
logical spaces, the concepts of homogeneity with respect to the classes 
of mappings considered in that theorem are all distinct: if A, B, C, D 
denote the classes of homogeneous, of homogeneous with respect to 
open continuous mappings, of homogeneous with respect to continuous 
mappings and of all countable topological spaces correspondingly, then 
A C B C C C D, and no one of these inclusions can be replaced by 
the equality. In fact, the inclusions follow directly from the definitions 
of the considered classes of mappings. 

A. The discrete space of all integers is homogeneous, so A ^ 0. 

B. To see B\A / 0 take the set Z of all integers and define a topology 
T(Z) on Z by declaring open, all sets of the forms {z G Z : z < 3n} 
and {z G Z : z < 3n + 2}, n € Z, together with 0 and Z. Obviously 
(Z,T(Z)) is not homogeneous, i.e., (Z,T(Z)) is not in A. 

Now we show that the discussed space is homogeneous with respect 
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to the class of open continuous mappings. So, given two points p, q G Z 
we shall find an open continuous surjection / : Z —> Z with f(p) = q. 
First, note that if p — q is divisible by 3, then the translation / i defined 
by z —> x — p + q transforms Z onto itself homeomorphically and maps 
p onto q. Second, observe that if p = 3m + 1 and q = 3m + 2 or vice 
versa m € Z, then a mapping / 2 that interchanges these points and 
keeps all the other points of Z fixed is a homeomorphism. Third, note 
that a mapping fy : Z —• Z, defined for a fixed number k G Z by 

{ a;, if x < 3fc, 

3fc, if 3* < x < 3k + 3, 
x - 3, if x > 3fc + 3, 

is an open continuous surjection satisfying fs(3k 4-1) = 3k. Fourth, a 
mapping f± : Z —• Z defined for a fixed fc G Z by 

{ x 4- 3 if x < 3k, 
3fc + l, ifz = 3fc, 
x, if a: > 3A: 

if again an open continuous surjection, now having the property 
f±(3k) = 3k + 1. Using a suitable composition of some of these four 
open mappings, the reader can easily find, for any p, q G Z, an open 
continuous surjective mapping that takes p to #. Thus (Z,T(Z)) is in 
B. 

C. An example of a space in C\B is constructed on the product 
H x Z, where AT = {0} U {1/n : n G N} and both # and Z are 
equipped with their usual topologies, i.e., the topologies inherited from 
the Euclidean metric on the real line. Since H x Z has isolated points 
and accumulation points, and since each open mapping of a space 
into itself maps isolated points to themselves, we conclude H x Z is 
not in B. To see it is in C, note that, given two arbitrary points 
p, q G H x Z, we can take the projection / : H x Z —» Z and an 
arbitrary surjection # : Z —• üT x Z satisfying g(f(p)) = q. Then g is 
continuous as a mapping from a discrete space, hence the composition 
gf : H xZ —»UxZisa continuous surjection that maps p to ç. For 
an indirect argument see Theorem 2.15 below. 

D. Lastly, to show D\C ^ 0, note that H = {0} U {1/n : n G N} 
with its usual topology has exactly one accumulation point, namely 0, 
and therefore for each continuous surjection / on H we have /(0) = 0. 
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So H is not in C (see also Theorem 2.15 below). 

2. Countable spaces. As has been shown in Remarks 1.4 and 1.5 
of the previous part of the paper, neither Ginsburg's characterization 
nor coincidence of the three classes A, B and C of spaces are valid if 
finiteness of the spaces is replaced by their countability. For countable 
metrizable spaces we have two other characterizations that are main 
results of this part of the paper. The first of them says that, for 
countable spaces that are metrizable (equivalently: regular, Ti and 
satisfying the first or the second axiom of countability), the concepts 
of homogeneity and of homogeneity with respect to open continuous 
mappings coincide, and each countable metrizable space having this 
attribute must be either discrete or dense in itself (i.e., homeomorphic 
either to the space Z of integers or to the space Q of rationals 
with their usual topologies)-see Theorems 2.1 and 2.3. The second 
main result of this part is a characterization of countable regular Ti-
spaces (in particular metrizable ones) which are homogeneous with 
respect to the class of all continuous mappings simply as noncompact 
spaces-see Theorem 2.15. Examples are presented to show that these 
characterizations cannot be extended to the class of all countable 
topological spaces and that countability is an essential assumption. 
But no full characterization is obtained of countable topological spaces 
in the general case, i.e., for the nonmetric setting. For this large area 
of all countable topological spaces we prove some partial results and 
ask some questions only. However, the authors hope that the results 
proved and examples constructed will help attain characterizations of 
countable topological spaces that are homogeneous with respect to the 
classes of mappings discussed in the paper. 

Note that a presentation of some properties of countable topological 
spaces from a viewpoint of their homogeneity with respect to various 
classes of mappings was begun in the end of the previous part of the 
paper. Of the four countable topological spaces we discussed above in 
Remark 1.5, the first, third and fourth are metrizable, while the second 
is not. Indeed, to see nonmetrizability of the space (Z,T(Z)) described 
in part B of Remark 1.5, observe that if x\ = —1 and X2 = —2, then 
there is no set in T(Z) that contains exactly one of the points X\ and 
£2- Thus (Z,T(Z)) is not To even. Therefore a natural question arises 
whether it is possible to find a countable metrizable topological space 
X such that X E B\A (i.e., homogeneous with respect to open contin-
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uous mappings without being homogeneous). The question is answered 
in the negative by the following theorem. 

THEOREM 2.1. For countable metrizable spaces X the following 
conditions are equivalent: 

(1) X is homogeneous; 

(2) X is homogeneous with respect to the class of open continuous 
mappings; and 

(5) X is homeomorphic either to a discrete space (Z of integers) or 
to a space which is dense in itself (Q of rationals). 

In fact, both Z and Q (with the Euclidean topologies inherited from 
the real line) are homogeneous, so (5) implies (1). Obviously, (1) im
plies (2). To see (2) implies (5), consider two cases. If X has an isolated 
point, then each point of X is also isolated, since open continuous map
pings preserve the property of being an isolated point. Thus all single
tons are open sets, and therefore X is discrete, i.e., it is homeomorphic 
to Z. If X has no isolated point, then it is dense in itself. However, 
all metrizable countable dense in themselves spaces are homeomorphic 
(see [8; §26, V, p. 287]), and so X is homeomorphic to Q. 

REMARK 2.2. Recall that a regular second countable Ti-space is 
metrizable ([8; §21, XVII, Theorem, p. 236 and Remark, p. 239]). 
On the other hand each countable metrizable space is regular, Ti, 
and-obviously-separable, thus second countable. Then, for countable 
spaces, metrizability is equivalent to being regular, second countable 
and T\. Furthermore, if a space is countable, then it is second count
able if and only if it is first countable. 

Thus by the above remark, Theorem 2.1 can be reformulated as 

THEOREM 2.3. For countable regular Ti-spaces that are first (second) 
countable, conditions (1), (2) and (5) are equivalent. 

The assumption of metrizability in Theorem 2.1 as well as both the 
conditions of regularity and of being first (second) countable in The
orem 2.3 are essential. This can be seen by the topological spaces 
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( Q , r ( Q ) ) and (Q,T"(Q)), where the topologies T'(Q) and T"(Q) 
are both larger than the Euclidean topology T(Q). In both definitions, 
we let Hr denote the set {r + 1/n : n G N} for each point r G Q. 

EXAMPLE 2.4. There exists a countable Hausdorff nonregular first 
(second) countable homogeneous space. 

PROOF. On the set Q of all rationals, extend the Euclidean topology 
T(Q) in such a way that each point r G Q has as its open neighborhoods 
all the sets U G T(Q) and the sets of the form U\Hr, where U € T(Q). 
Since the Euclidean topology T(Q) is Hausdorff, so is T"(Q). However 
T"(Q) is not regular, because there are no disjoint sets Vi, V2 G T"(Q) 
with r G Vi and Hr C V2 (note that Hr is closed and r is not in i / r ) . 
Further, if {Un : n £ N} is a countable local base at a point r G Q for 
the Euclidean topology T(Q), then {Un\Hr : n G N} is a local base at 
r for T"(Q). So, (Q, r ' (Q)) is first (and thus second) countable. And 
finally (Q,T"(Q)) is homogeneous because, for any two rationals p,g, 
a translation r -+ r — p + q r EQ is the needed homeomorphism. 

EXAMPLE 2.5. There exists a countable normal homogeneous Tj-
space in which no point has a countable local base. 

PROOF. On the set Q of all rationals take, as open neighborhoods 
of a point r G Q, all sets of the form {r} U U, with U G T(Q), 
provided Hr\U is finite (possibly empty). It is worthy to note, that 
if r G U G T"(Q), then U is declared to be an open neighborhood 
of r. Thus T(Q) c T"(Q), whence we conclude that (Q,T"(Q)) is 
Hausdorff, so it is a Ti-space. 

For any two numbers a, b G Q with a < 6, we put (a, 6) = {x G Q : 
a < x < b} and [a, 6] = {x G Q : a < x < b}. 

Since the space is countable, to prove its normality, it is enough to 
show regularity of the space (see [4; Theorem 1.5.16, p. 66]). To this 
end consider a closed set F C Q and a point r out of it. So r is in the 
set Q \ F which is open, and thus there exists a set U G T(Q) such that 
the open neighborhood {r} U U of r is contained in Q \ F . Since the set 
Hr\U is finite, there is a positive integer m such that r + 1/n G U for 
n>m. Then, for each n > m, there are four points an , 6n, cn, dn G <2 
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such that 

(6) an <cn <r + 1/n < dn < bn, 

(7) [an,6n] H [a n + i ,6 n + i ] = 0, 

(8) [ a n , 6 n ] c U, and 

(9) Hr n [ ] = {r + l / n } . 

Thus the union {r}UU{(cn,dn) • w > ^ } is an open neighborhood of 
the point r. Take the union W = {x G Q : x < r}U U{(6n+i, an) : n > 
m) U U{a: € Q : x > bm}. Since all the sets forming this union (i.e., 
the sets in braces above) are open in the usual topology T(Q) that is 
contained in T"(Q), we see W is open, i.e., W G X"'(Q). It is evident 
that Q\U C W, whence F C W. Further, we have ({r} U U) fl W = 0 
simply by the definitions. Thus (Q,T"(Q)) is regular. 

To prove no point of the space has a countable local base we show 
that, given a countable family {Bn : n € N} of open sets, each 
containing a fixed point r G Q, there exists an open set V with r G V 
such that no B n is contained in V. To this end consider a sequence of 
distinct natural numbers {n^}, where k 6 N, such that r + l/n^ G £&. 
Then, for each fc, there are four points ank, bnk, cn/t, dnk in Q such that 
conditions (6), (8) and (9) hold with n^ substituted in place of n and 
with Bk instead of U in (8). Further, for each n G N\{n i , n2, ri3, • • • }, 
we take a pair of points cn, dn G Q such that 

cn < r + 1/n < dn, 

# r H [ c n , d n ] = {r + l / n } , 

the sets (cn ,dn) are pairwise disjoint and, moreover, disjoint from 
all the sets {cnkidnk) constructed before. Thus, for all n G N we 
have defined the sets (cn,dn) which form an open covering of Hr. So 
V = {r} U U{(cn, dn) : n G N} has all the required properties. 

To close the proof observe that (Q,T"'(<2)) is homogeneous: for each 
two points p, q G <2, the translation r—>r — p + g i s a homeomorphism 
sending ptoq. So the proof is complete. 

REMARK 2.6. Concerning Example 2.5 observe that examples are 
known of countable regular T\-spaces that do not satisfy the first (and 
hence the second) axiom of countability: see [4], a remark on p. 66 
just after Theorem 1.5.16 and Examples 1.6.19, 1.6.20 and 2.3.37 on 



204 J.J. CHARATONIK AND W.J. CHARATONIK 

p. 79, 80 and 120 respectively. The first two of them are evidently 
not homogeneous because they contain both isolated and accumulation 
points. The third, Example 2.3.37 of [4], is in fact not a single topolog
ical space having the considered properties, but a family of such spaces 
X, depending on how a dense countable subspace X is chosen from the 
Cantor cube. So a question arises if it is possible to define a space X 
satisfying all the conditions of Example 2.3.37 of [4], p. 120 and 121, 
which additionally is homogeneous. 

REMARK 2.7. The two examples above show that, for nonmetrizable 
countable spaces, the equivalences between conditions (1), (2) and 
(5) are not true: the family of countable homogeneous topological 
spaces is essentially larger than the corresponding family of metric ones 
which consists of two topologically distinct elements (Z and Q with 
the Euclidean topologies) only. However, till now the authors neither 
have any characterization of topological spaces that are homogeneous 
or homogeneous with respect to the class of open continuous mappings 
in a general case (i.e., not only for metric spaces but for the nonmetric 
setting as well), nor are they able to present any example of a countable 
space satisfying higher separation axioms (note that the space (Z, T(Z)) 
in part B of Remark 1.5 is not even TQ) to exhibit the difference between 
the two notions of homogeneity. 

As was observed in Part C of Remark 1.5, homogeneity with respect 
to continuous mappings is a weaker condition than homogeneity with 
respect to open ones, even if metrizability of the space is assumed. A 
sequence of propositions below and Theorem 2.15 discuss conditions 
related to this topic and give full characterizations of continuously ho
mogeneous regular Ti -spaces as noncompact ones. 

Below we use the concept of a compact space in the sense that each 
open covering contains a finite subcovering (no separation axiom is as
sumed) . 

PROPOSITION 2.8. For countable topological spaces X the following 
conditions are equivalent: 

(10) there is a continuous mapping from X onto the set N of all 
positive integers with the usual topology, and 
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(11) there is an infinite open covering of X whose elements are 
mutually disjoint. 

Each of them implies that 

(12) X is noncompact, and 

(3) X is homogeneous with respect to the class of continuous map
pings. 

PROOF. Condition (10) implies (11), since if a mapping / : X —> N 
is continuous and surjective, then {/_1(n) : n G N} is the required 
covering. Conversely, if C is a covering assumed in (11), then each 
element of C is closed as the complement of the union of other elements 
of the covering; hence C is a decomposition of X. Further, the space 
X being countable, the family C is countable, too. So, since elements 
of C are simultaneously open and closed subsets of X, the quotient 
space X/C obtained by shrinking each element of C to a point (distinct 
elements to distinct points) is countable, and the quotient topology is 
discrete. Therefore X/C is homeomorphic to N. 

Condition (12) is an immediate consequence of (11) and of the defi
nition of compactness. Finally, to see that (10) implies (3), take a con
tinuous mapping / : X —• N of X onto N, fix an arbitrary one-to-one 
surjection g : N —• X and note that it is continuous since the domain 
space N is discrete. If p and q are points of X, then let h : N —• N be 
a homeomorphism such that h(f(p)) = g~x{q). Then the composition 
ghf : X —• X is a continuous surjection that maps p to q. The proof is 
complete. 

REMARK 2.9. Neither of the implications from (10) (or (11)) to (12) 
and (3) in Proposition 2.8 can be reversed in general. In fact, the space 
(Z, T(Z)) defined in part B of Remark 1.5 is obviously noncompact, and 
is proved there to be homogeneous with respect to the class of open 
continuous mappings, i.e., conditions (2) is satisfied which is stronger 
than (3). However, the space evidently does not satisfy condition (11), 
since each two open sets intersect. In particular, the space is not reg
ular. 

REMARK 2.10. Further, neither of (12) and (3) implies the other for 
countable spaces. Indeed, even condition (1), which is much stronger 
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than (3), does not imply (12), as an example of a countable space with 
the finite complement topology shows (that is, a nonempty subset of 
X is declared to be open provided its complement is a finite set, see 
[9; Part II, Example 18, p. 49]). Note that this space is compact but 
not HausdorfF. For Hausdorff spaces no such example exists (see below, 
Proposition 2.14). To see a noncompact countable space that does not 
satisfy (3), define on the set N of positive integers a topology whose 
nonempty members have the form {n € N : n < k} for each k € N. 
Then, for each continuous surjection / : N —• N, we have / ( l ) = 1. 
In fact, since the singelton {1} is open in N, the set / _ 1 (1 ) is open, 
i.e., for some fceNwe have / - 1 ( 1 ) = {n G N : n < k} D {1}, so 
1 G / _ 1 ( 1 ) . Therefore the space is not homogeneous with respect to 
the class of continuous mappings. Again observe that the space just 
constructed is To only, but not Ti. 

If we, however, additionally assume that the space under considera
tion is regular, then (12) implies (11) (equivalently (10)) and therefore 
(3). It seems to the authors that the implication (for countable regular 
Ti-spaces) is probably known, but they did not find its proof in the lit
erature. Thus a proof of this result, preceded by a lemma, is presented 
below. 

LEMMA 2.11. Each point of a countable regular noncompact T\-space 
has an open and closed neighborhood whose complement is noncompact. 

PROOF. Let a countable regular noncompact Ti-space X be given and 
let x e X. There exists an open neighborhood V of x such that X\V is 
noncompact. Since the space is T\ regular and countable, it is normal 
[4; Theorem 1.5.16, p. 66], so completely regular, and hence there is 
a continuous real-valued mapping / : X —> [0,1] such that f(x) = 0 
and f(X\V) = {1}. Since f(X) is a countable subspace of [0,1], there 
exists an open and closed (with respect to f(X)) neighborhood W such 
that 0 G W C [0,1]\{1}. Then U = /^(W) is an open and closed set 
containing the point x and contained in V. Further, X\U is noncom
pact because otherwise X\V would be compact as a closed subset of a 
compact space X\U. The lemma is proved. 

PROPOSITION 2.12. / / a countable regular Ti-space is noncompact 
then it has a countable open covering with mutually disjoint elements. 
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PROOF. Denote the space by X and order its elements in a sequence 
so that X = {xi,X2,X3, • • • } . Put ni = 1 and let U\ be a neighbor
hood of xni as in the lemma, i.e., open and closed with noncompact 
complement. Put X\ = X\U\ and let xn2 denote the first element of 
the sequence which is in X\. Applying Lemma 2.11 to the noncompact 
space X\ (which is an open and closed subspace of X) and to the point 
Xn2 we find an open and closed (with respect to Xi , and thus with 
respect to X) neighborhood f/2 of xn2 contained in Xi and having the 
noncompact complement Xi\U2 = X2, which is again an open and 
closed subspace of X. The first point xn G X2 with n > ri2, is denoted 
by xn3. Using Lemma 2.11 once more on X2 and xns we get U3 C X2 
and so on. By an inductive procedure we define an infinite sequence of 
points xni, xn2, • • • , xnic, • • such that 1 = n\ < ri2 < • • • < n* < • • • 
and a sequence of open (and closed) sets f/i, £7*2, • • • ,£/&,-•• which are 
pairwise disjoint by their definitions. Furthermore, since rik > k, it fol
lows by the choice of xnk that Xk G U{U{ : i G {1,2, • • • , &}}. Therefore 
the sets Uk cover the whole space X, and so the proof is finished. 

Observe that the assumption of regularity of the space in Proposition 
2.12 cannot be weakened to being Hausdorff only. Namely the set 
X = {(x,y) G Q x Q : y > 0} equipped with the irrational slope 
topology (see [9; Part II, Example 75, p. 93]) is a countable Hausdorff 
noncompact space on which every real-valued continuous function is 
constant [9; Part II, Property 5 of Example 75, p. 94]; i.e., (10) does 
not hold, which is equivalent by Proposition 2.8 to the conclusion (11) 
of Proposition 2.12. 

It has been mentioned above that Proposition 2.12 leads to the 
implication from noncompactness (12) to homogeneity with respect to 
continuous mappings (3) for countable regular T\-spaces via property 
(11) of Proposition 2.8. The converse implication also holds, even for 
Hausdorff spaces, as can be seen by Proposition 2.14 below. 

The next proposition, perhaps interesting by itself, plays an auxiliary 
role and serves as a lemma in a proof of Proposition 2.14 which is a 
stronger result. 

PROPOSITION 2.13. No countable metrizable compact space is homo-
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geneous with respect to the class of continuous mappings. 

PROOF. Let a countable metrizable space X be compact. For a given 
set A C X let Ad denote the set of all accumulation points of A (called 
the derived set of A). For an ordinal number a, by the derived set of 
A of order a (see [8; §24, IV, p. 261]) we understand a set Aa defined 
by the conditions 

A1=Ad,Aa+1 = (Aa)d and 

Ax = D{Aa : a < A} if À is a limit number. 

Recall that the sets Xa are closed and they form a decreasing family. 
It follows from separability of X that there exists a countable ordinal 
a with Xa = Xß for all ß > a (see [8; §24, II, Theorem 2,p. 258]). 
Moreover, since X is countable and compact, it follows from Corollary 
4 of [8], §34, IV, p. 415 that such Xa is empty. Denote by S an ordinal 
number satisfying X6 ^ 0 and Xß = 0 for all ß>6. Observe that X6 

is a finite set. 

Consider now a continuous surjection / : X —• X. We shall prove 
that, for each A C X, we have 

(13) A* C f{Aa) 
for all ordinals a. In particular X6 C f(X6), and, by finiteness of X 
to a point out of X6, we get X6 = f(X6); this implies that there is no 
continuous surjection taking a point from X8, and therefore X is not 
homogeneous with respect to the class of continuous mappings. 

So, to finish the proof, we have to show (13). We proceed by 
transfinite induction. To this aim observe that, for every compact set 
C c l , w e have (f(C))d c f(Cd). Substituting C = A, we get (13) 
with a = 1. Assume (13) holds for some a. Putting C = Aa we have 

(14) {f{A*)Y C / (A-+ 1 ) . 

Taking the derived sets in both members of (13) (the inductive as
sumption), we obtain Aa+X C (f(Aa))d, and by (14) we have (13) for 
a + 1 in place of a. If À is a limit ordinal and (13) holds true for a < A, 
by the assumption, we get Ax = f){Aa : a < A} C Ci{f(Aa) : a < A} = 
f(f){Aa : a < A}) = f(Ax). Thus (13) holds for all a, and therefore 
the proof is complete. 
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PROPOSITION 2.14. If a countable Hausdorff space is homogeneous 
with respect to the class of continuous mappings, then it is noncompact. 

PROOF. Let a countable Hausdorff space be compact. Then it is 
second countable (see [4; Theorem 3.1.21, p. 171]) and normal ([4; The
orem 3.1.9, p. 168]), whence its metrizability follows by the Urysohn 
theorem (see [8; §22, II, Theorem 1, p. 241]). As a consequence of 
Proposition 2.13 we conclude that the space is not homogeneous with 
respect to continuous mappings. 

Propositions 2.8, 2.12 and 2.14 imply the following result. 

THEOREM 2.15. For countable regular T\-spaces X the following 
conditions are equivalent: 

(3) X is homogeneous with respect to the class of continuous map
pings; 

(10) there is a continuous mapping from X onto a countable discrete 
space; 

(11) there is a countable open covering of X whose elements are 
mutually disjoint; and 

(12) X is noncompact. 

REMARK 2.16. We shall verify that countability of the spaces under 
consideration is an essential assumption in the above discussed results, 
in particular in Theorems 2.1, 2.3 and 2.15, as has been done for finite-
ness in Theorem 1.2-see Remark 1.5 above. Namely we shall present a 
few examples of curves (i.e., compact connected one-dimensional met
ric spaces) showing that, even for so narrow a class of spaces as lo
cally connected curves, the concepts of homogeneity with respect to 
the classes of mappings considered above are all distinct. So let A, B, 
C and D have the same meaning as in Remark 1.5 but with referernce 
to curves. 

A. The Menger universal curve (see, e.g., [2; Chapter 15, p. 501-506]) 
or a circle are known to be locally connected homogeneous curves [1, 
p. 322], so A ^ 0. 
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B. As was observed by L.G. Oversteegen in a letter to the first named 
author, the one-point union of two Menger universal curves is homoge
nous with respect to the class of light (i.e., having zero-dimensional 
point-inverses) open continuous mappings without being homogeneous 
(see [3; Example 5.5]; for an example of a two-dimensional metric con
tinuum that is homogeneous with respect to monotone open continuous 
mappings but is not homogeneous, see the end of the first part of [6]). 
Thus B\A £ 0. 

C. An arc is a locally connected curve in C\B (see [7; Theorem 1, p. 
347] and [10; (1.3), p. 184]). 

D. Since each locally connected continuum is homogeneous with re
spect to continuous mappings [7; Theorem 1, p. 347], an example in 
D\C cannot be locally connected. The sin(l/x)-circle is an example of 
such a curve (see [7; Theorem 4, p. 352]). 
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