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ORLICZ SPACES WHICH ARE RIESZ ISOMORPHIC TO £°° 

WITOLD WNUK 

A B S T R A C T . The main purpose of this paper is to describe, 
in terms of the function <p and the measure /i, Or liez spaces 
Ltp(Si ][^>A0 which are Riesz isomorphic to £°°. The "thick­
ness" , in the sense of Baire category, of the subset of measures 
for which L ^ ( 5 , £ ^ , A 0 is Riesz isomorphic to £°° is also in­
vestigated. 

I. Basic notation and auxiliary results. Throughout the note, in 
what concerns Riesz spaces (= vector lattices) we use the terminology 
of [2]. When two Riesz spaces L and K are Riesz isomorphic, then this 
fact will be noted by L ~ K. The symbols R 5 and N are reserved for 
the space of functions from a set S into R with the standard pointwise 
order and for the set of positive integers, respectively. Moreover, es 

denotes the characteristic function of the set {s},L+ is the cone of 
positive elements of a Riesz space L and ^§° (S) IS the ideal in £°° (S) 
consisting of functions with at most countable support. When S is 
countable then, of course, *§°(S) = t°°(S). 

We start with two simple lemmas. 

LEMMA 1. Let Li{i = 1,2) be Riesz subspaces ofRs containing all 
ef

ss. IfT.Li —• L2 is a Riesz isomorphism onto, then there exists a 
function g G R^ and a bijection a : S —• S such that 

T(x)(s) = g(s)x(a(s)) 

for all x G L\. 

The above statement follows immediately from two facts: T(es) is 
an atom in L2 (so it has the form ases>) and T is a normal Riesz 
homomorphism. 

The next Lemma will be frequently used. 

LEMMA 2. Let L be a Riesz subspace of R containing all e'8s, and 
let A be a subset of S. If L is Riesz isomorphic to tç?(S), then 
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(a) there exists a function h G R+ such that the operator T : iff (S) —» 
L given by the formula 

T{x)(s) = h(s)x(s) 

is a Riesz isomorphism onto. 

(b) PAL is Riesz isomorphic to iff (A), where PA denotes the projec­
tion onto the band generated by the set {es : s G A}. 

PROOF. Let H : iff (S) —• L be a Riesz isomorphism onto. Then 
there exists a bijection ß : S —• S such that H(e3) = aaeß(3), where 
a8 > 0. Put h(s) = aa( s), where a = ß~x. The Dedekind completeness 
of L implies that T defined in (a) is a Riesz isomorphism onto. 

Part (b) follows by the equality T{PA(e^{S))) = PAL, where T is 
the operator given in (a). 

Let (S, J2i AO De a measure space. A function G : [0, oo) x S —* [0, oo) 
is called a Musielak-Orlicz function, if 

1° G(-,s) : [0, oo) —• [0, oo) is left continuous, continuous at zero, 
non-decreasing and G(r, s) = 0 if and only if r = 0, 

2° G(r, •) : S - • [0,oo) is ^-measurable. 

Every Musielak-Orlicz function G together with (S, ̂ , //) generates 
a space of measurable functions called Musielak-Orlicz space: 

L G ( S , £ > ) = {* € £ ° ( S , £ , / i ) : mG(*x) 

= / G(t\x(S)l 8)dfi < oo for some t > 0}. 

Here L°(5,1^,/i) is the space of all //-equivalence classes of Xr 
measurable real-valued functions on S. 

Any Musielak-Orlicz space £ G (S , J3, //), with respect to the standard 
\x — a.e. order and with the monotone F-norm | |X||G = inf{r > 0 : 
moix/r) < r}is a super Dedekind complete F-lattice whose topology 
has the Fatou and a-Levi properties. It is easy to observe that the sets 
of the form a-B(r) constitute a base of neighbourhoods of zero for the 
topology given by || • ||G where a,r > 0 and B(r) — {x € LG(S, J^, AO : 

mG(x) < r} . 
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The largest ideal in LG(S,J2^) o n which || • | |G has the Lebesgue 
property is usually denoted by LG(S, ]£, //). It is known that 

£ ? ( S , £ > ) = {xeLG(S^fi) : mG(tx) 

< oo for all t > 0}. 

Moreover, LG is super order dense in LG(S, J^, ix) (for details see [6]). 

The class of Musielak-Orlicz functions contains Orlicz functions, i.e., 
functions <p : [0, oo) —• [0, oo) with properties listed in 1°. A Musielak-
Orlicz space generated by Orlicz functions is called an Orlicz space. 
Orlicz functions will be denoted by small greek letters <p, ip. Two Orlicz 
functions <p,iß are equivalent (see [5]) if 

a(p(br) < ip(r) < C(p(dr) 

for some positive constants a, 6, c, d and all r € R+. Equivalent Orlicz 
functions generate the same Orlicz spaces and therefore the identity 
is a Riesz and topological isomorphism between them. Thus if we are 
interested in isomorphic invariants of an Orlicz space, we may replace 
a given Orlicz function ip by an equivalent one Jp possessing "better" 
properties than <p. For example, for every Orlicz function <p there exists 
a continuous and strictly increasing Ip equivalent to (p. Indeed, putting 

(*) W) = - I P(*)*i 
r Jo 

we obtain 
^{^r)<ip{r)<(p(r). 

In this paper Orlicz spaces which are Riesz isomorphic to tçf{S) 
will be investigated and therefore only purely atomic measure spaces 
(S, S ? M) wm< be considered. We can assume that Yl ls the cr-algebra 
generated by one-point sets {s} and /^({s}) = as E (0, oo). It is 
possible to restrict our considerations to semi-finite measures because 
if Soo = {s : ß{{s}) — oo}, then SQQ H suppx = 0 for every 
x € Z/?(S, è * //), and so the spaces L^(S, £ , AO and L^(S\Soo, A, fx\A) 
are Riesz isomorphic, where A is the a-algebra of subsets of S\Soo 
generated by sets suppx (x € £^ (3 , $3? AO). 

We can also assume, in the case when // is cr-finite, that S = iV, ]>̂  is 
the cr-algebra of all subsets of iV, /i({n}) = an. 
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We will write £G(as) {^(a3)) instead of £ G ( S , £ , / i ) ( £ ? ( # , £ , / i ) ) , 
and £G (£G) when S is countable and as = 1 for all s. 

In the second part of this paper we will need the following simple 
Lemma (due to Drewnowski [4]). 

LEMMA 3. Let G : [0, oo) x S —• [0, oo) be a Musielak-Or liez function. 
The following conditions are equivalent: 

(a) £G(a3) = £%>(S) (algebraically), 

(b) for every countable subset So C S there exist 0 < v < u such that 
inf s€s0 G(u, s)a8 > 0 and J2ses0 G(v, s)as < oo. 

The next Lemma exhibits a class of Orlicz spaces over a a-finite purely 
atomic measure space which are not Riesz isomorphic to £°°. 

LEMMA 4. IfY^Tan = °° an^ s u P a n < oo, then the Orlicz space 
^ ( û n ) has no strong unit. 

PROOF. Suppose x = (xn) is a strong unit in ^ ( a n ) . Then xn > 0 
for all n and zero must be an accumulation point of (xn). Thus, by the 
continuity of <p at zero, we can choose a subsequence (xnk) such that 
<p{2kxnk) < 2~k. Put 

ym = { kx"k f o r ™ = n>k 
m 10 for the others m's. 

We obtain y = (ym) E €£(an), and so y < Mx for some number M. In 
other words, kxnk < Mxnk for all k which is impossible. 

Lemma 2(b) and Lemma 4 imply the following fact: 

If S is uncountable, then ^ ( a s ) is never Riesz isomorphic to £çf(S). 

Indeed, suppose that ^(a f l)is Riesz isomorphic to £çf{S) and let 
5(a, 6) = {s : as € (a, 6)}. Since S is uncountable, S(m _ 1 , ra) contains 
imfinitely many elements for some m € N. Taking an arbitrary 
countable subset A of S(ra _ 1 ,m) and using Lemma 2(b) we have 
PAÌ^Ì^S)) is Riesz isomorphic to £°°. Hence the spaces £°° and £? 
would be Riesz isomorphic which is impossible because, by lemma 4, 
£v has no strong unit. 

Therefore, in further considerations we will assume that ß is a a-finite 
purely atomic measure. 

The analogous arguments as above give 
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LEMMA 5. / / (.^(an) is Riesz isomorphic to l°°, then the set of 
accumulation points of the sequence (an) is included in {0, oo}. 

II. Main results. We recall that an Orlicz function <p is said to 
satisfy the Ajf-condition (A§-condition), shortly (p € A ^ y ? € A2), if 
<p(2r) < k(p(r) for some k > 1 and all r's from some neighbourhood of 
infinity (of zero). 

THEOREM 1. The following conditions are equivalent: 

(a) ^ ( a n ) cz £°° for some sequence (a n ) ; 

(b) ia(an) ~ Co (%-e., these spaces are isomorphic as topological vector 
spaces) for some sequence (an); 

(c) ^ ( a n ) ~ £°° for some sequence (an); and 

( d ) ^ £ A f or<p£Al 

PROOF. (a)=>(b) is obvious. (b)=>(c). Since £%(an) and co are 
isomorphic, they are Riesz isomorphic (see [1; Theorem 6]. Let 
T : Co —• ^a{an) be Riesz isomorphism onto. The <r-Levi prop­
erty of ^ ( a n ) implies the existence of the element e = supnT(en) . 
Take an arbitrary element x € ^ ( a n ) . Thus |x| = supnT(^n) for 
some increasing sequence (zn) C co+ according to supper order den­
sity of ^ ( a n ) in ^ ( a n ) . We have zn(k)ek < \\zn\\eooek for all A;; so 
T(zn) = T(supkzn{k)ek) = supfczn(k)T{ek) < \\zn\\i<>oe. The in­
equality T(zn) < \x\ gives that (zn) is topologically bounded, thus 
x = supnT(2n) < supn || zn ll̂ oo -e. In other words, the element e 
is a strong unit in ^ ( a n ) , and so ^ ( a n ) must be Riesz isomorphic 
(not only isomorphic) to £°° (see [7; Theorem 12]). (c)=>(d). Suppose 
ev(an) ~ £°° but <p € A§° and <p e A§, Therefore <p(2r) < K • ip{r) for 
some K > 1 and all r > 0. The last inequality implies ^ ( a n ) = £%{an) 
and we have obtained a contradiction because ^ ( a n ) is separable. 
(d)=>(a). Suppose first <p & Ag0. Then there exists a sequence (bn) 
increasing to infinity such that <p(26n) > 2n<p(bn) for all n. Putting 
an = (v?(2&n))"*1 and G(r, n) = ip(rbn)an we obtain ]C?°G(l,rc) < 00 
and infnG(2,n) > 0. According to Lemma 3, (P — t°°, and so 
(xn) e £°° if and only if (bnxn) G ^ ( a n ) . Hence the operator 
T : t°° - • #?(<*„) defined by the formula T((xn)) = (bnxn) is a Riesz 
isomorphism onto. 

In the case (p £ A§ the proof is analogous. 

REMARKS. 1. The theorem implies in particular that ^ ( a n ) may be 
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locally convex even if <p is not equivalent to a convex function. 

2. Applying Lemma 2(b) and Lemma 5, we obtain: if ^ ( a n ) ~ l°°, 
then 

(a) an —• 0 when <p g A§° and ip G A§, 

'(b) an —• oo when (p G A20 and <p £ A§, 

(c) an —• 0 or an —» 00 or zero and infinity are the accumulation 
points of (an) when (p g A§° and £> 0 A§. 

THEOREM 2. Le£ (an) C R,an > 0. Assume additionally that the 
Orlicz function tp is strictly increasing. Then the following conditions 
are equivalent: 

( a ) ^ ( a n ) ^ * ~ ; 

(b) J2T <P{a<P~1{a/an))a>n < 00 for some a G (0,1); and 

(c) (<£>_1(a/an)) is a strong unit in ^ ( a n ) for some a > 0. 

PROOF. (a)=>(b). According to Lemma 2(a) there exists a sequence 
(c„) € R+ such that the operator T : t°° - • ^ ( a n ) defined by 
T((zn)) = (cnxn) is a Riesz isomorphism onto. Thus tG = ^°°, 
where G(r,n) = <p(rcn)an. Using Lemma 3 we obtain infnG(it,n) = 
d > 0 and Y1T G{v,n) < 00 for some 0 < v < u. In other words 
d = infn <p(ucn)an > 0 and ^2™ <p(ycn)an < 00. The inequality 
cn > u~1(p~1{d/an) implies J2T p((v/u)(p~1(d/an))an < 00. The 
proof will be finished if we put a = min(v/u,d). (b)=^(c) is obvious. 
(c)^-(a). Since (^{an) possesses a strong unit, it is Riesz isomorphic 
to e°° (see [7; Theorem 12]). 

If E is a subset of R n , then 2£++ denotes the subset of E consisting 
of sequences with strictly positive terms. 

EXAMPLE. Applying Theorem 2 to the function <p(r) = er — 1 we 
obtain ^ ( a n ) ~ I00 if and only if (an) G U0<p<i^_+. 

Theorem 2 implies also the following properties of the set W<p = 
{(an) G R$+ : e?(an) a< £°°} (<p strictly increasing): W^ + W^ C 
Wtp-, tW<p C W<p for all t > 0; and (x„), (yn) G VF̂  implies (xn V 2/n) G 

It was already noticed that if ^ ( a n ) ~ r°,<p g A§° and ^ G A§ 
(respectively £> G A§° and <p ^ A§), then (an) G co (respectively 
(a"1) G co). Let c°° = {(an) : an —• 00} be equipped with the topology 
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of uniform convergence. Then we may ask about the "thickness" of the 
set of sequences (an) G c0++((an) G c++) for which ^ ( a n ) ~ £°° in 
the sense of Baire category. 

The part (b) of Theorem 2 implies that if t?(an) c^ t°° and an -+ 0, 
then (an) G l\+. Denoting W* = {{an) G 1^+ : t?{an) ^ 1°°} we 
have 

THEOREM 3. For every Orlicz function (p the set W^ is of the first 
category in l\. 

We need the following Lemma 

LEMMA 6. Let X be a metric space and let (fn) be a sequence 
of real continuous functions on X. If {x : sup n / n (x) < oo} is of 
the second category, then there is a non-empty open set U such that 
supnsnpxeu fn(x) <oo . 

The proof of the above Lemma can be found in [3, p.111]. 

PROOF O F THEOREM 3. As W* = W± (for the definition of Jp see 
(*)), we can assume that (p is strictly increasing and continuous. If <p 
is bounded, then W* = 0 {<p G A§°, thus lv{an) = t%{an) for every 
(an) G <£++). Let (p be unbounded. According to Theorem 2, W£ = 
UaegW*, where W* = {(an) G l\+ : £ ~ ^(ap'^M^n < oo} 
and Q rationals in (0,1). Fix a G Q. The functions sn : -£++ —• [0, oo) 
defined by 

n 

Sn((ûfc)) = Ylv(a<P~1(a/a^a3 
3 = 1 

are continuous. Moreover, W% = {(an) G l\+ : supn sn((afc)) < oo}. 
We claim W% is of the first category in l\+ for all a. If not, then W\ 
is of the second category for some a, and so, by Lemma 6, there exists 
a ball B with the radius e such that 

supsup{sn((afc)) : (a*) G 5 } < oo. 
n 

Let c = (cj) be the center of B. Fix A: such that Yit+i co < e/^# ^ u ^ 

u (4\ -\c3 for i € {1, • • • , fc} U {* + 1 + n, • - • } 
°ny3)~~\e/2n for ; € { * + ! , - • • , * + n}. 
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We have \\c — bn\\ii < s for all n, thus bn G B. Moreover 

k+n 
sn+k 

= {e/2)<p(a(p~1(2an/s)). 

Since supnsup{sn((afc)) : (a*) G B} > supn sn+k(bn) > supn(e/2)<p 
(a(p~1(2an/£)) = oo, we have obtained a contradiction. Therefore W^ 
is of the first category in £\+ for all a and thus W^ is likewise. It is 
clear that t\+ is a dense G s subset of l\. Hence W^ is of the first 
category in t\. 

Now we will consider the case of sequences (an) tending to infinity 
and ^ ( a n ) — ^°°- Comparing with (an) G £++ , the situation changes 
essentially. 

THEOREM 4. The set of sequences (an) E c°°+ such that ^ ( a n ) ~ 
£°° is open in c™. 

PROOF. The uniform convergence in c°f is determined by the metric 
d((xn), {yn)) = supn min(|a;n — j / n | , 1). We can assume, as before, that 
<p is strictly increasing. Let W™ and W£° be defined similarly as the 
sets W£ and W^ in the previous proof replacing i\+ by c++. Take 
an arbitrary sequence (an) € W™. Then, by Theorem 2, (an) G 1^° 
for some a G (0,1). Let p G (0,1) be so that an — p > 0 for all n. 
Let (6n) G B{(an),p) = {(cn) : d((cn), (an)) < p}. Then there exists 
no € N such that, for all n > no, 

( l - p ) a n < an — p < bn < an + p < (1 + p)ün. 

Using the above inequalities and putting b = a(l — p) < a, we have 

oo oo 

Ê ^ - ^ / M * » < X>(^_1(6/(i -PK))(I + PK 
no no 

oo 

< (1 + p) ^2 ^ ( a ^ " 1 {a/an))an < oo. 
no 

Thus, 5((a„),p) c W6°° C W™ and W~ is open. 
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