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NOTES ON THE ANALYTIC YEH-FEYNMAN 
INTEGRABLE FUNCTIONALS 

KUN SOO CHANG, JAE MOON AHN, 
AND JOO SUP CHANG 

A B S T R A C T . In this paper we extend Johnson and Skoug's 
results involving the analytic Feynman integrable functionals 
on Wiener space to the analytic Yeh-Feynman integrable 
functionals on Yeh-Wiener space. To do this we define the 
analytic Yeh-Feynman integral and find a Banach algebra 
of some Yeh-Feynman integrable functionals. Also we find 
formulae for the analytic Yeh-Feynman integral and extend 
some measurability results involving the Wiener measure to 
the Yeh-Wiener measure. 

1. Introduction. In [1], Cameron and Storvick treat a Banach 
algebra S(L,2[a, b]) of functionals on Wiener space which are a kind of 
stochastic Fourier transform of Borei measures on Li [a, b]. Here L2 [a, b] 
denotes the space of Lebesgue measurable, square integrable functions 
on [a, ft]. For such functionals they show that the analytic Feynman 
integral, defined by analytic continuation of the Wiener integral, exists, 
and they give formulae for this Feynman integral. In a recent paper [7], 
Johnson and Skoug extend somewhat and simplify substantially some 
of Cameron and Storvick's results in [1]. 

The main purpose of this paper is to extend Theorem 1 in [7] involving 
the analytic Feynman integrable functionals on Wiener space to the 
analytic Yeh-Feynman integrable functionals on Yeh-Wiener space. Let 
R and C denote the real and complex numbers respectively. Let C^iQ) 
denote the Yeh-Wiener space, that is, the space of R-valued continuous 
functions x on Q = [a, 6] x [a, ß] for some fixed real numbers a and 
6, and a and ß such that x(a, v) = x(w, a) = 0 for all a < u < b 
and a < v < ß. In this paper we shall always denote the above 
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rectangle by the symbol Q. Let (C2(Q),F, my) be the Yeh-Wiener 
measure space. For a complete discussion of Yeh-Wiener measure 
space, see [8]. To obtain the main theorem we define the analytic 
Yeh-Feynman integral and find a Banach algebra S(L,2(Q)) of Yeh-
Feynman integrable Junctionals, which are a kind of stochastic Fourier 
transform of Borei measures on L<i (Q) where L<i (Q) denotes the space 
of Lebesgue measurable, square integrable functions on Q. Also we 
find formulae for the analytic Yeh-Feynman integral and obtain the 
measurability lemmas involving the Yeh-Wiener measure which are the 
extensions of the corresponding results in [7]. 

2. Definitions and some results. A subset B of Yeh- Wiener space 
is said to be scale-invariant measurable if pB is Yeh-Wiener measurable 
for every p > 0. A scale-invariant measurable set N is said to be scale-
invariant null if rriy(pN) = 0 for every p > 0. A property which holds 
except on a scale-invariant null set is said to hold scale-invariant almost 
everywhere (s — a.e.). The class of scale-invariant measurable sets form 
a (j-algebra [3; Proposition 3.2]. A function F on C2(Q) is said to 
be scale-invariant measurable if it is measurable with respect to this 
<7-algebra. In this paper we shall use a definition of the analytic Yeh-
Feynman integral which is similar to that used in [1]. 

DEFINITION 2.1. Let F be a functional which is scale-invariant 
measurable and s — a.e. defined and which is such that the Yeh-Wiener 
integral 

(2.1) J{\) = f F{X^2x)dmy{x) 
Jc2(Q) 

exists for all A > 0. If there exists a function J* (A) analytic in 
C + = {A in C : Re A > 0} such that J*(A) = J(A) for all A > 0, 
then J* (A) is defined to be analytic Yeh-Wiener integral of F over 
C2(Q) with parameter A, and, for A in C + , we write 

/•any wx 

(2.2) / F(x)dmy(x) = J*{\). 
Jc2(Q) 

DEFINITION 2.2. Let q be a nonzero real parameter and let F be a 
functional whose analytic Yeh-Wiener integral exists for A in C + . If 
the following limit exists, we call it the analytic Yeh-Feynman integral 
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of F over C^iQ) with parameter q and we write 

f any Fq /.any wx 

F(x)dmy(x) = lim / 
lc2{Q) ^ c + Jc2(Q) 

/•any Fq /.any wx 

(2.3) / F(x)dmy{x) = lim / F{x)dmy{x). 

We shall say that two functions F(x) and G(x) are equal s — a.e., 
denoted by F ~ G, if, for each p > 0, the equation F(px) = G(px) holds 
for my — a.e. a: € C2(Q). Equality 5 — a.e. is an equivalence relation. 
It is the appropriate relation for the analytic Yeh-Feynman integral. 
For example, let F = 1 and G(x) = xci (z) for x € C2(Q), where, for 
A > 0, C\ are disjoint Borei sets in C2{Q) such that my{Ci) — 1 and 
vC\ — Cu\ for v > 0 [3]. Then F and (7 are Borei measurable on 
C2{Q) and equal my — a.e. Here the analytic Yeh-Feynman integral of 
F exists but the analytic Yeh-Feynman integral of G does not exist. 

We now define the Paley-Wiener-Zygmund (P.W.Z.) integral for 
functions of two variables which is a simple type of stochastic integral. 

DEFINITION 2.3. Let {<j)j} be a complete orthonormal (C.O.N.) set 
of real valued functions of bounded variation on Q. For v in ^2(6)5 let 

(2.4) vn(s,t) = Y2( vfaQWjiPitidpdQjM8'*)-

The P.W.Z. integral with two parameters is defined by the formula 

(2.5) / v(s, i)dx{s,t) = lim / vn(sìt)dx(sìt) 
JQ n^°° JQ 

for all x in C2(Q) for which the limit exists. 

Some useful facts about the P.W.Z. integral with two parameters are 
listed in [4]. 

Let (j) be the map from Q x R into L2 {Q) defined by 

(2.6) *((M),tO(c,e) = { V f 0rJC'e ) € [ a ' s ) X [ M ) 
v } u J n J l 0 otherwise. 

Then it is easy to show that (j) is continuous and so is Borei measurable. 

We obtain the following two measurability Lemmas 2.1 and 2.2 as 
the extensions of Lemmas 1 and 2 in [7], respectively. Here we prove 
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the first lemma and omit the proof of the second lemma which is much 
like that of Lemma 2 in [7]. 

LEMMA 2.1. L((s,£),v)(c, e)dx(c, e) is a Borei measurable function 
of ((«, t),v, x) on Q x R x C2(Q). Moreover, for any Borei measure /J, 
on Q x R, Jg 0((s, £), i>)(c, e)dx(c, e) is defined except on a fi x my-null 
Borei set. 

PROOF. Let {4>n} be a C.O.N, set of real valued functions of bounded 
variation on Q. Then, by "integration by parts formula with respect 
to two variables" [6], we have 
(2.7) 

( / <t>((s,t),v)(p,q)(t)n(p,q)dpdqj / <t>n(c,e)dx{c,e) 

= (v / / <f>n(p,q)dpdq)(-(f>n(b,ß)x(b,ß) + <t>n(a,a)x(a,a) 

Ja Ja 
rß 

<t>n{b, a)x(b, a) - <£n(a, a)x(a, a) - 0n(a, t)dx(a, t) 
Ja 

rß çb çb 
I <l>n(b,t)dx{b,t) - J $n(sìa)dx(sìa)+ (j)n{s,ß)dx{s,ß) 

Ja Ja Ja 
I x{s,t)d<t>n(s,t)) 

JQ 

fa 

+ 

since x is continuous and <f>n is of bounded variation on Q. Thus the left 
hand side of (2.7) is continuous and hence Borei measurable function 
of ((s, i), v, x). Since fQ 0((s, £), v){c, e)dx(cì e) is defined as 

lim Y V / (f>{(s,t)iv)(piq)(ßn{p,q)dpdq) 0n(c,e)cte(c,e), 
fc^°°^î JQ JQ 

for all x in C2(Q) for which the limit exists, we see that fQ <t>{(s, t), v)(c, e) 

dx(c,e) is a Borei measurable function of ((s,£),v,a;). 

For every ip in L,2{Q), JQ ^(5, t)dx(s, t) exists for mj, — a.e.x. Thus, for 

each ((s,£),v) in Q x R , /g </>(($, £),v)(c, e)dx(c, e) exists for my —a.e.x. 
Let /i be any Borei measure on Q x R. Then, as in the proof of Lemma 
2.1 in [1], we have that Jg^((s,i) ,ü)(c, e)dx(c1 e) is defined except on 
a / i x ray-null Borei set in Q x R x C2(<2). 
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LEMMA 2.2. Let fi be any Borei measure onQxR. Then the P. W.Z. 
integral fQ <£((s, £),v)(c,e)dx(c, e) and the Riemann-Stieltjes integral 
fQ(ß((8,t)iv)(cie)dx(cie) are equal except on a // x my-null Borei set 
in Q x R x C2(Q)- Thus for my — a.e. x they are equal except on a 
fi-nuli Borei set in Q x R. 

3. Analytic Yeh-Feynman integrable functionals. Cameron 
and Storvick introduce a Banach algebra 5(1/2[a, b]) of functionals on 
Wiener space and prove the existence of the analytic Feynman integral 
for every element of S{L,2[a, 6]) and also evaluate this Feynman integral 
in terms of formulae that do not involve analytic continuation [1]. To 
obtain Theorem 3.1 which is an extension of [7; Theorem 1] we first 
extend some of Cameron and Storvick's results in [1]. 

Let M(L2(Q)) be the collection of complex measures defined on 
S(L2(Q)), the Borei class of L2{Q). For // e M(L2(Q)), we set 
||/i|| = VSLT/JL over L2(Q). 

DEFINITION 3.1. Let S(L2(Q)) be the space of functionals F express
ible in the form 

(3.1) F{x) « / exp{i / v(s ,£)äx(M))d/^) 
JL2(Q) JQ 

where fx is an element of M(L2(Q)). 

LEMMA 3.1. If F E S(L,2(Q)), then the measure fi is uniquely 
determined by equation (3.1). 

The above lemma is a modification of [1; Theorem 2.1] which can be 
easily obtained using the basic Yeh-Wiener integration formula [4], the 
Fubini theorem, and the dominated convergence theorem. 

DEFINITION 3.2. If F € 5(L2(Q)), we define the norm of F by 
||JP|I = H l̂l where /i is associated with F by (3.1). 

It follows from Lemma 3.1 that | |F | | is uniquely determined by F. 
As in the proofs of Theorems 2.2 and 2.3 of [1], we have that S(L2(Q)) 
is a Banach algebra. For a complete discussion of the proof above, see 
[2]-

The following two Propositions 3.1 and 3.2 are the corresponding 
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modifications of Theorems 5.1 and 5.4 in [1], respectively. Since the 
proofs in our setting remain the same, we can easily obtain them [2]. 

PROPOSITION 3.1. Let // € M{L2(Q)) and let F € S(L2(Q)) be the 
stochastic Fourier transformation of /z, thus 

(3.2) F{x)= / exp{z / ü(M)dz(M)}d/i(v). 
JL2(Q) JQ 

Then F is analytic Yeh-Feynman integrable on C2(Q), and if q is a 
nonzero real number, 

/•any u r i r 
(3.3) / F{x)dmy{x) = / exp{—- / {v(s,i))2dsdt}dii(y). 

Jc2(Q) JL2(Q) 2(l% JQ 

PROPOSITION 3.2. Let Fn e S(L2{Q)) for n = 1,2, • • •, and 

(3.4) I ) libili < oo. 
n = l 

Then F e S{L2{Q)) where, for my - a.e. x € C2(Q), 

oo 

(3.5) F{X) = J2F„{X), 
7 1 = 1 

and 

/•any / , oô  /.any / , 
(3.6) / F{x)dmy{x) = JZ Fn(x)dmy(x). 

Jc2(Q) n=iJc2(Q) 

The following proposition which is a modification of Lemma 3 in [7] 
plays a key role in proving Theorem 3.1. It can be easily obtained 
using Lemma 2.2, the linearity of the P.W.Z. integral, and the change 
of variables theorem [5; P. 163]. 

PROPOSITION 3.3. Let fi be a Borei measure onQxR. Define G on 
C2(Q) by 

(3.7) G(x) = / exp{ivx(sit)}dß((s,t)iv). 
JQXR 
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Then G is in S{L2{Q)). 

Finally we give the main result. 

THEOREM 3.1. Let 6 be a complex-valued function on Q x R defined 
by 

(3.8) 0((s,£),w) = / exp{tiw}cfcr(S)t)(z;), 
JR 

where {o~{8,t) > <*> < s < b,a < t < ß} is a complex measure of finite 
variation defined on B(R) satisfying the following two conditions: 

For each Borei set J ^ i n Q x Kia^8tt)(E^8^) is a 

(3.9a) Borei measurable function of (s, t) where E^8^ 

denotes the (s, t) — section of E. 

(3.9ft) H M ) | | € L i ( Q ) . 

Then the function F on C2{Q) defined by 

(3.10) F(x) = exp{ / 0((s, t), x{s, t))dsdt} 
JQ 

is in S(L2(Q))y and thus F is analytic Yeh-Feynman integrable on 

REMARK. In [7; Theorem 1], the condition that ||crt|| is dominated 
by a function h(t) in L\ [a, ft] can be modified as follows: 

(3.96)' lk( . ,«) l l<fc(M)€Li(Q) . 

Actually the condition (3.9b) is formally weaker than, but equivalent 
to the condition (3.9b)' 

PROOF O F THEOREM 3.1. Since S(L2{Q)) is a Banach algebra, it 
suffices to show that the function 

(3.11) f(x) = / 0((s,*),z(M))dsd* 
JQ 
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is in S(L2(Q)). For each Borei set E in Q x R, let 

(3.12) fi(E)= [ a{3it)(E^dsdt. 
JQ 

Then we easily have that /i is a Borei measure o n Q x R with ||/i|| < 
oo, by (3.9b), (3.12) and the dominated convergence theorem. By 
Proposition 3.3, (3.11) and (3.8), it suffices to show that 

/ I / exjp{ivx(s,t)}dG(s t){v) \dsdt 

(3.13) jQyR J 

JQxR 

Now, to prove (3.13), we show, for any bounded Borei measurable 
function </> on Q x R, fR<j>((sìt),v)da(Sìt}(v) is a measurable function 
of (s, t) and 

(3.14) JQ 

I (j)({s,t),v)da{Sit)(v))dsdt 

= / (f>{{sìt)ìv)dti((s,t)ìv). 
JQxR 

Let us consider the case where <j> = \E for some Borei set E in Q x R. 
Then 

(3.15) / XE({8,t),v)da{8tt)(v) = a(Sit)(E^) 
JR 

which is measurable as a function of (s,t) by (3.9a). Also 

/ ( / XE{{s,t),v)d<T{Sit)(v))dsdt 
(3.16) JQ\JR I 

= n(E) = / XE({S, t), v)dfi{{s, t),v) 
JQxR 

by (3.15) and (3.12) so that (3.14) holds. Following the standard 
procedure in integration theory we proceed from this particular case 
to simple functions o n Q x R and bounded measurable functions on 
Q x R, using the dominated convergence theorem,to complete the proof 

file:///dsdt
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of (3.14). Since exp{ivx(s,t)} is a bounded Borei measurable function 
of ((s,£),i>) for every x in C*2(Q), we have the desired result (3.13) by 
(3.14). 

Since F belongs to S(L2(Q))> we have by Proposition 3.1 that F is 
analytic Yeh-Feynman integrable on C2(Q). 
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