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TRANSLATION BY TORSION POINTS A N D RATIONAL 
EQUIVALENCE OF O-CYCLES ON ABELIAN VARIETIES 

MARK E. HUIBREGTSE 

A B S T R A C T . Let A be an abelian variety defined over an 
algebraically closed field. We give an elementary proof of the 
following result (Theorem 1): If 7 is a O-cycle of degree 0 on 
-A, and c € A is a point of finite order, then 7 is rationally 
equivalent to 7C, the translate of 7 under c. From this follows 
Theorem 2: Given any effective 0-cycle rç = (ai) + • • • + (ar) 
on A, and any points of finite order c i , . . . cr 6 A satisfying 
ci + - • • + cr = o — the identity of A, we have that 77 is 
rationally equivalent to the 0-cycle (a\ + c{) H h (a r + c r) . 
Consequently, for r > 2, the set E[rj] of effective 0-cycles 
rationally equivalent to r\ is always at least a countably infinite 
set (Corollary 1). Further corollaries of Theorem 2 are given, 
including a generalization of Theorem 1 to higher dimensional 
cycles (Corollary 4). 

0. Introduction. The purpose of this paper is to prove some 
elementary results concerning rational equivalence on abelian varieties, 
with an eye toward the problem of describing explicitly the set of all 
effective 0-cycles rationally equivalent to a given effective 0-cycle (see 
[4, pp. 133-135] for an indication of why this problem is interesting). 
We begin by establishing notation and then provide a summary of the 
contents and organization of the paper. Note that all varieties (=> 
irreducible ) considered are defined over algebraically closed fields, and 
points are always closed points. 

Let X be a nonsingular projective variety. If 7 is a (pure) s-
dimensional cycle on X, we write [7] for the set of all s-dimensional 
cycle 7' which are rationally equivalent to 7, written 7 ^ 7 ' (discussions 
of rational equivalence and related matters may be found in, e.g., 
[1,3,4]). The (Chow) group of s-dimensional cycles on X modulo 
rational equivalence is denoted CHS(X). We write E[^] Ç [7] for the 
set of all effective cycles r? ~ 7. 
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Now let X = A be an abelian variety. Given a point a G A, we write 
(a) for the 0-eycle determined by a; for example, (a + b) + (a + c) is 
an effective 0-cycle of degree 2 on A, where a, 6, c G A and the + signs 
within the parentheses denote addition in A As the title of the paper 
indicates, we shall be concerned with translation of 0-cycles on A, an 
example of which we have just seen: (a + 6) + (a + c) is the translate 
of the 0-cycle (6) + (c) by a G A. The additive identity element of A is 
denoted by o E A. 

We now discuss the results and organization of the paper. Our main 
result, on which everything else hangs, is 

THEOREM 1: If ^ is a 0-cycle of degree 0 on A, and c G A has finite 
order, then 7 is rationally equivalent to its translate qc. 

This theorem is stated and proved in §2; the proof is based on results 
of Bloch's paper [1], which we recall in §1. 

Theorem 1 is the key to the proof of the following result, given in §3. 

THEOREM 2. Let rj = (ai)H h(ar) be an effective 0-cycle on A, and 
let c i , . . . , cr G A be points of finite order such that c\ H 1 \-cr = 
0 G A. Then the o-cycles (ai)-l h(a r) and (a\ +ci)H \-(ar +cr) 
are rationally equivalent. 

As a simple corollary, we find that E[n] is at least a countably infinite 
set, provided that rj has degree > 2 (Corollary 1). 

In §4, we restrict consideration to abelian varieties defined over the 
complex numbers. By confronting Corollary 1 with a result of Roitman 
((3)of §4), we find that the "typical" set E[rj] is (exactly) a countably 
infinite set (Corollary 2). 

Three further corollaries of Theorem 2 are presented in §5, including 
a generalization of Theorem 1 to cycles of higher dimension on A 
(Corollary 4). 

Acknowledgement. I thank the Department of Mathematics at MIT 
for hosting me during the writing of this paper, and Skidmore College 
for sabbatical support. 

1. Statement of needed results of Bloch. The proof of Theorem 
1 in §2 is based on results of Bloch's paper [1], which "app[lies] the 
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calculus of algebraic cycles on abelian varieties as developed by Weil 
[12] and Lang [5] in their study of divisors, to cycles of codimension 
greater than one." In particular, Bloch exploits the Pontryagin product 
of cycles on an abelian variety A, which is defined as follows [1, p. 
216]: Let // : A x A —• A be the addition map. Given arbitrary 
(not necessarily 0-) cycles a and /? o n i , their Pontryagin product 
a * ß is defined to be the cycle ft* (a x /?), which is well-defined on 
rational equivalence classes. Note that the Pontryagin product of 0-
cycles is again a 0-cycle (for example, ((a) + (0)) * (b) = (a + b) + (6)), 
so that CHo(^4) becomes a ring under *, with identity element [(0)]. 
The subgroup J C CHo(^4) of cycle classes of degree 0 is an ideal 
in this ring; the mr*1 Pontryagin power of I will be denoted by/*m . 
Thus, for example, if a, b G A, then[(a) - (0)],[(6) - (0)] G J, and 
[(a) - (0)] * [(b) - (0)] = [(a + 6) - (a) - (b) + (0)] G 7*2. 

We may now state the results that are needed for the proof of 
Theorem 1: 

(1) If A has dimension n, then I***1 = 0. [1, Theorem 0.1, p. 216] 

(2) The groups I*m are divisible for all m > 1. [1, Lemma 1.3, p. 
219]. 

2. Translation of 0-cycles of degree 0 by torsion points. 
As above, let A be an abelian variety (defined over an algebraically 
closed field). A acts by translation on its group of 0-cycle as follows: 
given a 0-cycle 7 on A, the image (or translate) of 7 under a G A 
is Ta(i) = 7a = (a) * 7. By passing to rational equivalence classes, 
translation by a G A defines a Z-linear map Ta : CHo(^4) —» CHo(^4) 
which preserves degree; in particular, Ta maps I to I. The following 
theorem implies that if c G A has finite order, then TC\I : I —> I is the 
identity map. 

THEOREM 1. 7/7 is a 0-cycle of degree 0 on A, and c E A has finite 
order, then 7 is rationally equivalent to its translate 7C. 

To facilitate the proof, we recast the theorem in a slightly different 
form. We are out to show that 7C = (c) * 7 is rationally equivalent to 
7 = (0) *7, or, equivalently, that ((c) — (0)) * 7 is rationally equivalent to 
0. For any a G -4, we let Ua ' CHo(^4) —• CHo(A) denote the Z-linear 
map Uaill]) = [(a) - (0)] * [7] = [70 - 7] (note that the image of Ua 

lies in I Ç CHo(^4)). Then Theorem 1 is equivalent to the statement 
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that UC\I : I -+ I is the zero map whenever c € A has finite order; we 
shall prove the theorem in this form. 

We need the following simple 

LEMMA. For any a, 6 € A, we have that Ua+b = UaoUb + Ua + U\). 

P R O O F OF LEMMA. For any [7] e CH0(A), 

UaoUb([1]) = Ua([lb-1}) 

= fta+6 - la - lb + 7] 

= [la+b - l] 4 [7 - 7a] + [7 - lb] 

= Ua+b([ii)-Ua([1))-Ub(li}); 

the lemma follows at once. 

PROOF OF THEOREM 1. Let e e A be a point of finite order. Recall 
that we must prove that Uc restricts to the zero map on I. To do this, 
consider the chain of powers of I: 

/ D f 2 D - o r n D r ^ + 1 = 0 

(the last term is zero by Bloch's theorem (1)). 

Trivially, Uc is the zero map on J*r?+1. To finish up, we proceed by 
descending induction: Assume that we have shown that Uc> is the zero 
map on I*s, s > 2, for all points c' € A of finite order. We must show 
that Uc is forced to be zero on J* s_1 . Let c have order m in A. By 
repeated application of the lemma, we obtain the following identities: 

^0 = Umc = £/(m_i)c_|_c 

= ^ ( m - l ) c °UC + ^ ( m - l ) c + Uc 

= ^ ( m - l ) c °UC+ î / ( m _ 2 ) c ° P c + Ï7(m-2)c 4- 2UC 

= C/(m_1)c oUc + C/(m-2)c ° Uc = h Uc o Uc 4- mUc. 

We now observe that each term of the form C/(m_^)c o Uc is zero on 
any [7] e J*5"1, since Uc([i}) = [(c) - (0)] * [7] G I*s and U{m-i)c kills 
I*s by our induction hypothesis. Therefore, U0 = mUc on ì* s _ 1 . But 
J* s - 1 is a divisible group, by (2), so the following computation shows 
that Uc must kill any [7] G I*8'1: 

Uc(li]) = Uc{mW]) = mUc([i'\) = Uoitf]) = [V - Ï] = 0. 
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The induction is complete and the theorem is proved. 

3. A lower bound for the cardinality of E[r)]. Let rj = 
(ai) H h (a r) be an effective 0-cycle on the abelian variety A. Recall 
that we write E[rj] C [rj] for the set of all effective 0-cycles 7/' ~ 77. The 
next theorem shows how to generate 0-cycles in E[rj] by "altering" rj 
by points of finite order. 

THEOREM 2. Let r\ — (ai) 4- ••• + (a r) be an effective 0-cycle of 
degree r on A, and let c i , . . . , cr € A be points of finite order such 
that C\ + • • • 4- cr = o G A. Then the o-cycles (ai) 4- • • • 4- (a r) and 
(ÛI + Ci) H h (ar 4- cr) are rationally equivalent 

PROOF. When r = 1, the theorem asserts that (ai) ~ (ai), which 
is trivially true. When r = 2, the theorem asserts that (ai) 4- (a^) ~ 
(ai + c) -f (02 — c), for any c G A of finite order. To prove this case, 
we translate the degree-zero 0-cycle (ai) — (a2 — c) by c, and apply 
Theorem 1: (01) - (a2 — c) ~ Tc((ai) - (02 - c)) = (ai + c) — (a2), 
whence (ai) 4- (02) ~ (ai + c ) - f (02 — c). When r > 2, the desired 
conclusion follows by repeated application of the previous case: 

(01) + (a2) -f • • • + (a r_i) + (ar) 

~ («l + ci) + (a2) + • • • + (a r_i) + (ar - ci) 

~ (ai + ci) 4- (a2 4- c2) 4- (a3) 4 h (a r_i) 4- (ar - ci - c2) 

- (ai 4- ci) 4- • • • 4- (a r_i + c r_i) 4- (ar - ci c r_i) 

= ( a i + c i ) + --- + (ar + c r), 

as desired. 

As a corollary, we obtain a lower bound on the cardinality of E[rj]: 

COROLLARY 1. If rj = (ai) = ••• 4- (ar) is an effective 0-cycle of 
degree r > 2 on A, then E[rj\ is at least a countably infinite set. 

PROOF. Since the abelian variety A is a divisible group [7, p. 62], we 
can find, for each prime p, a point cp € A of order p. By Theorem 2, 
E[rj] contains the 0-cycles rjp = (ai 4- cp) 4- (a2 — cp) 4- (as) 4 h (a r) 
for all p. We shall show that this subset of 0-cycles is countably infinite 
by showing that, for all sufficiently large primes p and 0, rjp and rjq are 
distinct; the corollary follows at once. 
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Indeed, if rjp and rjq are distinct for all distinct prime pairs p, g, we are 
done, so suppose that rjp = rjq for some pair of primes p ^ q. It follows 
that (ai+Cp)-h(a2-Cp) = (aiH-cg) + ( a 2 - c g ) , whence ai+cp+Cg = a2; 
in other words, ai and a2 differ by a point of finite order N = pq. But 
now, given distinct primes p',q' > N we cannot have that rjP' = r\qi, 
since otherwise the previous argument would show that a± and a2 differ 
by a point of finite order pfqf > N, a contradiction. 

4. A generic upper bound for the cardinality of E[rj] over C. 
Let X be a smooth projective variety / C , and let rj be an effective 0-
cycle of degree r on X. From [9; Lemma 1, p. 574], it follows that E[rj] 
is a c-closed subset of the r-fold symmetric product X(r), that is, E[rj] 
is a countable union of closed subsets of X(r). Thus E[TJ] has a well-
defined dimension, the maximum of the dimensions of its (countably 
many) irreducible components. As rj varies overX(r), the dimension 
of E[rj] is minimized on a c-open (= complement of c-closed) subset 
of X(r) [9, Remark 5, p. 576]; we say that the dimension of E[rj] is 
minimized for c-generic rj G X(r). 

The following result is essentially a special case of [9; Theorem 3, p. 
584] (see also [4. pp. 133-135]). 

(3) Let X be a nonsingular projective variety defined over C. / / 
dim(X) = n > 2 and pg(X) > 0 (i.e., if X supports a nonzero 
global holomorphic n-form), then E[rj] has dimension 0 for c-generic 
r\ € X(r), and therefore consists of a countable set of points of X(r). 

In particular, the hypotheses of (3) are true when X = A is an abelian 
variety / C of dimension n > 2; combining this with Corollary 1, we 
immediately obtain 

COROLLARY 2. Let A be an abelian variety / C of dimension n > 2. 
For c-generic rj € A(r),r > 2, we have that E[rj] is a countably infinite 
set. 

EXAMPLES. 

i) Samuel [11] (see [4, p. 135]) has given an example of a surface X/C 
such that a) not all points on X are rationally equivalent to one another, 
and b) for at least one point p € X, the locus E\p] = {q G X\q — p) 
contains a countably infinite family of rational curves on X - in 
particular, E[p] is c-closed but not closed. The countably infinite 
sets E[n] identified in Corollary 2 provide another example of this 
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phenomenon. 

ii) Let A be the Jacobian variety of a curve C of genus g > 2/C, 
and let / : C —• A be a canonical embedding. Consider the following 
commutative diagram, in which the horizontal arrow is induced by / 
in the obvious way, the vertical arrow is the addition map, and the 
diagonal arrow is the Abel-Jacobi map: 

C{r) • A(r) 

A 

For all r > 2, (3) implies that E[rj] has dimension 0 in the r-fold 
symmetric product A(r), and is therefore a countably infinite set of 
points, for c-generic r\ G A(r). However, for r > g, every fiber of fr is 
a projective space of positive dimension, by the Abel-Jacobi theorem. 
Therefore, if r\ G C(r) Ç A{r),r > g, we have that E[rj] contains at 
least one component of positive dimension. Thus, the conclusion of 
Corollary 2 need not hold for special rj G A(r). 

5. Further consequences of Theorem 2. 

COROLLARY 3. Let c G A be a point of finite order r on the abelian 
variety A. Then the cycle class [(c) — (0)] G J is r-torsion. 

PROOF. By Theorem 2, r(c) = (c) + • • • + (c) ~ (0) + • • • + (0) = r(0), 
whence r[(c) - (0)] = 0. 

Corollary 3 enables us to generalize Theorem 1 to cycles of higher 
dimension on A. Let CVL3{A)aig Ç CRS(A) denote the subgroup of 
cycle classes consisting of cycles algebraically equivalent to 0 (e.g., [5, 
p. 56]). 

COROLLARY 4. / / [7] G CH3(A)aig, and c G A has finite order, then 
7 is rationally equivalent to its translate 7C = (c) * 7. 

PROOF. Since CH. 3(A)aig is a divisible group [1, Lemma 1.3, p. 219], 
and [(c) — (0)] is torsion (say of order r), we have that [^c — 7] = 
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[(c) - (0)] * fr] = [(c) - (0)] * [ri] = r[(c) - (0)] * fr'] = 0 * fr'] = 0, 
whence 7C ~ 7. 

REMARK. It is well-known that if 7 is a divisor on A which is 
algebraically equivalent to 0, then 7 ~ 70 for any a € A, finite order or 
not. (Proof: If D is ample on A, then 7 ~ D^ — D for some 6 G A([7, 
Theorem 1, p. 77] or [1. p. 216]), hence 7a - 7 = ((a) - (0)) * 7 = 
((a) - (0)) * ((b) - (0)) * D = 0 by the Theorem of the Square [7. pp. 
59-60].) Corollary 4 is therefore of interest for cycles of codimension 
> 1 on A. 

We end this paper by noting a connection between Corollary 3 and 
the following theorem of Roitman [10, Theorem 3.1, Consequence III, 
p. 565] (see also [2, Theorem 4.1, p. 119]): 

THEOREM (ROITMAN). Let X be a smooth projective variety over 
an algebraically closed field k. Let CHo(X) t o r s denote the torsion 
subgroup of the Chow group CB.Q(X)Ì and let ALB(^Otors be the torsion 
subgroup of the Albanese variety ALB(X) of X. Then, except possibly 
for p-torsion in characteristic p > 0, the natural map CHo(X)tors —» 
ALB(X)to r s is an isomorphism. 

In particular, when X = A is an abelian variety in characteristic 
0, we have that the natural addition map C H Q ( A ) —> A, defined by 
[7 = ni(ai) + • • • + ns)as] —• n\ai + • • • + n3as € A, restricts to an 
isomorphism CHo(>l)tors ~~* ^tors- Corollary 5 gives us the inverse of 
this map. 

COROLLARY 5. Let A be an abelian variety over an algebraically 
closed field of characteristic 0. The inverse of the addition isomor
phism Cn0(A) t o r s - • A t o r s is given by c ^ [(c) - (0)]. 
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