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THE RATIONAL CUBOID A N D A QUARTIC SURFACE 

ANDREW BREMNER 

1. The problem of solving in integers the system of Diophantine 
equations 

X2 + Y2 = R2 

(1) Y2 + Z2 = S2 

Z2+X2=T2 

has attracted much historical interest, see for example Dickson [4; 
Chapter XIX, references 1-29]. The numerical solution (X,Y,Z) = 
(44,117,240) was observed as early as 1719, and Euler in 1772 provided 
the parametric solution 

X = 8A(A-1)(A + 1)(A2 + 1) 

(2) Y = (A - 1)(A + 1)(A2 - 4A + 1)(A2 + 4A + 1) 

Z = 2A(A 2 -3) (3A 2 -1) 

although this was apparently discovered by Sanderson in 1740. Kraitchik 
[6,7] discusses the problem extensively and brings together many ad 
hoc methods for producing farther parametric solutions. Of course the 
system (1) corresponds to a rectangular parallelepiped of which the 
edges and face diagonals are all integral. The further requirement that 
the cuboid diagonal be integral is given by the equation 

(3) X2 + Y2 + Z2 = square, 

and a great deal of effort has been spent in trying to decide the 
solvability or otherwise of equations (1) and (3). See Lai and Blundon 
[8], Leech [9] and Korec [5]. 

The approach here is to consider (1) geometrically, as the intersec
tion V of three quadrics in five-dimensional projective space. There 
is a birational map to a quartic surface W, and it is this latter sur
face that we study. It possesses four isolated double points, and con
tains several pencils of elliptic curves. All the straight lines and conies 
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lying on W are determined (over the complex numbers rather than just 
the rationals), together with some cubic and quartic curves of genus 
zero. In particular, the divisor group of W is seen to have for field 
of definition, an extension of Q ( \ / l + \/2, v^T , \ / 3 , >/5, \/7). Many 
rational curves on W of degrees four and greater are also produced, 
thereby leading to new parametric solutions to the equations at (1). 

2. Parametrizing the quadrics at (1) in the classical Pythagorean 
manner shows that, without loss of generality, we may put 

X = k{2ab) = £{c2 - d2); R = £(c2 + d2) 

(4) Y = m{2ef) = £(2cd); S = m(e2 + f2) 

Z = k{a2 - b2) = m{e2 - / 2 ) ; T = k{a2 + b2). 

Here, (a,6),(c,d) may be considered as the generators of two of the 
Pythagorean triangles, with (e, / ) the generators of the consequent 
third triangle. Eliminating Ä;, /, m gives 

(5) (a2 - b2){c2 - d2) • 2ef = (e2 - f2) • 2ab • 2cd, 

a relation dependent only upon the ratios a/6, c/d, e/f. Now (1) and 
(4) imply 

a _ Z + T c_ _ X + R e_ _ Z + S 
6 " x ' d~ y ; / ~ y ' 

so that, from (5), 

(6) ( s , y , M ) = ((Z+S)(Z+T),X(Z+S),(X+R)(Z+T),Y(Z+T)) 

is a point on the surface W: 

(7) (x2-y2)(z2-t2) = (x2-t2)2yz. 

Conversely, from a point on W we obtain a point of V via the map 
(8) 

(X, y, Z, R, S, T) =(x(z2 - t2), 2xzt, z(x2 - t2), 

x(z2 + t2), z(x2 + t2), (x2 - t2)z + (z2 - t2)y). 

The maps at (6) and (8) are birational inverses. 

The surface W possesses the obvious rational symmetries 

(x y z t \ ( x y z t\ (x y z t\ 
\x y z -t)' \-x y z tj' \t z -y x J' 
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and there are further rational involutions of W corresponding to the 
symmetry in the choice of generators (a,ò), (e, d), (e, /) at (4). For 
instance, taking the generators as (c, d), (a, 6), (e, / ) gives the involution 
(x, z/, £, t) —• (l/£, I/2,1/2/, 1/x). Taking the generators as (a 4- ò, a — 
6), (c + id, c — d), (e 4- / , e — / ) gives the involution 

/ x / (x-y)(x + t) (x-t)(z + t) 
x, t/, 2, * ) - ( * + t, i ^ i , i J±- *, x - t). 

x + y z — t 

The above involutions and symmetries commute with each other and 
together generate a group of order 64. They induce on V the symme
tries obtained by changing signs of the coordinates, together with the 
involution 

(9) (x, y, z, R, 5, T) -+ (yz, zx, xy, RZ, SX, TY). 

The remaining symmetries of V given by 

(X Y Z R S T\ (X Y Z R S T\ 
\Y X Z R T Sj' \Y Z X S T RJ 

correspond respectively to the involution of W 

(x, y, z, t) -» (x, t, —, y) 
z — t 

and the automorphism of order 3 

( *\ ( 1 *(x + 2/) (x-2/)(x-M) , 
(x, y, *, *) -* (x 4- y, - -, - , x - y). 

z x — t 
The image of a point of V under the involution (9) is classically called 
the derived point, so that, up to symmetries of V, rational cuboids 
occur naturally in pairs. For example, the derived cuboid corresponding 
to the Euler cuboid at (2) gives a parametrization of degree 8: 

X = (A2 - 4A 4- 1)(A2 4- 4A + 1)(A2 - 3)(3A2 - 1) 

y = 8A(A2 + 1 ) (A 2 -3 ) (3A 2 -1 ) 

Z = 4(A - 1)(A + 1)(A2 4- 1)(A2 - 4A 4- 1)(A2 + 4A 4-1). 

The surface W is singular; indeed, the singularities of W are precisely 
the four isolated double points 

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1). 
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Accordingly, there is not a satisfactory intersection theory of divisors 
on W', and the methods of Swinnerton-Dyer [10] as exemplified in 
Bremner [1,2,3] for computing curves of genus 0 on the surface, cannot 
be applied directly. Instead, we content ourselves here with determining 
on W a large supply of curves of small degree. 

3. We show first that there are precisely 22 straight lines on W, 
of which 14 are defined over Q and 8 defined over Q(\/2). Certainly, 
(x — y) has precisely one zero along any straight line £ not contained 
in the plane x = y; and so from (7), one of the following functions has 
neither zero nor pole along £, and hence is a constant: 

x-y x-y x-y x-y 
x — £' x + V y ' z 

Suppose the first instance. Now x — y = X(x — t) cuts W in the line 
x = y = t and a residual pencil E\ of elliptic cubic curves. Thus, 
£ occurs as a component in one of the singular fibres of E±. Similar 
arguments apply in the remaining cases. So it suffices up to symmetry 
to determine the singular fibres of the elliptic pencils arising as the 
residual intersection with W of the planes 

(10) 

(i) x - y = X(x - t) 

(ii) x = Xy 

(iii) x — y = Xz. 

In the first case, the residual intersection has equation 

(11) Ex : A((A - 2)x - Xt)(z2 - t2) = 2z[(X - l)x - Xt](x +1) . 

Under the mapping, 

(12) ! « * a = A ( A - l ) ( ( A - 2 ) * - A * ) z 

vt = (2(A - l)x - t)u + 2A2(A - 1)(A - 2)((A - 2)x - At); 

then Ei transforms to 

(13) £i : v2 = u(u2 + (A4 - 4A3 + 8A2 - 4A + 1)« - 8A3(A - l ) 2 ) . 
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The birational inverse of the map (12) is given by 

x = v + u + 2A3(A - 1)(A - 2) 

y = (A - 1)((2A - l)ti - v - 2A3(A - 2)) 

z = 2(A - l)u(u + A2(A - 2)2)2/(A((A - 2)v - (2A2 - 3A + 2)u)) 

* = 2 ( A - l ) ( u + A 2 (A-2) 2 ) . 

It is easy to calculate the values of A for which E\ is singular. Thus, 
mindful of possible singular points of the transformation, we have 
that E\ is singular in precisely the following instances, where the 
decomposition into components is given with the notation of Table 
1: 

A = 0 : L 2 + L9 + Lii 
A = 1 : L3 + Lis + L22 

(14) A = 00 : L4 + £5 + Ls 

A = 0, 
08 - 8<£7 + 32<£6 - 4O05 + 3404 - 4O03 + 32(f)2 - 80 + 1 = 0, 

and the component is a plane unicursal cubic. 

In the second case at (10), the residual intersection has equation 

(15) E2 : *2((A2 - l)y - 2s) = yz(-2\2y + (A2 - l)z) 

mapping to 

(16) E2 : v2 = u{u + 4A2)(u + (A2 - l)2) 

under the maps 

v = 2(A2 - 1)*((A2 - l)y - 2z)/y2, u = -2(A2 - l)z/y. 

Singular fibres occur (up to conjugacy of the algebraic integers involved) 
in precisely the following cases: 

A = 0 : plane cubic 

A = l : L 1 + L 2 H - L i i 

f l 7 ) \ = -l:L3 + L4 + L13 

A = 00 : L$ -f L12 4- L14 

A = 1 + \/2 : L21 + conic 

A = —1 -h \/2 : L15 + conic. 



110 A. BREMNER 

In the third case at (10), the residual intersection has equation 

E3:t
2(-2(\-l)x + \(\-2)z) 

{ } = 2x3-2\x2z-2\xz2 + \2z3 

mapping to 

£3 : v2 =u3 + A(A - 1)(A3 + 4A2 - 12A + 4)u2 

(19) - A3(A - 1)2(A - 4)(A4 - 4A3 + 8A - 4)u 

- A 4 ( A - l ) 3 ( A 4 - 4 A 3 + 8 A - 4 ) 2 

under the maps 

v = (-2A2(A - 1)3(A4 - 4A3 + 8A - 4)t)/(2(X - l)x - A(A - 2)z), 

u = (A2(A - 1)(A4 - 4A3 + 8A - 4)z)/(2(A - l)x - A(A - 2)z). 

Singular fibres (up to conjugacy) occur in precisely the following cases: 

A = 0 : Li + L2 + L9 

A = 00 : Lio (twice) + £13 

/ 2Q) A = V2 : L21 + conic 

A = 2 + \/2 : Lie + conic 

. - 1 3 - f 7 y ^ 7 
A = —- : plane cubic. 

16 

It follows that the straight lines in Table 1 exhaust the possibilities for 
straight lines on W. 

Table 1 
Li : x = y = t L2 : x = y = — t L3 : —x = y = t L4 : x = — y = t 

L5 : x = z = t LQ : x = z = —t L7 : —x = z = t L$ : x = — z = t 

Lg : x = y = 0 Lio : z = t = 0 

L11:x = yiz = 0 L12:y = 0,z = t Lis:x = -y,z = 0 L14:y = 0,z = -t 

L1 5 : x = (1 4- y/2)y = z L16 : y = ( -1 - y/2)z = -t 

L17:x= ( -1 - y/2)y = -z L18 : y = ( -1 - y/2)z = t 

L19:x = {l- y/2)y = z L2Q:y={-l + y/2)z = -t 

L21 = ( -1 + y/2)y = -z L22:y= ( -1 + \fï)z = t 
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4. There are conies evident amongst the singular fibres of E2, Es 
at (17) and (20). From E2 with A = 1 + V% there results the 
parametrization 

(21) (x,y,z,t) = (l,l + ^,s2,s). 

The conic at A = — 1 + y/2 just gives a symmetry of the conjugate conic 
to (21). 

From Es with À = \/2, 

(22) ^y'*' ^ = ( ^ 5" - 2 s + !> (~2 + 2 v ^ ) s - *> 

s2 - 2s + %/2,s2 - (1 + V2)« + 1); 

and with A = 2 + \/2, 

(x, y, 2, 0 = (A/2 S2 4- (2 + 2 ^ ) * + (1 + \/2), 2s - (1 + ^2) , 

(23) ( -1 + y/2)s2 + ( -2 + 2y/2)s + y/2, 

(l-y/2)s2 + s + {l + V2)). 
Now, in each of these three instances, the plane of the conic meets W 
residually in a pair of lines. It is straightforward to find all the conies 
on W with this property, by use of Table 1. Up to symmetry and 
conjugacy, precisely the following further example arises: 

The plane y — z = ty/2 cuts W in Lis, £20, and the conic 

(24) {x,y,z,t) = ( M , - i ( * a - l ) ) ^ = ( s 2 + 1)). 

To find the remaining conies on W, it is necessary to investigate the 
alternative possibility, that the plane of a conic on W cuts W in two 
conies. It is easy to verify that two such conies must be distinct. 

Following are three such planes with the resulting conies of intersec
tion. 

(25) y = it : (x,y,z,t) - (1 + s, 1 - s, s(l - s), - i ( l - s)) 

(25') (*> V, *, 0 = ( -1 - «, 1 - s, s(l - s), - t ' ( l - s)) 

(26) x = (1 + V2)t : (z,2/,M) = ((1 + V2)(a - 1), (1 + y/2){s + 1) 

- s ( 8 - l ) , 5 - l ) 

(26') (*, y, 2 ,0 = ((1 + y/2)(s - 1), ( -1 - y/2){a + 1) 
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(Note that (25') and (26') are symmetries of (25) and (26) respectively.) 

1 + i , 
x + it = —=-(y + tz) : 

v2 
(x, y, Z, t) = (s, 1, ( - y - ) 5 2 - 2\/2s+ 

<27> < Z ^ i » ' ^ 1 + ' - 7 5 > 
(x, y, z, t) = ((1 - 2i + zV^s 2 + ( -2 + 22 - 2\/2)s + (1 - 2), s2 - 22*s - (1 - 2), 

(28) s((l - y/2)s + v/2(l +1)), s2 - (2 + tV2)* + (1 + 2 + «\/2)). 

The following proposition shows that all the conies on W have now 
been determined. 

PROPOSITION. Up to conjugacy and symmetry, there are precisely 
eight conies on W, given parametrically at (21)-(28). 

PROOF. Let C be a conic on W. If any of the following functions /1 
onW 

x — y x — y x — y x — y 
x — t x + t y z 

has no zero or pole along C, then as in §3, C arises as a component 
in a singular fibre of E\,Ei or £3 and so is determined as above. 
Now consider a function J2 = qi/q2, where (ft is a quadratic factor 
of (x2 — y2)(z2 — t2) and q<i is a quadratic factor of (x2 — t2)yz; 
and suppose fi has no zero or pole along C. Take, for example, 
/ 2 = (x2 - y2/(x2 -12). The family of conies x2 - y2 = X(x2 -12) cuts 
W in the four lines Li, L2,L3, L4 and the pencil of quartic curves 

x 2 - 2 / 2 = A(x 2 -* 2 ) 

E4: 

A(*2 - t2) = 2yz 

so that C is a component of one of the singular elements of the pencil 
E4. Similarly, in dealing with the other possibilities for the quadratic 
numerator and denominator of fi, it suffices by symmetry to determine 
the singular elements in the following pencils of quartic curves. 

£5 x2 -y2 = X(x - t)y Ee x2 - y2 = X(x - t)z 
\{z2 - t2) = 2(x + t)z \{z2 - t2) = 2(x + t)y 

E7 (x-y)(z-t) = \(x2-t2) E8 (x-y)(z-t) = X(x-t)y 
X(x + y)(z + t) = 2yz X(x + y)(z + t) = 2(x + t)z 
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#9 (x-y)(z-t) = \{x-t)z 
\(x + y)(z + t) = 2(x + t)y. 

The singular decompositions are listed in the following section. There 
remains to consider only the case when no j \ and no fi is constant along 
C. 

Suppose first that x,y both vanish at a point P of C. Then (x2 — 
y2)(z2 — t2) has at least a double zero at P , whence so has (x2 — t2)yz. 
Thus, either 

(i) z has a zero at P , 

(ii) t has a zero at P , or 

(iii) y has a double zero at P . Normalize the parametrization of 
C so that P is the point at infinity. Then we may assume without loss 
of generality that the parametrization of C takes the following form in 
the cases (i)-(iii) respectively: 

(i) (x,y,z,t) = (e1(fi),fi,e2(v),qi(v>)), 

(ii) (x,y,z,t) = (^i(/i),/i,gi{/i),4(/i)), and 

(iii) (x,y,z,t) = OM, ft(|i)i 02(/*)), 

where ^1,^2 and 01,02 represent linear and quadratic polynomials 
respectively of fi. In cases (i) and (ii) it is straightforward by direct 
substitution into the equations of W to verify that the only curves 
C that arise are symmetries of (25) and (26). To resolve (iii) in this 
manner is more tedious, so it is preferable in this instance to observe 
that with x = fi, y = 1, then At2 = (1 - fx2)2z - (fi4 - 6fx2 +1) - ((//2 -
l)(/j,2 + 2/i - l)(/i2 - 2fi - l))/(2z - {fi2 - 1)) so that the linear factors 
of 2z — (fi2 — 1) in C[/i] can be found amongst fi ± 1, fi ± 1 ± \[2. Case 
by case consideration is not now difficult, and only conies equivalent to 
those at (21), (24) and (27) arise. 

Suppose, secondly, that x, y do not vanish together at any point of C. 
By symmetry, it may be assumed the same is true for z, t. Introduce the 
notation (x + y) = Pi +P2 to denote that (x + y) vanishes at the points 
P i , P 2 of C, and let (x-y) = P3+P4, {z+t) = PS+PG, (z-t) = P7+P%, 
where Pi,P2,P3,P4 are distinctive points, as are P5 ,P6 ,P7,P8- Then 
(yz(x2 — t2)) = Pi -f • • • + P% so that without loss of generality the 
various assumptions imply that (y) = P5 +P7, (z) = Pi +P3 and either 

(a) (x +1) = P2 + P6 , (x - t) = P4 + P8 or 
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(b) (x + t) = P2 + P8 , (x - t) = P4 + P6 . 

In either instance, (y — t) = ((y + x) - (x + £)) = ((t/ — x) + (a; — £)) 
vanishes at both P2 and P4, so that (y — t) = P2 + P4. Thus, 
(x2 — y2)/((y — t)z) has no zero or pole on C. Arguing as before, 
the quadrics x2 — y2 = X(y — t)z cut W in the lines L i , L 3 , L i i , L i 3 

together with the quartic pencil 

£10 • x2 -y2 = X(y - t)z 

X{z2-t2) = 2y(y + t + Xz), 

and C occurs as a component in a singular fibre of £10. 

In the following section are listed the singular elements of the pencils 
£ 4 , . . . ,£10; up to symmetry and conjugacy, the conies that arise all 
occur at (21)-(28), as required. 

5. Given two quadrics Qi, Q2 in P 3
5 then their curve T of intersec

tion, possessing a distinguished point Po o v e r some field &, is an elliptic 
curve over k with Jacobian 

(29) r ' : det (AQi + MQ2) = N2. 

The simplest way of achieving a birational map between Y and V is as 
follows: given a point P of T, associate to it that quadric Q of the pencil 
AQi + MQ2 such that the tangent linear space to Q at P contains Po. 

In practice, to find the singular elements of the pencils £ 4 , . . . , £10 
it is generally easier to find the singular elements of the corresponding 
Jacobian (29), taking into account also the cases where the mapping 
between T and T' fails to be biregular. For example, consider 

£7 : (x- y){z -t) = X{x2 - t2) 

X{x + y){z + t) = 2yz 

with distinguished point Po = (0,1,0,0). The above construction gives 
(30) 

I" : A2A4 + (-2A3 + 4A2)A3M + (A4 - 4A3 + 8A2 - 4A + 1)A2M2 

+ (4A2 - 2A)AM3 + A2M4 = N2, 

with r - » r ' given by 

(A, M, N) = ({X-2)z+Xt, z-t, 2{X-l)(Xx{{X-2)z+Xt)-{z-t){(X-l)z+\t))) 
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with inverse 

(x, y, z, t) = ((A - 1)A((2A - l)AAf + AM2 + N), 

- A (A + M)((2A - 1)AM + AM2 + N), 

A(A - 1)A2(A + AM), A(A - 1)A2(A - (A - 2)M)). 

Now the discriminant of the quartic at (30) is a constant multiple of 
A6(A - 1)4(A8 - 8A7 + 32A6 - 40A5 + 34A4 - 40A3 + 32A2 - 8A +1) , and 
hence the singular values of A are 0,1, oo, 0 (as at (14)). The singular 
decompositions are accordingly 

A = 0 : L$ + Lio + Lii + ^12 

A = 00 : L3 + Z/4 + L6 + L8 

A = 1 : two conies, both equivalent to (31) 

(which will be denoted abusively 

by (31)+(31)) 

A = (j) : unicursal quartic. 

We list Jacobians and singular decompositions for the remaining pencils 
without giving further details. 

E4 :A(A - 1)AM(A - M)(AA + M) = N2 

A = 0 : 2 L 9 + Z a i + £ i 3 

A = 1 : Lie + ^18 + ^20 + £22 

A = 00 : Z/5 + LQ + L7 + L8 

A = - 1 : (24)+(24) 

£ 5 :AM(-2A3A2 + (A4 + 8A2 + 4)AM - 2AM2) = N2 

X = 0:L2+L3 + Ln+L13 

A = 00 : L5 + L$ 4- L12 + L14 

A = IA/2 : (27)+(27) 

A = i(2 + \/2) : unicursal quartic 

E6 -AX2A4 - 2A3A3M -I- 8A2A2M2 - 2AAM3 + A2M4 = TV2 

A = 0 : L2 + L3 + 2L9 

A = 00 : Iq + L8 4- 2Z/10 

A = %yß : (28) + (28) 

X = _ — ; unicursal quartic 
3y3 
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E8 :A2A4 + (2A3 - 12A)A3M + (A4 + 8A2 + 4)A2M2 

+ (-12A3 + 8A)AM3 + 4A2M4 = N2 

A = 0 :£ 2 4-Z , 7 + Zao + £ i i 

Acx) : L4 4- L8 4- Lg + £14 

A = y/2 : L15 + L22 4- (26) 

A = z(5 4- 3\/3) : unicursal quartic 

Eg :A2A4 + (2A3 - 16A2 + 12A)A3M 4- (A4 - 16A3 4- 56A2 - 32A + 4)A2M2 

4- (12A3 - 32A2 4- 8A)AM3 4- 4A2M4 = TV2 

A = 0 : L2 4- L7 + Lg + L12 

A = 00 : 2/4 + L$ 4- Zio + ^13 

A = 1 + i : (25) + (25) 

A = 2 + v ^ : Lis + L19 4- (26) 

A = 10 4- 7\/2 : unicursal quartic 

£10 :2AA(2AA3 + (A2 + 4A)A2M + (2A2 + 4A)AM2 + (A2 + 2A - 1)M3) = N2 

A = 0 : L2 + L4 + 2Lg 

A = 00 : 2Z/10 4- £18 4- L22 

\ = ip: unicursal quartic (where 2^ 4 - 10^3 - 18V>2 4- 28ip - 27 = 0). 

6. The decompositions of E\,E2 and E3 at (14), (17) and (20) each 
reveal one plane unicursal cubic, which are given parametrically as 
follows. 

From (14), with A = <t> = ((1 4- i)/y/2)(l + y/2 + v W l 4- \/2) : 
(31) 

x = s(s2 + (0 ,0 ,1 , -1 ; 0, - 2 , 1 , l)a 4- (3, - 3 ,0 , - 1 ; 2,0,0, -2 ) 

2/ = 5 ( ( 0 , - l , - ì , - ì ; - l , - l , 0 , 0 ) 5 2 + ( -2 ,0 , -2 ,0 ;0 ,0 , -2 ,0 ) S 

4-(-3 ,3 ,0 ,1;-2 ,0 ,0 ,2)) 

2 = ( - 1 , - 1 , - 1 , - 2 ; - 4 , -2,2,0)« + (-4, - 4 , -2 ,2 ; 4, - 4 , -6 ,2) 

* = s(2s + ( l , - 1 , 2 , - 1 ; 2 , - 4 , 0 , 2 ) ) . 

(Here, the notation (ai,a2 ,03,04; 61,6:2,63,64) denotes the element of 
Q(0, t), 02 = 14- \ /2, given by ai 4- ia2 4- (a3 4- fa4)\/2 H- (a5 4- 2a6 4-
(a7 4- ia8)v/2)fl). From (17), with A = 0: 

(32) (x, y, z, 0 = (0,25, s3 « 5, s2 - 1). 
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From (20), with A = (-13 + 7v/=7)/10: 

y = s2-i 

(33) _ _ /12H-203v/=7\ 2 / ~ l - 3 < / = 7 
256 ) S + \ 16 

-231 + m v ^ N s /21-v/=7 

/121 + 203>/=7\ 2 /-l-3v°7\ 
( 256 ) ' M 16 ) 

Now given any plane parametrized cubic on W', the residual intersec
tion with W of the corresponding plane is a straight line. It follows by 
symmetry that, to determine all such cubics, it is necessary to consider 
further only the pencil of planes through the line L15, say. 

The planes (1 — \/2)x + y + A(x — z) = 0 cut out on W the line L15 
and the pencil of curves 

£11 :t2({\2 + (2 - 2\/2)A + (2 - 2\/2))y + A2(l + y/2)z) 

= z(2y2 + (A2 - 2A(1 + y/2))yz + (1 + V2)A2^2). 

And £11 is singular (up to conjugacy) exactly when A = 0,1,00, V% — 1+ 
>/2, - 2 + v/2,2 + 2>/2 + 2y/20{62 = 1 4- \/2). 

Only in the latter case is the intersection irreducible, and we obtain 
the curve 

x = - (13 + 9V2 + (8 + 6\/2)0)s(s2 

- (8 + 22\/2 + (-28 + 2>/2)0)) 

(34) y = 5 (s 2 - (6 + 2V2 - WS*)) 

2f = ( -1 + Sy/2 + (12 - 10V^)tf)fi 

* = (1 - \/2)(s2 + (16 + 6\/2 + (-20 + 3\/2)0)). 

There is now the following result. 

THEOREM. Up to conjugacy and symmetry, there are precisely four 
parametrizable plane cubics on W, given at (31)-(34). 

7. Of the quartics that are revealed in the decompositions of 
E\,..., EIQ only that from E5 seems to have a relatively simple 
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parametrization, namely 

x = (1 + \/2)((l - 2\/2)s2 - 1)((3 + 2y/2)s2 - 4 5 + 1) 

2/ = zXl + v / 2 ) ( ( l - 2 v / 2 ) s 2 - l ) 2 

z = f ((1 + 2V2)s2 - l ) 2 

t = ((1 + 2v/2)s2 - 1)((3 - 2y/2)s2 - 4s + 1). 

8. By using the map at (8), there result several curves of small degree 
on the original surface (1). 

Up to symmetry and conjugacy, the straight lines pull back to the 
singular point (X, Y, Z, R, 5, T) = (1,0,0,1,0,1), the rational conic 

(35) (X, Y, Z, R, S, T) = (s2 - 1,2s, 0, s2 + 1,2s, s2 - 1), 

and the conic defined over Q(\/2) with 

(36) (X, Y, Z,R, S,T) = (s2 - 1,2s, 2s, s2 + 1,2sV2, s2 + 1). 

The derived curve corresponding to (36) is again a conic equivalent to 
(36); it also arises from (21) and (26). The conic (25) leads to the 
mutually derived conic and quartic solutions, with 

(37) (X,Y,Z,R,S,T) = (2s,i{s2 + l),-(s2-l),i(s2-l),2is2,s2 + l), 

(X, Y, Z,R,S,T) = (s4 - 1, -2zs(s2 - 1), 
( ' - 2 s ( s 2 + l ) , ( s 2 - l ) 2 , 4 s 2 , ( s 2 + l ) 2 ) . 

Further quartic curves arise from (24), i.e., 
(39) 

(X, Y, Z, R, S, T) = (s4 - 1,2s(s2 + 1), ^ = ( s 4 - 6s2 + 1), (s2 + l ) 2 , 

^ ( s 4 + 10s2 + 1), ^ = ( 3 s 4 - 2s2 + 3)), 

with derived solution of degree 6, and from (27), i.e., 
(40) 

(X, Y, Z, R, S, T) = ((s2 - l)(s2 + iy/2s - 1), 2s(s2 + iy/2a - 1), 

-^(s2-l)(s2 + 2is/2s-l), 
ly/2 

{s2 + l)(s2 + iV2s-l), 

-A=(s4 + 2iy/2s3 - 6s2 - 2iyßs + 1), 
i\j2 

- L ( s 2 - l ) ( s 2 + l)) 



THE RATIONAL CUBOID 119 

with derived curve 
(41) 

(X, Y, Z, R, S, T) = (2s{s2 + 2iV2s - 1), (s2 - l)(s2 + 2iy/2a - 1), 

2iy/2s(s2 + iV2s - 1), (s2 + l)(s2 + 2iy/2s - 1), 

s4 4- 2i\/2s3 - ßs2 - 2iy/2s +1,2is(s2 + 1)). 

Finally, from (22), (23) and (28) there arise sextic curves of which 
each derived curve is also of degree 6. 

Observe from (5) that when regarding a,ò, e, d, e, / as polynomials 
in C[s], then e divides abed in C[s]. If a, 6, c, d, e, / are of first degree, 
then by interchanging the pairs of generators (a, 6), (c, d) if necessary, it 
follows that e divides ab. Further, by taking generators (6, a) for (a, 6) if 
necessary, then without loss of generality, e divides a, that is, a/e € C. 
But the transformation (6) is just (a;, $/, z, t) = (ade, bde, acf, adf) = 
(ad, bd, &cf, |d / )and hence corresponds to a point on W belonging to 
a straight line or conic. 

Now parametrized conies and cubics on the original surface X clearly 
have corresponding generators of degree at most 1, and hence some 
equivalent conic or cubic corresponds via the transformation (6) to 
a line or conic on W. Accordingly, we have determined all possible 
quadratic parametrizations (up to conjugacy and symmetry) at (35), 
(36), (37) and cubic parametrizations (none) to the equations (1) for 
X. It seems plausible that all quartic parametrizations are given by 
(38), (39), (40) and (41), but this has not been verified. 

One should note that, over C[s], the conic (37) furnishes a solution, 
albeit rather cheekily, to the 'diagonal' requirement (3), in that X2 + 
Y2 + Z2 is now zero! 

9. If the motivation is to find parametric solutions over the rationals 
Q to the equations (1), then the elliptic pencils E\ to En can be of 
great use. We illustrate this with reference to the pencil 

Es :x-y = Xz 

t2(-2(\ - l)x + X(X - 2)z) = 2x3 - 2Xx2z - 2Xxz2 + À V . 

Taking (0,0,0,1) as the zero for the the group structure, then it may 
be verified that the group G of points of E$ which are defined over 
Q(A), is torsion-free and has rank 2. Generators may be chosen as 

Pi = (A,0,1,1) P2 = ( M - A , 1 , 1 ) . 
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Then, by addition on E3, 
Pi + P2 = (1,1 +A, -1 ,1 ) 

P! + 2P2 = (A,-A,2,-A) 

Pj _ p2 = ((A - 1)(A2 - 2A - 1), -(A - 1)(A3 + A2 - A + 1), 

(A - 1)(A2 + 2A - 3), A3 + A2 + 3A - 1) 

2Pj +P2 = ((A + 1)(3A2 - 2A + 1), -(A + 1)(A3 + 3A2 - A - 1), (A + 1) 

(A2 + 6 A - 3 ) , A 3 - A 2 - 5 A + 1) 

2Pi + 2P2 = (A(A3 - 4A - 2), -2A(2A2 + 2A - 1), A3 + 4A2 - 4, A(3A2 + 8A + 6) 

2P2 = (A(A3 - 4A2 + 4A - 2), -2A(2A - 1), A3 - 4A2 + 8A - 4, A(A2 - 2)) 

Pi + 3P2 = ((A - 2)(3A2 - 4A - 4), -(A - 2)(A3 + A2 + 4), (A - 2) 

(A2 + 4A - 4), A3 - 6A2 - 4A - 8). 
The latter five points of G give rise (either directly, or by taking the 
derived solution) to the following parametrizations of the equations (1), 
all of degree 8. 

X = 4(2A - 1)(A2 - 2A - 1)(A3 + A2 - A + 1) 

Y = (A - 1)2(A + 3)(A2 - 2A - 1)(A3 + A2 + 3A - 1) 

Z = 2A(A - 1)(A + 1)(A + 3)(2A - 1)(A2 - A + 2); 

X = 4(2A2 + 2A - 1)(3A2 - 2A + 1)(A3 + 3A2 - A - 1) 

Y = (A + 1)(A2 + 6A - 3)(3A2 - 2A + 1)(A3 - A2 - 5A + 1) 

Z = 2A(A - 1)(A2 + A + 2)(A2 + 6A - 3)(2A2 + 2A - 1); 

X = A(A2 - 4A - 8)(3A2 + 8A + 6)(A3 + 4A2 - 4) 

Y = -2(A + 1)(A + 2)(A2 + A + 2)(A2 - 4A - 8)(2A2 + 2A - 1) 

Z = -4(2A2 + 2A - 1)(3A2 + 8A + 6)(A3 - 4A - 2); 

X = A2(A - 4)(A2 - 2)(A3 - 4A2 + 8A - 4) 

Y = -2A(A - 1)(A - 2)(A - 4)(2A - 1)(A2 - A + 2) 

Z = -4(2A - 1)(A2 - 2)(A3 - 4A2 + 4A - 2); 

X = 8A(A - 2)(A + 2)(A - 4)(3A + 2)(A2 - A + 2) 

Y = (A - 2)2(3A + 2)(A2 + 4A - 4)(A3 - 6A2 - 4A - 8) 

Z = 4A2(A - 4)(A2 + 4A - 4)(A3 - 2A2 + 4A + 8). 
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The second and fourth of these appear in different guise (and in the 
latter case misprinted) on pages 93 and 96 of Kraitchik [7] but the 
others appear to be new. 

In conclusion, we point out that it is still unknown whether the 
Eulerian parametrization (2) is the non-trivial rational parametrization 
to the equations (1) of smallest degree. Further, is any rational solution 
of degree 6 equivalent to the Eulerian solution? 

The surface W at (7) has a superabundance of rational curves lying 
upon it (we refrain from bombarding the reader with more examples), 
all of which pull back to parametrizations of (1) of even degree. The 
evidence suggests that there will be a rational parametrization of the 
equations (1) of every even degree greater than or equal to six. 

I wish to thank the College of Liberal Arts at Arizona State Univer
sity for the award of a Summer Research Grant whilst this paper was 
being written. 
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