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GLOBAL UNIFORMLY EXPANDING 
FINITE AMPLITUDE WAVES 

W.D. CURTIS 

1. Introduction. If a solution of wave equation has the form 

we say / is a uniformly expanding wave, since for various values of £, 
the spatial profile is always the same except for a change of scale. The 
simple centered rarefaction wave of gas dynamics is of this type [2]. 
In [4] Taylor obtains such a solution to the problem of the gas flow 
outside a spherical surface expanding at a constant rate. In this article 
we consider globally defined, uniformly expanding wave solutions of 
certain finite-amplitude wave equations. 

The propagation of finite amplitude waves in a channel of cross-
sectional area A = A(r) is governed by the partial differential equation 
[3] 

(1.1) Ut + {co + ßu)Ur +
 cJ^ll = 0. 

Here, u is particle velocity, r is range measured along the channel, 
and Co is the ambient sound speed. The constant ß is the non-linearity 
parameter which, for 7-law gas has the value ß = ^ ^ . If we let / = f-u 
and a = cot, the equation (1.1) becomes 

(1-2) U + (t + f)fr + ^ = 0 . 

We are interested in discussing solutions of (1.2) of the form 

(1.3) / (r , a) = F(x); x = r/a = r/c0t. 

If we substitute (1.3) into (1.2) we get 

(1.4) x2F'{x) - (1 + F)xF'(x) - r F ^ = ° 
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In order that the equation (1.4) hold we need 

rF{x)A'{r) 
2A 

to be a function of x only. Unless F vanishes identically, we need 

rA'{r) 
A(r) 

Thus, 

= k = constant. 

, kA(r) 
A'(r) = —j^-, 

so that 

(1.5) A{r) = A(l)rk. 

We have therefore proved 

THEOREM 1.1. The equation (1.1) admits non-trivial uniformly 
expanding wave solutions only when the cross-sectional area is a power 
law, as in (1.5) 

If we let a = k/2, then the equation satisfied by F becomes 

(1.6) x{x - 1 - F)F' - aF = 0, 

or 

aF 
(1.7) F' = 

x(x-l-F)' 

We are interested in solutions of (1.6) or (1.7) on the interval (0, oo). 
For a > 0, (1.7) has a critical point at (x,F) = (1,0). Thus if x = 1 
and F(x) = 0, then F'{x) is not determined by (1.7). 

When we speak of a solution (or smooth solution) of (1.7) on (0, oo) 
we mean F is C1 on (0, oo) and satisfies the ODE (1.6) at all x e (0, oo). 
In terms of (1.7), F must satisfy (1.7) whenever F(x) ^ x—1 and at any 
x where F(x) = x - 1 we must have F(x) = 0 so x = 1. We speak of a 
weak solution of (1.7) on (0, oo) if F is continuous on (0, oo), F satisfies 
(1.7) and is C1 for x ^ 1, and l inL^!- F'(x) and lima._>1+ F'{x) exist 
(but are, perhaps, unequal). If F is a solution of (1.7) on (0,oo), then 
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u(r, i) = f-F(r/cot) is a global, uniformly expanding wave solution of 
(1.1). I f / is a weak solution as described above, then u may have a 
weak discontinuity, that is, a jump in the partial derivatives ur and ut, 
along the characteristic r = cot. 

2. The plane wave (a = 0). For a = 0 we must refer to(1.6), 
which becomes 

(2.1) x{x-l- F)F' = 0. 

THEOREM 2.1. There are only two smooth solutions of (2.1) namely 

(a) F(x) = ci, e constant 

(b) F(x) = x - l . 

PROOF. Clearly (a) and (b) are solutions. Suppose F : (0, oo) —> R 
is any solution of (2.1). Then, for each x G (0, oo), either 

F(X) = X-1OTF'{X)=0. 

Suppose there is an x where F(x) ^ x — 1. We show that F must be 
constant. Consider 

A = {x\x > 0 and F{x) ^ x - 1}. 

Then A is a non-empty open set. Let (ai,&i) be a component of A. 
Suppose ai > 0,&i < oo. Then ai,6i & A so F(ai) = a\ — l,F{bi) = 
b\ — 1. But then F(b\) — F(ai) = b\ — a\ is zero by the Mean value 
Theorem, because if ai < c < &i, then c G A so F ;(c) = 0. Thus 
A has no component with both ends in (0, oo). So any component is 
of the forms (0, &i), (ai,oo) or (0, oo). In the case when (0, oo) is a 
component, we are done. Suppose there is a component (0, &i) with 
6i < oo. If there is no other component, then F is constant on (0,6i) 
while F(x) = x — 1 for òi < x. Then Ff(bi) does not exist. If another 
component exists, it is of the form (ai,oo) with a\ >b\. If a\ — &i, 
then F is constant. If a\ > &i, then F(x) = x — 1 for 6i < x < a — 1 
and F' does not exist at a\ or b\. The remaining cases are similar. 
This completes the proof. 

REMARK. The two solution obtained above are expected. They are 
the constant amplitude plane wave solutions and the centered simple 
wave solution 
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Note that if we relax the requirement of smoothness we get more 
solutions. For 0 < a\ < b\ < oo there is a weak solution of (1.7) whose 
derivative jumps at a\ and òi as shown in fig. (2.1) below. The resulting 
solution of (1.1) has weak discontinuities along the characteristics 
r = aiCot,r — biCot. 

F 

F=Rx) 

a, A _ . 
x 'r 

F-profile characteristics 
FIGURE 2.1 

3. The Cases 0 < a < 1. 
cylindrical waves (a = ^) and spherical waves (a = 1). 

This includes the two important cases of 
2 j c*xx̂  oKxx̂ xv.«a wu,vo v^ — -y. We prove that 

for 0 < a < 1, smooth solutions exist only in the case a = 1, that is, 
for spherical waves. If we allow weak discontinuities we find solutions 
for 0 < a < 1. 

Suppose F is a solution of (1.7) on an interval (a, b) and F' is never 
0 on (a, 6); then F maps (a, b) monotonically onto an interval (c, d). 
Let x = x(F),x : (c,d) -» (a,&), be the inverse of F and define 
v : (c, d) —• R by v(F) = l/x(F). Then i; is a solution of the linear 
first-order differential equation, 

(3.1) 
dv 

IF v aF ; a F 

We shall frequently be in the above situation and shall use the notations 
just described. We remark that the change of variable v — x -l is 
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just the standard transformation of a Bernoulli equation to a linear 
equation; the ODE satisfied by x = x(F) is 

dx ___ x(x - 1 - F) 
lF~~ ^F ' 

which is of Bernoulli type. 

We shall make use of the fact that a solution of a linear equation like 
(3.1) can have singularities only at a singular point of the differential 
equation. Thus, for example, if 0 < a < b and v is a solution of (3.1) 
on (a, 6), then if we know l im^-^- v{F) = oo, we can conclude b = oo. 
Similarly, if liniir_->a+ v(F) = oo, then a = 0. 

Recall that a solution of (1.7) on an interval (a, 6) is required to be 
differentiable at all points of (a, 6). On the other hand, by a weak 
solution F of (1.7) on (a, b) we mean that if 1 G (a, 6) we require F be 
continuous at x = 1 and have continuous left and right derivatives at 
x = 1, but the left and right derivatives at x = 1 may be different. 

LEMMA 3.1. Let F be a weak solution of (1.7) on (0,oo). Then 
F(l) = 0. 

PROOF. We prove F(xx) = x\ - 1 for some xx G (0, oo). If so then, 
since F is differentiable for x ^ 1, we see from (1.7) that we must have 
xx = 1. But then F( l ) = 0. 

Suppose F(x) > x - 1 for all x. Then by (1.7) we conclude F'{x) < 0 
for x > 1. Then clearly F(x) can't be greater than x - 1 for all x > 1. 

Suppose F(x) < x - 1 for all x G (0,oo). Then F(x) < 0 for 
0 < x < 1. But whenever F(x) < 0 and F(x) < x - 1 we have 
F'(x) < 0, so we conclude F(x) < 0 for all x G (0,oo). Thus, F maps 
(0, oo) monotonically onto an interval (/p, a) where -oo < p < a < 0. 
Then we get 

v: (p,a) -+ (0,oo), 

and we see lim/r-^- v(F) = oo. Hence a = 0. But then limx_>0+ ^(z) = 
0, contradicting F(x) < x - 1 for all x. This proves the lemma. 

The following result will be useful for the further analysis to be given. 

LEMMA 3.2. Let 0 < a < 1 and let v be a solution of (3.1) on either 
(~oo,0) or (0, oo). Then 
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(a) l imF^o < F ) = 1. 

(b) IfO<a< 1, then l\mF^0v'(F) = ̂ . 

(c) Ifa = l, then \imF^ov'{F) = -oo . 

PROOF, (a) Consider the case where v is defined on (0, oo). Any 
solution of (3.1) is of the form 

(3.2, «„.r^-Lp-^)** 
for some constant A. Rewrite (3.2) as 

and apply l'Hospital's rule to get (a). 

(b) This time we give the proof for the case when v is defined on 
(0,oo). Let Ç = -F. Then (3.1) becomes 

(3.3) 
dv /1-Ç\ 1 n . 
di \ OLÌ ) OLÌ di 

oo. 

Then v(i) is of the form 

V(Ì) = Ì<*e a 

We have 

t/(0 = 
(1-Qt; (0-1 1 f t ip i«-€/« 

a£ 
= ^ T ( ( I - 0 ^ ^ / Q [ A - - / *-i-V/a<fe| - l »CI L û y^0 j 

By l'Hospital's rule, the desired limit is obtained by differentiating the 
expression in braces, letting i —• 0, and then dividing the result by a. 

The derivative of the expression in braces, which we denote by N is 
(3.4) 

€-i . ^ - % _ ( û + 2 ) e + a L i / V * - v / ° 
L °<Jeo 

N = 
<*£ a 

*dz 
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Now we represent the expression in brackets in a convenient asymptotic 
form (for small £). In fact, it is easy to see that (since 0 < a < 1), 

(3.5) A - 1 / *-±-VA*«** = r * - , l
 n r * + 1 + 0(0, 

where 4K£)£« -1 - • 0 as £ -+ 0+. 

Substitute (3.5) into (3.4) and replace €~^a in (3.4) by 

1 - | + ! K 0 > where ^ ( 0 = 0(e2). 

We then get 

iz_±(1 _ i + ^ ( 0 ) ( 1 _ (a+2)^+e2)(rà - _ J _ r à + i + 0(0) 
a a; a(a — lj 

= ^ + 

^ ( 1 - | + W))(l - (a + 2){ + e2)(l - ^ ^ y + ^ ( O ) . 
If we multiply this out and make use of the properties of (/> and iß we 
get 

lim N=——. 
e->o+ 1- a 

Thus 

lim </(£) = —Ï—. 

We then conclude, since dv/dF = -dv/dÇ, 

1 
lim t/(F) = 

F-+O- a — 1 

A similar calculation can be made for a solution of (3.1) on (0, oo). 

(c) The argument in this case is similar to that given in (b). If we 
consider v on (0, oo) we get 

v'{F) = {i + F)eF[A- j * Çdz]-±. 
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An asymptotic analysis gives 

v'{F) = InF + 0(1) as F - • 0+. 

Therefore (c) holds. This completes the proof. 

LEMMA 3.3. Let 0 < a < 1 and let F be a solution of (1.7) on (0,1) 
such that l i m ^ i - F(x) = 0. Then F(x) = 0 for all x G (0,1). 

PROOF. If F(x) = 0 for some Xi, the uniqueness of solutions requires 
F identically zero. Suppose F < 0 on (0,1). Now we can never have 
F(x) = x - 1. If F(x) < x - 1 on (0,1), then from (1.7) we see F' < 0 
on (0,1) so we cannot have l i m ^ x - F(x) = 0. Suppose 

x - 1 < F(x) < 0 for all x G (0,1). 

Then F1 > 0 on (0,1) so F maps (0,1) onto some interval (a, 6) with 
—1 < a < b < 0. Then the function v = t>(F) maps (a, 6) onto (l,oo) 
and f ' < 0 on (a, b). Since l imF_ a+ v(F) = +oo, we conclude a = —oo. 
But a > — 1, so we have a contradiction. 

Suppose F(x) > 0 for all x G (0,1). Then, from (1.7), F' < 0 on 
(0,1). Since l i m ^ o - F(x) = 0, F must map (0,1) onto some interval 
(0,4). As before, consider the inverse function 

x : ( 0 , A ) - ( 0 , l ) 

and its reciprocal, 
v : ( 0 , 4 ) - ( l , o o ) . 

By Lemma (3.2), we have limir_+0+ v'(F) < 0. Thus F > 0 and, near 
0,t/(F) < 0. But x'{F) = -v'{F)/(v{F))2 and so xf{F) > 0 for F near 
0. Then F'(x) = l/x'(F(x)) > 0 for x just to the left of 1. But we 
observed above that in the present case F' < 0 on (0,1) so we have a 
contradiction. This proves the lemma. 

Combining Lemma (3.1) and Lemma (3.3) we get 

THEOREM 3.4. Let 0 < a < 1 and let F : (0, oo) - • R be a (weak) 
solution of (1.7). Then F(x) = 0 for 0 < x < 1. 

LEMMA 3.5. Let 0 < a < 1 and let F be a solution of (1.7) 
on(l, oo) swc/i £/ia£ lima._>1+ F(x) = 0 and swc/i that F(x) < 0 /or some 
x G (1, oo). Then F(x) = 0 /or all x G (1, oo). 
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PROOF. If F(x) < 0 for some x € (l,oo) but F is not identically 
zero, then F is never 0. Thus, F < 0 on (l,oo). Then F' < 0 on 
(l,oo), and so F maps (l,oo) onto an interval (A,0), where À < 0. 
Let v : (A,0) —• (0,1) be the reciprocal of the inverse of F. Then, by 
Lemma (3.2) 

lim v'(F) < 0. 

Then lima;_1+ F'(x) > 0, which is impossible since linxc_>1+ F(x) — 0 
and F(x) < 0 for all x > 1. This proves the lemma. 

We now see that, for 0 < a < 1, any non-trivial weak solution 
must satisfy 0 < F(x) < x - 1 on (l,oo). For any such F, we have 
F' > 0 on (1, oo). Then F maps (1, oo) onto some interval (0, A), where 
0 < A < oo. Then, as usual, we have the function v : (0, A) —• (0,1), 
with z/ < 0 on (0,-4). Now if a = 1, then limir_f0+ v'(F) = -oo 
from which it follows that lima._>1+ F'{x) = 0. For 0 < a < 1 we get 
limjp_f0+ v'{F) — ^~ and hence lima._>0+ F'(x) = 1 - a. 

This latter fact proves 

THEOREM 3.6. For 0 < a < 1 Mere «s no smooth solution of (1.7) on 
(0,oo). 

However, we have 

THEOREM (3.7). Let 0 < a. GzVen A tt/̂ A 0 < A < oo, 
Mere to a unique F defined on (l,oo) satisfying (1.7) and such that 
linxz—oo F{x) = A. 

PROOF. By the remarks in the preceeding paragraph, we need to show 
that, given A, there is a unique v : (0, A) —• (0,1) which satisfies (3.1) 
and such that 

(a) v' < 0 o n (0,A) 

(b) WmF^A- v(F) = 0. 

Consider first the case A = oo. Now any solution of (3.1) on (0, oo) 
is of the form 
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Let 
p i / a poo i i 

a Jx z zez 

We claim the solution given in (3.6) satisfies lrniir—oo v(F) = 0 if and 
only if v0 = v*. Indeed, if v0 > v* then v(F) —• oo as F —• oo. If 
vo < v*, then v(F) = 0 at some point and is negative thereafter. Since 
v'(F) < 0 if v < 1/(1+F), we see in this case we cannot have v(F) —» 0 
as F —• oo. If vo = v*, then FHospitaTs rule gives limjr_»oo v(F) = 0. 

For vo = v* we must have v' < 0 on (0, oo) since if v'{F) > 0 for 
some F then v(F) > 1/(1 -h F) . Then v would be increasing for large 
F and v would not approach 0 as F —• oo. 

For 0 < A < oo, let v be the solution of (3.1) on (0, oo) satisfying 
the initial condition v(A) = 0. Consider v on (0, A). Then v is clearly 
the only function satisfying the desired conditions. This completes the 
proof. 

The following result summarizes what we have proved. 

THEOREM (3.8). For a = 1 there is a family of smooth solutions 
of (1.7) on (0,oo). Given A with 0 < A < oo, there is a unique 
solution F of (1.7) on (0, oo) such that lim^—oo F(x) = A. These 
are the only (weak) solutions for a = 1. For 0 < a < 1 there are 
no smooth solutions. There is a family of weak solutions as follows: 
Given A, 0 < A < oo, there is a unique weak solution F on (0, oo) with 
liniz-.oo F(x) = A. Each of these has a jump in the derivative atx = l 
in that l i nx^ ! - F'(x) = 0,limx_>1+ F'{x) = 1 — a. There are no other 
non-trivial weak solutions. 

4. The case a > 1. Note that Lemma (3.1) holds for a > 1. 
Thus, we must determine solutions of (1.7) on (0,1) and (l,oo) which 
approach 0 as x —• 1~ and x —• 1+, respectively. For the case of (0,1) 
we note that the proof of Lemma (3.3) shows any F on (0,1) which 
satisfies linia^!- F(x) — 0 must either be identically 0 or everywhere 
positive. In case a > 1, however, there are solutions which are positive 
on (0,1). 

Consider a solution F of (1.7) on (0,1) with F(x) —• 0 as x —• 1~. 
Then F' < 0 on (0,1) so F maps (0,1) onto (0, A) where 0 < A < oo. 
Then v : (0,A) —• (l,oo) is an increasing solution of (3.1) so that we 
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must have A = oo. Then we conclude. 

lim F(x) = +00. 

In order to discuss behavior of F'{x) as x —» 1+ or 1~ we consider the 
nature of the critical point (0,1) of the autonomous system in (F, v)-
space, 

(4.1) 
dF „ dv , 
- = aF, - = (1 + F)v-1. 

If we let w = v - 1 to translate the critical point to the origin, the 
linearized system is 

dt 

The eigenvalues and eigenvectors of this matrix are: 

\F' 
w = 

"c*0] 
-1 !J 

ÏF' 
[w\ 

A = 1, eigenvector A = a, eigenvector 
a-1 

1 

We now apply Theorem (5.1) of [1, p. 384]. For a > 1 it follows 
that any solution of (4.1) which approaches (0,1) as t —• -oo does so 
with a limiting direction tangent either to the line F = 0 or the line 
v ~ l = F/(a - 1). There will be exactly two trajectories approaching 
tangent to v - 1 = F/(a - 1), one in each direction. There will 
be infinitely many trajectories approaching (0,1) in each of the two 
directions tangent to F = 0. It follows that there are solutions of (3.1) 

v : (0, oo) —• (l,oo) 

and that of these, exactly one satisfies 

1 
lim t /(F) = 

F-+0+ OL ~ 1 

while all others satisfies 

lim v'(F) = oo. 
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Therefore, there are solutions F of (1.7) on (0,1) with F' < 0 on (0,1) 
and 

lim F(x) = 0, lim F(x) = oo. 
x — i - s->o+ v J 

One of these satisfies l i nx^ ! - F(x) = 1 - a, while the others satisfy 
l im z_ 1 + F'(x) = 0. 

Now consider solutions F of (1.7) on (l,oo) with linxc_>1+ F(x) = 0. 
By Theorem (3.7) there is a family of such solutions; given A with 
0 < A < oo, there is a unique such F with limx_>oo F(x) = A. 

Thus, there are global smooth solutions for any a > 1 and they need 
not vanish on (0,1). 

5. Conclusion. We have calculated all global uniformly expanding 
wave solutions of the finite amplitude wave equation for cross sectional 
area 

A{r) = Atr
k 

for 0 < k < 2. For 0 < k < 2, all have a weak discontinuity along the 
characteristic r = c0t and all vanish for r < c0t. 

For k = 2 (spherical case), everywhere smooth solutions exist, but 
these too vanish in the region r < CQÎ. 

For k > 2 smooth solutions exist and they may or may not vanish for 
r < cot. 
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