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COMPARISON THEOREMS FOR FOCAL POINTS 
OF SYSTEMS OF iV-TH ORDER NONSELFADJOINT 

DIFFERENTIAL EQUATIONS 

E.C. TOMASTIK 

A B S T R A C T . A comparison theorem will be given for focal 
points of x<n) - £ ^ = o - ^ W * ^ = 0> where n > 2,Pß are 
m X m matrices with continuous elements on[a.6],a > 0, and 
where no assumptions are made concerning the symmetry of 
any of the Pß nor the sign of the elements of PM. 

A comparison theorem will be given for focal points of a very general 
class of linear ordinary differential equations, with continuous coeffi
cient matrices. The system is 

n - l 

(i) ^'-E^o^^o 

where n > 2,PM are m x m matrices with continuous elements on 
[u^&]5a > 0. 

No assumptions are made concerning the symmetry of any of the Pß 

so that (1) may be nonself adjoint. If (1) is self adjoint, the results pre
sented here are new. No assumptions are made concerning the sign of 
the elements of PM, making the results new in the scalar case. 

The focal point of (1) will be compared to that of 

n - l 

(2) V ( B )-(- l )n -*£<W0tf ( M )=0, 
/tt=0 

where fc € { 1 , . . . , n — 1} and Qß are continuous m x m matrices on 
[a, b] satisfying some positivity conditions with respect to a cone. 
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Focal points play a critical role in variational theory when (1) is self-
adjoint. Comparison theorems for such systems [5,6] have long been 
known. More recently, [4,7,8] have established new comparison theo
rems for focal points for selfadjoint and nonselfadjoint systems. 

Comparison theorems for focal points for general n™ order scaler 
equations are found in [1,2,3,9], where coefficients of the equation are 
assumed to be of constant sign except in [1] where the coefficient of the 
lowest order term has no sign restriction. 

We assume (J, J) are disjoint sets such that J U J = { 1 , . . . , m}. The 
cone K is defined by 

K = {(21, . . . ,zm) : fiel => zß > 0 , / z e J=>*M < 0 } 

K° denotes the interior of K. 

Throughout we assume: for all t e [a, 6], v € K and v ^ 0 that 
Qo(t)v € K°; for all t G [a, 6] and v € K 

Qß{t)v e K, fi = l , . . . ,fc, 

{-WQk+rWveK, /z = l , . . . , n - f c - l . 

A point fp{a) G [a, ß] is called the first focal point of a relative to (1) 
provided there is a nontrivial solution x(t) of (1) satisfying xW(a) = 
0,/i = 0 , . . . , f c - 1, and x(fc+'l)(/*(<*)) = 0,/i = 0 , . . . , n - f c - I, and 
there is no nontrivial solution z(t) of (1) which satisfies z^ (a) = 0, ji = 
0, . . . ,fc - 1, and *(*+") (7) = 0 , / i = 0 , . . . , n - f c - l,for 7 G [«,/?). 

Instead of dealing with (1) directly, a certain equivalent integral 
equation using an appropriate Green's function will be considered. The 
Green's function is 

«'•'••»)-(.-t-i),(t-i)ljf'-a^-"-a"<t-
6 = min{£, s}. 

Thus x(t) is a solution of (1) with xß)(a) = 0, /i = 0 , . . . , k — 1, and 
X (*+M)(0) = 0, /i = 0 , . . . , n - k - 1, if and only if 

x{t)= f g(tiS,a)(-l)n-kJ2Pß(s)xM(s)ds. 
Jot ..— n 
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Recall the lemma [4]: 

LEMMA 1. Suppose g : [aì /?] —• K is continuous and g(t) G K° for 
some t G [a, ß]. Then f£ g(s)ds G K°. 

This is needed to prove: 

THEOREM 1. / / the first focal point of (2) is /g(a) = b, then (2) has 
a solution y(t) such that: yW (a) = o, i = 0 , . . . , k — 1; y^ (6) = 0, i = 
fc,..., n - 1; for i = 0 , . . . , k - 1, j/M (t) G Ä"° /or a//1 G (a, 6); and, for 
i = 0 , . . . ,n - /b - 1, (-1)V*+ 1 ' ) (0 G üf° /or a// * G (a, 6). 

PROOF. Define the Banach space 

B = {v G c*1"1^, b] : vW(a) = 0, t = 0 , . . . , k - 1} 

equipped with the usual sup norm. Also define the cone 

K ={v e B : i/^it) e K on [a,b] for i = 0 , . . . ,fc and 

(-l)V*+*(t) G K on [a, 6] for t = 1 , . . . ,n - Jb - 1} 

with interior 

K° ={veB: i/W (t) G /f° on (a, 6) for i = 0 , . . . , k and 

(-1)V*+<(t) G üf° on (a, 6) for » = 1 , . . . , n - k - 1}. 

Consider the operator 

rb n~1 

>E< 
M=0 

T{v)= f g(t,s,a)Y,Q,*(s)vM(s)dS 
Ja IJ==n 

If i/ € X, then E ^ i Q u W ^ W € K for all 5 G [a, 6]. For 

i = 0 , . . . , * - 1, Ù- > 0 for a < 8,t < b since 

(3) 3i< ~ (n - fc - l)!(fc - 1)! Ja
 [ i} dP* V **' 

6 = min{£, s}. 
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Since 

( T M ) « « = fd^{t,s)n^Q»{s)v^{s)ds, 
Ja °l

 M=0 
i = 0 , 1 , . . . ,fc — 1, 

(T(v))W(0 € tf for * e [a,6] and i = 0,...,/c - 1. For i = 
0 , . . . , n — k — 1, 

(-l)*(T(v))<*+*>(0 = 

(-l)*(r(ì ;J)^+ i)(t) € üf for * € [a,6] and t = 0 , . . . ,n - fc - 1. Thus 

Now define u0 = (^), where di = 1 if i G I and £»• = —1 if i G J , 
so that u0 G K° and also define /io(£) = fa g{t,s,a)uods. Thus 
ßo G K°. It will be shown that T is /i0-positive with respect to K. 
To demonstrate this, it will be shown that, given any v G K,v ^ 0, 
there exist positive constants k\ and &2 such that fci/io — T(v) G K. 
This will be done by showing that, for all t G [a, 6], 

fci/Ä) < (ï»)(i)(<) < M^W, f = o,...,*, 

(4) kti-iyvtf+'Ht) < (-iy(T(v)^k+i\t) < k2(-iyn{
0
k+i\t), 

i — 0 , . . . , n — k — 1, 

where the inequalities are with respect to K. 

Since w / 0 and i; € if, it follows readily that v(b) ^ 0; then 

Qo(b)v{b) e K° and T!^Qß{b)v^(b) € if0. Since ( - l ) n - * [ 7 » ] ( n ) 

W = E^oQ/ i ( ô ) t ; ( ' i ) (&) , ( - l ) n _ f c (^(v) ) ( n ) W € K°. Of course 

(-l)»-*/4n )(0=«o€Ä°. 
By continuity, there exist e\ > 0 and £2 > 0 and c G [a, 6] such that, 

for £ G [c,ò], 

ei(-l)B-*/4n)(0 ^ (-l)n-fc(T(^))(n)(0 
<ea(-l)n-*/4n)(t), 
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where the inequalities are with respect to if, i.e., 

ffa(-l)n-fc*4n)(0 - (-l)n-k(T(v))M(t) € K 

and 
(-l)B-*(T(v))<n>(0 - ei(- l)"- f c /4n )(<) € K. 

Integrating and using A*^n_1)(6) = 0 = (T{v))(n~V(b) yields 

£i( - l ) n~ f c~Vo n - 1 ) (<) < ( - l ) n " f e _ 1 ( ^ (« ) ) ( n _ 1 ) W 

< e 2 ( - l ) " - f c - 1 ^ n _ 1 ) « ) 

on [c, 6] with respect to if. From Qo{b)v(b) G if0 and Lemma 1 it 
follows that 

( - l ) n -*- 1 (T( t ; ) ) ( n - 1 ) (0 = 

/
& n - l 

At=0 

Also, 

/
b 

u0dseK°, te[a,b). 

Thus, by continuity there exist <$i > 0,82 > 0 such that 

<«a(-l)n-*-1l4n"1)W 
on [a,c] with respect to K. Let &i = minimi,61}, &2 — m i n ^ » ^ } -

Then ^ ( - l ^ - V o 1 " 1 ^ * ) ^ ( " i r ^ - 1 ^ ^ ) ) ^ " ^ < fc2(-l)
n-fc-1 

A*o ~ (0 o n Ia> ̂ 1 w ^ k respect to K. Proceeding in this manner, we 

obtain (4). 

The remainder of the proof proceeds as in [3] and [4]. 

It is useful at this time to give a result that characterizes the structure 
of the matrices Qß = (q^)- The proof follows readily and is not given. 

LEMMA 2. Let Qp{t) = (<?£(£)). Then, for ij = l , . . . , r a and 
t e [a,6], <$j{t) / 0. Also, fori,j = l , . . . , r a , /i = 0 , 1 , . . . , fc and 
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t G [a, 6], we have |<?^(£)| = 6i6jq^(t). Finally, for i,j = 1 , . . . , m, v = 
1 , . . . , n — k — 1, and t G [a, 6], we have 

|g*+"(0| = (-I)" 6,6^(1). 

Given any a G [a, 6), fp(a) and /Q(Û:) will be the first focal points of 
a of (1) and (2) respectively. The main theorem can now be given. 

THEOREM 2. Suppose a G [a,6],/o(a) = b and \p^(t)\ < \q^(t)\, 
for all t G [a, 6], i,j = 1 , . . . , m and all ß = 0 , . . . , n — 1. Furthermore, 
assume that, for any i = 1 , . . . , m, there exist ji G { 1 , . . . , ra}, fa G 
{ 0 , . . . , f c - 1} such that |p$(6)| < |g£(6)|. 

TTien /„(a) > / Q ( a ) . 

PROOF. Suppose contrary to the conclusion of Theorem 2, that 
x(t) is a nontrivial solution of (1) satisfying the boundary conditions 
s « (a) = 0, * = 0 , . . . , A - 1, and z ^ " ^ (/?) = 0, i = 0 , . . . , n - k - 1, for 
some a,ß G [a, 6], a < ß. 

Then of course 

From Theorem 1, there exists a nontrivial solution y of (2) such that 
yW (a) = 0, i = 0 , . . . , k - 1, y(fc+*) (6) = 0, t = 0 , . . . , n - k - 1, and 

y(t) = / |?(M,a)X;Q,(%W(#. 
" / a / i = 0 

If y = (y*), it will now be shown, for any r = 0, . . . , n — 1 and 

i = l , . . . , r a , that ( ^ (£))/(yj (£)) *s continuous and bounded on 

From the conclusion of Theorem 1, it follows immediately, for r = 
0 , . . . , n — 1 and i = 1 , . . . , m that y±(t) ^ 0 on (a, 6). Now 

» ( fc)W = (r, l IV /"'("-«r-*-1 £ Q M W 0 («)<*«• 
( n - * - ! ) ! . / „ ^ 
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It follows immediately, from Lemma 1 and the fact that X)u=o Qv>(s)v^ 
(s) G K° for all s G (a, 6), that yW(a) G K° and thus y\k\a) £ 0 for 
i = 1 , . . . , m. Thus 2/i(̂ ) has a zero at t = a of at most fc, whereas Xi(t) 
has a zero at t = a of at least k. It follows that, for r = 0 , . . . , n — 1 and 
z = 1 , . . . , m all the terms {x^\t))/(y\r\t)) are bounded as t —• a + . 

It follows readily from (3) that, for r = 0, . . . , * - 1, ?/(r) (6) G ÜC° and 
thus^ r ) (6) ^ 0 , for any i = 1 , . . . , m and r = 0 , . . . , k — 1. Furthermore 
(_l)n-*yn)(ò) = j - n - i Q ß(b)y^) (b) 9 and by the same argument that 

was used in the proof of Theorem 1, £ £ : * Qß{b)y^\b) G K°. Thus 

(-l)n-kyW(b) G if0 and 2/|n)(6) £ 0 for i = 1 , . . . ,m. Thus t / f ^ ) 
has a zero at t = ß of order t = ß of order at most n — k, whereas 
x̂  '(£) has a zero at £ = ß of order at least n — k. It follows that, for 

r = 0 , . . . , n — 1 and i = 1 , . . . , m, all the terms (z2- (£))/w (t)) are 
bounded as t —• /?—. It has thus been shown, for any r = 0 , . . . , n — 1 
and i' = 1 , . . . , m, that (xjr {t))/y\r (t)) is continuous and bounded on 
(a,/?). 

Define 

|K | |=8up{ |x i r ) ( t ) | / | y i r ) (* ) | :«e (a , / ? )} 

and 

| |z| | = max{||zj| | :i = 1 , . . . ,ra;r = 0 , . . . ,n - 1}. 

It is clear, for a < a and r = 0, . . . , n — 1, that §ïFg{t,s,a) > 
-§jrg{t, 5, a) . For £ G (a, /?), r = 0 , . . . , k — 1, and i = 1 , . . . , m, it 
readily follows that 

-rwi-ljf 
/? rjr n—1 m 

< E E / |^(M,a)i^^^^ 
M 3 a 

<J2E f" &s(t,s,aMj(s)\\y^(s)ds\\x\\ 
ß i Ja m 

<EY,£^t>s>a)K(s)\\yi'1)(s)\ds\\x\\, 
P 3 
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where the very last inequality is a strict inequality because of the 
hypothesis relating p^ and q^ the fact that none of the yj vanish on 
(a, 6), and the fact that g(t,s,a) does not vanish for s € (a, 6). Thus, 
for r = 0 , 1 , . . . , k — 1, i = 1 , . . . , m and t G (a, /?), we have 

l»lr)(0l 
\y\r)(t)\ 

(5) <ÄEE l»ir)(0l P 3 
rb 

J ^g^s^aM^Wy^is^dsWxW 

Of course if [a,/?] C (a,6], then (5) extends to a strict inequality on 
[a, ß] for r = 0 , . . . , k — 1. If a = a, there remains a problem. However, 
it will be shown that if a = a, (5) holds as a strict ineqaulity when 
t = a + . To show this one needs to show that the following strict 
inequality given by 

E E f ^,8^)1^(8)1^(s)\ds/\y^(t)\ 

< E L / J^ff(*»*.«)K-(»)ii»iM)(*)i«to/i»ir)(Oi 
remains a strict inequality as t —• a+. This can be seen by realizing 
that the limit as t —• a+ of the left-had side of (6) is just 
(7) 

EE|î»(o '«'a)ipS-wii»iM)wid»/i»i* )(o)i 

and the limit as £ —• a+ of the right-hand side of (6) is just 
rb xk 

M 3 

(8) 

E E / ^»(«.«.^Kwii^wi'fe/i^wi 

A* J v ' a 
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By familiar arguments it follows that (7) is strictly less than (8). It has 
therefore been established, for r = 0, . . . , k — 1 and i = 1, . . . , m that 

rb ßr 

IKII < SUP J2J1 aST0(M>o)l«y(*)l 
(9) te(«,ß)f?Ja 

•\y^(s)\ds\\x\\/\yj
r\t)\. 

For r = 0,. . . ,fc-l, | j / j r )(() | = y\r){t)6i, and, for r = 0,. . . ,n - * -

l.k-*+r)(')l = (-l)r»,-*+,)(0*- U s i ng Lemma 2 it follows that, for 
ß = 0,...,k-l, 

= ^-W»j , ) (*) -
Also, for /i = 0, . . . , n — k — 1, 

= *«6h*«y?+'0M. 
Thus, for r = 0,. . . , k — 1, the right-hand side of (9) is 

SUP £ £ [* ^9(t,8,a)%(8)yM{8)d8\\x\\/yjrHt) 

= sup yt\t)\\x\\/yt\t) 

te(a,0) 

= IMI-
Thus, for r = 0, . . . , k — 1 and i = 1,. . . , m, 

IKII < INI-
For r = 0,. . . , n — fe — 1 and i = 1,. . . , m, it readily follows that 

„(M-r)/,x| n-1 m .6 (o _ ,\n-k-r-l 

< E E f % I f_T-.'i)',i<(«)ii»'i'" ww W I ^ ' W I 
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using familiar arguments. The above strict inequality extends to a strict 
inequality on [a,/?] if [a, ß] C [a, 6). If ß = 6, there remains a problem. 
Using the fact that |t/f+r)|(n-fc-r) = ( - l ) n - * - r | y j n ) | , it can be seen 
that, as t —• 6— the right-hand side of the above strict inequality goes 
to the limit 

INlEl^(6)l|yiM)(6)l/|yin)(ft)l 
/ i=0 

fc—1 771 

= iNiEEK-(6)ii^)(6)i/i»in)wi 

whereas the left-hand side goes to the same term with the q^(b) 
replaced with p^Ab). The proof then proceeds as in the case when 
t —> a+ was considered, and one obtains that for r = 0 , . . . , n—k—1, i = 
l , . . . , r a , 

lto(fc+r)IKIMI. 

It has therefore been established that, for r = 0 , . . . , n — 1 and 
i = l , . . . , r a 

IKII < INI-
Thus ||a;|| < ||x|| and from the contradiction, the truth of Theorem 2 
is implied. 
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