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CONTRACTION OF THE SCHUR ALGORITHM FOR 
FUNCTIONS B O U N D E D IN THE UNIT DISK 

WILLIAM B. JONES AND W.J. THRON 

ABSTRACT. If in the Schur algorithm, some of the para­

meters 7n vanish, then successive elements in the sequences 

(1) {DnFn} and (2) {Cn/En} will be equal to each other so 

that one cannot get continued fractions with the elements of 

(1) and (2) as approximants. It is also difficult to determine 

the degree of correspondence of the sequences (1) and (2) to 

series P and Q at 0 and oo, respectively. For the contraction, 

continued fraction expansions can be obtained and the degree 

of correspondence can be computed, using the contraction, for 

all elements of the sequences (1) and (2). 

1. Introduction. In 1907 Carathéodory investigated functions 
holomorphic on the unit disk and mapping it into the right half plane 
Re uj > 0. In two articles [4] in 1917/18 J. Schur studied the related 
family 

(1.1) U := {/ : f(z) holomorphic and | / (z) | < 1 for \z\ < l\. 

(For further historical remarks and references see [1].) 

Schur's investigation was based on the algorithm: given fn e U, 
determine / n +i by 

(1.2) fn+i:=tn\*,fn). 

Here 

(1.3) tn(z,w) := ?"tZW , n>0, 
1 + 7 n 2 W 

and 

(1-4) 7n = /„(0). 

Research supported in part by the U.S. National Science Foundation under Grant 
No. DMS 8401717. 

Recieved by the editors on September 3, 1986. 

Copyright © 1 9 8 9 Rocky Mountain Mathemat ics Consort ium 

211 



212 CONTRACTION OF SCHUR ALGORITHM 

Further define 

(1.5) Tn(z,w) =Tn_i{z,tn{z,w)), n > l , T0{z,w) = t0{z,w). 

Starting with / G U and setting f = fo Schur was able to associate 
with / a sequence of functions {/n} and a sequence of parameters {7™} 
such that fn G U, n > 0, and |7 n | > 1, n > 0. If |7w| = 1 the sequence 
terminates, fx = yN, and 

f(z) = TN-i(z,'yN). 

If no |7 n | = 1, the sequence continues indefinitely and 

f(z) = lim Tn(z,wn), \wn\ < 1, |^| < 1. 
n—*oo 

Conversely, given any sequence {7n} with |7 n | < 1 n > 0, the sequence 
{Tn(z,wn)}, \wn\ < 1, converges, for |^| < 1, uniformly on compact 
subsets to a function f e U. 

Since the tn(z, w) are linear fractional transformations in w, the same 
is true for their composition Tn{z,w) and hence one can write 

a a\ T ( \ Cn(z)zw + Dn(z) 
(1.6) Tn(z,w) = —y- , n > 0, 

where in view of (1.5) the Cn,Dn,En, Fn are polynomials in z satisfying 
the recursion relations 

(17a) (Ê)-(£:Mfc 
(£)-"(£:)•(£;)• 

with the initial conditions 

(1.76) C0 = 1, D0 = 7o, E0 = %, F0 = 1. 

It follows from (1.7) that 

Dn = 70 + • • • + lnZn, 

En=7„ + ---+%zn, 

Fn = ! + ••• + 7o7n^", 
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so that all of these functions are polynomials in z of degree at most n. 
The degrees are exactly n if all 7n ^ 0, 0 < m < n. It has also been 
shown that there are continued fractions having the sequences {Dn/Fn} 
and {Cn/En} as their nth approximants, respectively, provided all 
7n ^ 0. The continued fraction for {Dn/Fn} is 

, r 7 i - l 7 o | 2 ) * - ^ i - M 2 ) * - % ( l - l 7 2 l 2 ) * 
7 0 { 1+707!* + l+£* + 1 + ^ 2 + ' " ' 

Define A a ( / ) to be the Taylor series expansion of the function / at a, 
if it exists, and denote by Aoo(/) the Laurent expansion of / at oo, if 
it exists, and denote by A00(f) the Laurent expansion of / at oc, if it 
exists. As before let / be the function to which {Tn(z,wn)} converges 
for \z\ < 1, \wn\ < 1. There is also a function g to which the sequence 
converges for \z\ > 1, \wn\ > 1. Set 

Lo(/) := P = X>nA L00(g):=Q = Yldnz-n. 

The following "correspondence" formulas are known to hold, provided 
all 7 n # 0. 

A O ( T T ) - P = O(,"+1), 

Ao(£)-P = <Xz"), 

Thus it becomes of interest to investigate what happens if some 
7n = 0. It is convenient to consider two cases: 

(a) 7n = 0 for all n> N. 

(b) 3 a sequence {Nk} of non-negative integers such that *yNk ^ 0 
and 7n = 0 for all n ^ Nk-

In case (a) one has 

CNzn-N^w + Dn 
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in view of 
tn(z,w) = zw, for n> N. 

Case (b) will be studied in the remainder of this article. For convenience 
sake we shall assume that No = 0, so that 70 ^ 0. If the first 
nonvanishing j n is 7 m one can write 

Tn(z,w) = zmTl_m(z - to). 

The results summarized in this section can be found in Schur 's 
original paper and/or in [1]. 

2. Transition to the contraction. We shall, from now on, assume 
that 

7* ^0&k = Nn, 

where {Nn} is the sequence of non-negative integers introduced at the 
end of the last section. As mentioned there, we shall assume iVo = 0. 
This is equivalent to 70 ^ 0. We now define 

ßn: = jNn, n > 0 , 

OLn : = Nn+i - Nn, n > 0. 

It follows that 0 < \ßn\ < 1 for all n > 0 and that an is a positive 
integer for all n > 0. Further, 

n 

(2.1) Nn^ = J2ak' 
fc=0 

Next we introduce 

(2.2) tn(z, w) := = , n > 0, 
1 + ßnz

a»w 

and 
fn(z,w) :=Tn_i(z,£n(2,iu)) , f0{z,w) :=t0{z,w). 

One easily verifies that 

(2.3) TNN+1-X(Z,W) = tn{z,w), n > 0. 
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Since {Tn(z,w)} is thus a subsequence of {Tn(z,w)}, it follows that 

lim fn(z,wn) = f{z), for \z\ < 1, \wn\ < 1, 
n—>oc 

lim fn(z,wn) = g(z), for \z\ > 1, \wn\ > 1. 
n—>oc 

We shall refer to the sequence {Tn(z,w)} as the contraction of the 
sequence {Tn(z,w)}. 

3. Basic formulas for contractions. Even though our main 
interest in the sequence {Tn} is as the contraction of a sequence {Tn}, 
we can also think of it as being generated by an arbitrary sequence 
{ßn} with 0 < \ßn\ < 1 and an arbitrary sequence of positive integers 
{a n } . Note that it is always possible to reconstruct from a sequence 
{Tn} the sequence {Tn} of which it is the contraction. 

Since it is the composition of linear fractional transformations, 
Tn(z,w) can be written as 

(3.1) Tn(z,w)=:-r ^ - , n > 0 . 
Enz

a»w + Fn 

Then 

Toiz.w) = — = to{z,w) = =-
E0z

a°w + F0 ß0z
a°w + l 

so that one can set 

(3.2a) C 0 = l , D0 = ßo, ,En = ß 0 , F0 = 1. 

For n > 1 one has, from (2.3), 

Ènz<*»w + Fn En-lZ^-i(^zanw + F n _ 1 ' 

Hence we can set, for n > 1, 

(f;) = (tl)^'+^(fc;), 
(3.26) 

(?;Wfe:K-'+(fci) 
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Using (3.2) and (2.1) one finds, for the functions Cn,Dn,Ën,Fn, the 
expressions 

En=ßoZN« + ''- + ßn, 

Fn=ß0ßnz
N» + -- + l. 

It follows that these expressions are all polynomials of exact degree 
Nn in z. Since Tn(z, w) = t\ o • • • o tn(z,w), the determinant of the 
transformation on the left is the product of the determinants on the 
right, that is 

n 

za~(CnFn - DnÊn) = l[((\ßk\
2 - l)zak). 

Hence 

(3.4) CnFn-DnÊn = {-l)n+1pnZN», 

where 
n 

(3-5) p „ : = r j ( l - | Ä | 2 ) -
fc=0 

From (3.2b) one obtains 

so that 
(3.6) AiFn-l - A À - 1 = (-1)"ßnPn-lz"" • 

Similarly one proves 

(3.7) (?„£„_! - EnCn-i = (-ir+'ßjn-iz"-1-

Using (3.6) we get 

Dn Â . - 1 
Hn = 

(irßnpn-lZ
N» 

( ! + ••• + ßoßnZN")(l + ••• + ßoßnZN*)(l + •••+ ßoßn^Z^-r) 
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so that 

oc oc 

/> = /?o + ^ A 0 ( / / f c ) and Q = ß0+ £ Aoc(#fc) 
fc=l k=n+l 

are well defined power series satisfying 

oo oc 

P-Ao(Dn/Fn)= J2 A°(H*)> Q-A0O(Dn/Fn)= Y, ^oo(Hk). 
k=n+\ k=n+\ 

From this 

(3.8) Ao&)-P = 0(zN«+>), 
* n 

(») M?0-«-°((ir)-
follows. Using (3.7) an analogous arguments leads to 

(3-9) A o ( ^ ) - P = 0 (* N " ) , 

*-&)-*-oW")-
Since the sequences {Dn/Fn} and {Cn/Ën} converge for \z\ < 1 and 
\z\ > 1 to the functions / and g, respectively, it follows from [3, 
Theorem 5.11] that 

P = Ao(/), Q = Aoc(^). 

We shall return to the implications of the formulas (3.8) and (3.9) 
for "correspondence" and membership in certain Padé tables (see [3, 
Sections 5.1 and 5.5]) in §5. 

4. Continued fraction expansions. The following lemma is useful 
in deriving continued fraction expansions for certain sequences. 
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LEMMA. Let sequences {Xn} and {Yn} satisfy the recursion relations 

Xn = anXn-i + 6nFn_i, n > 1, 

Yn = c nX n_i + dn^n-i , n > 1, 

where bn ̂  0, cn ̂  0 /or all n > 1. Then, for n > 2, 

-^n = U n + 7 ^n-1 ) ^ n - l ~ 7 (ûn-l4-l ~ bn-\Cn-\)Xn-2, 
\ Ön_i / bn-i 

Yn — \dn H fln-1 )^2 n _i (a n_id n_iò n_ic n_i)F n_2. 
V Cn-l ' Cn-i 

The proof rests on the fact that 

Xn — anXn-i — bncn-iXn-i + bndn-\Yn-2 

and 
bn-iYji-2 — Xn-\ — an-\Xn-2' 

Substituting Fn_2 from the second expression into the first yields the 
formula, o 

Applying this result to the sequences {Cn} and {Dn} leads to 

Cn = (z°"-i + J M c „ - i - ^-za—(\ - lÄ.-xl^Cn-a, 

Pn-1 Pn-1 
Ùn = i1 + ̂ -^"-^Dn-l - ïr-Z^iX - \ßn-l?)Dn-2, 

V Pn-1 ' Pn-1 

for n > 2. Similarly, for {Ên} and {Fn} and n > 2, and one obtains 

En = (za^ + =r>-)Ên-l - ^-Z°"-^l - \ßn^\2)En^2, 
Pn-1 Pn-1 

Fn = (l + JO-^n-Ap^ _ Jü-**n-Hl _ \ßn_^)Fn_2. 
V Pn-1 / Pn-1 

Now C0 = 1, Ê0 = ß0 and thus 

Ci - 2 a o + A f t = (z"° + ßoßJCo + ßiQ - \ßo\2)C-u 

È, = ßlZ
a° + ßt = (z^+ßoßAEo + ßil - \ßo\2)E-!, 
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provided one sets C-\ = 0, E-\ = 1. Similarly, Do = ßo, FQ = 1 
and 

Dx = ßxz
a° +ß0 = {ß~oßizao + 1)Â> + ßiza°(l - |/3b|2)£-i, 

A = ^ o A ^ ° + 1 = (ßoßiza° + l)Fo + ßizao(l - IA>|)2)F-i, 

provided one sets D_i = 1, F_i = 0. It follows that {D„Fn} is the 
sequence of approximants of the continued fraction 
(4.1) 

ft(i-_iA)i2)*ao -fca-iAiv*1 -&(i-iÄiy» 

Similarly {En/Cn} is the sequence of approximants of the continued 
fraction 

g ,&(i-|ftla) -ftO-lftlV» -%(i-|ftlV" 

From these two expansions it follows that 

Èn{\) 

Cni\) 

Dn(z) 

[Fn(z) 

For \z\ < 1 the sequence on the left converges to \/g{\) and the 
sequence on the right to f(z). We thus have 

(4.3) g{z) = Wy N > 1 -

We can summarize some of the results we have obtained as follows. 

THEOREM 4.1. Let f E U be such that its parameter sequence {yn} 
satisfies 7 # 0 and 7n ^ 0 if and only ifn = Nk and there are infinitely 
many integers Nk- Further let ßn = jNn, an = ATn+1 — Nn. Then 
the continued fraction (4.1) converges to f(z) and the continued fraction 
(4.2) converges to l/g(l/z) for \z\ < 1. 
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There is a similarity between continued fractions (4.1) and (4.2) and 
C-fractions K(anz

otn/l). However this similarity does not go as far as 
one might at first suspect. 

5. Correspondence in the general case. In this section we 
determine the correspondence of Cn/En and Dn/Fn to P = Ao(f) and 
Q = Aoo {g) in the general case (provided an infinite number of 7n ^ 0 
and 7o ^ 0). We use the results of the preceeding sections. 

From the recursion relations (1.7a), one obtains for m ^ Nk, that is, 
lm = 0 , 

(5.1) 

m \ _ / C m _ i \ 
•m J \Em-i J ' 

Iteration of these formulas leads to 

(5.2) 

fCNn+k\ _ zk (CNn\ 
\ENn+k) \ENnJ' 

V *Nn+k J \ *Nn J 

for 0 < k < Nn+i - Nn - 1 = an - 1. From the identity (2.4), noting 
that the normalizations are the same, one deduces 

fCNn+l-i\ = zan-i (C.n\ 
(5 3) \ENn=i-iJ \EnJ' 

( DN^-A = { Dn\ 

Combining (5.2) for k — Nn+i - Nn - 1 and (5.3) one gets 

(CNn+1-l\ _ Q„-l [CNn\ _ an _ 1 (Çn\ 

U"»+.-J \ENJ-Z 1{EJ> 
(DNn+1-A = {DNn\ _ (Dn\ 
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From this 

(5.4) Cn = CNn, Dn = DNn, Ên = ENn, Fn = FNn 

follows. Since constant terms as well as coefficients of zNn in FnEn do 
not vanish, it follows from (3.8) and (3.9) that 

PFn-Dn = 0(zff*+1), <?Fn-Â, = o((i)°), 

PÊn-Cn = 0(zN"), Q Ê n - C n = 0 ( ( i ) a " ) . 

Hence, for 0 < k < an, 

PFNn+k - DNn+k = 0(zN^), QFNn+k - DNn+k = o ( ( J ) ° ) . 

Thus (considering actual degrees) D]yn+k/!FNn+k is the weak (Nn,Nn) 
two point Padé approximant for (P,Q) of order (Nn+i,Nn) (for defini­
tions see [2]). Further, 

PENn+k-CNn+k = 0{zN»+k), QENn+k-CNn+k = 0 ( ( i ) a n ~ " ) . 

Now 2Nn + 2& + 1 < Nn + k + iVn+i, since k < an - 1, and hence 
CNn+k/Eivn+k is the weak (7Vn+A;, Nn+k) two point Padé approximant 
of order (Nn + fc, iVjv+i) for (P, Q). 

For the ordinary two point Padé approximants one has: D^n^k/F^ri+k 

is the (Nn,Nn) two point approximant of order (Nn+i,Nn) for (P,Q). 
However C;vn+fc/£Wn+fc is not always a two point Padé approximant 
for (P, Q) since JVn+1 + Nn > 2Nn + 2k + 1 holds only for an > 2k + 1. 
If A: satisfies this condition, then CNn+k/ENn+k is the (Nn 4- k, Nn + A:) 
two point Padé approximant of order (JVn+i, Nn) for (P, Q). 
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