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BIVARIATE CARDINAL INTERPOLATION ON
THE 3-DIRECTION MESH: IP-DATA

KLAUS HOLLIG, MARTIN MARSDEN,
AND SHERMAN RIEMENSCHNEIDER

The analogue of the unvariate cardinal spline theory of Schoenberg
has been successfully carried out for bivariate box splines on a three
direction mesh [1,2,3,4]. However, there is one result that had eluded
us: The convergence theory for bivariate cardinal spline operators
from [P(Z?) to LP(R?). In [5] it was shown that the sequence of uni-
variate cardinal spline interpolants, indexed by degree, has uniformly
bounded norm when considered as a sequence of operators from [P(Z)
to LP(R),1 < p < oo, and that these operators converge strongly in
LP(R) to the classical Whittaker cardinal series. The analogous result
for the bivariate case has been established only in the relatively trivial
case p = 2 [1]. The aim of this paper is to complete this result, at least
in the case of equal direction multiplicities.

The (centered) box spline M, corresponding to the three directions
e; = (1,0),e2 = (0,1),e3 = e1 + e2 = (1,1) with equal multiplicities n
may be defined by its Fourier transform,

3

M (2) = [] (sinc(ze, /2))"

v=1

where sinc (t) := sint/t. Thus, M, is the n-fold convolution of the
piecewise linear “hat-function” which indicates clearly the connection
between box splines and univariate cardinal splines.

It was shown in [3] that the trigonometric polynomial
Py(z) =) Mo(j)e™* = ) My(z+2mj)
j€z? j€z?

is strictly positive and attains its minimum at (27/3,27/3)mod2722.
This implies that cardinal interpolation with the translates of the
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(2n/3,2n/3)

FIGURE 1.

box splines M, is always well posed. That is, for given bounded
data y = {y; : j € Z2%}, there exists a unique bounded spline
I,y € S, := span{M,(- — j),j € Z?} which interpolates y at the
lattice points

Iny(]) =Yj ] € Z2'
The cardinal spline interpolation operator I,, has the Lagrange repre-
sentation

Ly(w) =Y yjLn(w - j), weR?,
j€Z2

where L,, is the fundamental spline defined via its Fourier transform as

1 M, (zx)
~(2m)2 Jp2 Pu(x)

e"?dzr.

L,(w):

Since P, is a non-vanishing trigonometric polynomial, |L,(w)| has
exponential decay as |w| — +oo. Hence, if y € IP(Z2), then I,y €
LP(R2).

Denote by € the convex hull of +(27/3,2n/3),+(4n/3,—-2x/3),
+(27/3,—47/3) (cf. Figure 1).
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This set is a fundamental domain, i.e., its translates 27j +Q, j € Z2,
form an essentially disjoint partition of R2. in [1,2] we showed that
the cardinal interpolants of a function f converge, as the degree tends
to infinity, if the Fourier transform of f is a distribution with support
contained in the interior of €. Our main Theorem strengthens this
result.

THEOREM 1. The bivariate cardinal spline interpolation operators I,
have uniformly bounded norms as operators from IP(Z?) to LP(R?),1 <
p < 4+00. Moreover, for each y € IP(Z?),

lIny — Wyllp >0 asn — +oo

where W .y — Zjez2 yjXa(- — j) with xq the characteristic function
of the set Q2. The Fourier transform of xo can be calculated ezxplicitly,

—6 cos 27 (wy + we)/3
21)2 | (wy — 2wsg)(wg — 2wy)

)A(Q(w) = (

cos 2m(wy — 2w;)/3 4 o8 27 (wy — 2w2)/3
(w1 +w2)(w1 —2wz) (w1 + w2)(w2 — 2wy) |

The proof of this theorem is based on estimates for certain derivatives
of L,,. To formulate these estimates we need some auxiliary notation
(cf. [1]). For z = (u,v) and j = (k,l) we set

Mn(a:+27rj)=( u )n( v )n( u+v )n'

4@ == uvtk) \vri) \uxvrk+l

By straightforward, but tedious, computation one verifies that
Q={2rz:0<aj(z) <1forjeJ},

where J = {£j, : v = 1,2,3} with j; = (1,0), j2 = (0,1), 73 = (1,-1).
The line segments I';, j € J, making up the boundary of Q2 are subsets
of {27z : aj(z) = 1}.

Because of the equal multiplicities, the box spline is invariant under
linear changes of variables which do not alter the mesh generated by the
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three directions e,. The group A of such transformations is generated
by the matrices

0 -1 1 0
A?’12) = (_1 0 ) ’ A(13) = (1 _1) )

-1 1 _ -1 0
A(23) Z=( 0 1), A :=( 0 _1>

Thus, any permutation o of the three directions te, corresponds to a
linear transformation A, € A. It follows from the definitions that

M,(A*z) = Mp(z),  Ln(A*z) = Ln(z).
Moreover, if R := {(u,v) : u,v > 0} denotes the positive orthant, then
Q=U,QN R,

with R, := A, R.

With this notation, we now state the estimates needed for the proof
of Theorem 1.

THEOREM 2. Let R, := {z : dist(Ry,z) < ¢} and let Dy,1, Do 2
denote differentiation parallel to the two boundary segments of Q which
intersect R,. Then

n

sup/ ]Da,lDayzlA/n(x)|da: < 00.
R e

Note that D, , = (A;7,) -V with v; = (2,-1),72 = (1,-2).

THEOREM 3. There exist positive constants ¢; and ¢ depending only
on a such that

cynlel

|D[Ln(z) — xa(2)]| < [1 + c dist(z, 0Q)""

The proof of Theorem 3 is analogous to that of Theorem 3 in [2]. It
uses the following estimates of the derivatives of a;.
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LEMMA 1. There exist positive constants ¢; and ¢ depending only on
a such that, for 2wz € Q,

. 1+ cdist(z,T;)] ™ ™,j€d
D%aj(z)| < ¢ynl®! 13"|{[ en ’ .
D% < am™ U (14l 5 € 22\(7 U o))
This Lemma is easily proved by induction using Leibnitz’s rule. The
improvement over the corresponding result in [2] is possible because
the set Q does not depend on n.

LEMMA 2. Let 2’ = z + j,j € Z%\0, and let 2z € Q. There exist
positive constants ¢; and ¢ depending only on a such that

|D%a;(x)| < e1n!®![1 4 ¢ dist (27z’, 8Q)] ™.

Lemma 2 is a consequence of Lemma 1 and is used in turn to prove
Theorem 3. The arguments follow those for the corresponding results
in {2].

For the proof of Theorem 2 we need to examine the dependence of
the estimates in Lemmas 1 and 2 on n more carefully.

LEMMA 3. Denote by d; the distance of ¢ from I';,. Let R, := {z :
dist (R,z) < e} and let D; denote differentiation parallel to T';,. Then
there exist positive constants ¢y and ¢ such that, for 2mx € Q,

C1
< — =1,2,
laJxl - (1+Cdi)n1 ?
cmd,—
D;a; | < ——m—, 1=1,2,
I ia]tl — (l+Cd1)n L
can . .
| Draj,| < ET AL i=12, k#1i
2d‘
IDeDjas| < SEETAN g9 ki

(1+cd;)" ’

PROOF OF LEMMA 3. The first assertion follows from Lemma 1 with

a = 0. We have
o= () ()"
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1 1 1
D] = 75(1,—2) . V, D2 = ﬁ(2’_1) . V, D3 = 75(1,—1) -V.
Since
a a+b
(a,8) - Vay, =n[u(1—u) (u+v)(1—u—v)]aj'

it follows that

nev(l — 2u —v)

Diaj, = w(l—u)(u+v)(1—-u— v)aj”
_ ne3u(l —u) +2v(1 —2u—v)]
Dati = = T —a =)
ne
D3a;, = m%-

Since d; = 2\/"—5|1 — 2u — v|, the two middle assertions hold for a;,. A

similar analysis of (a,b)- V(D;a;,) gives the final assertion for a;,. The
corresponding assertions for a;j, follow by symmetry. O

PROOF OF THEOREM 2. By Theorem 3 we may assume that z is
within 6 of the boundary of . By symmetry, we may also assume that
Rs; e = R, and that € R, N {(u,v) : v < u}.

(Proof inside Q) We use the notation of Lemma 3. Since L, =
1/ a;, it follows that

Dy Dy, = 2(D1 Y a;)(D2 Y aj) — (X a;)(D1D; ¥ aj)
(2 ay)?
=0() [2(D1a]-1 + D1aj,)(D2aj, + Daaj,)

2
Cc3Nn
— (1 +aj + (1,]'2)(1311720.]‘1 + D1D2aj,) + O(m)]

for some positive c,c3 as n — +oo in view of Lemma 1. Thus, as
n — 400, Lemma 3 implies

. nd n n nd
|D\D; L] < ‘34[((1 +c¢111)" a +cd2)") ((1 Ted)r T +a212)")

2 2
+((7ll-flc;1;&" (quc;;;l") O((lfi_?:g)")]

2
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for some positive c4. Since

n? 4 n2; é n
— —d ———dz=0(1
(1+02)"+/(; 1+e2) z+/(; (I+cz)n ‘ (1)

as n — +oo, the contribution to [ R, | Dy Dy Ly,| from within Q is finite.

(Proof outside Q). Let z = (u,v) in RN {(u,v):v <u} and
dist (27rz, ) < 6, but 2wz outside of Q. Map z to =’ = (u — 1,v).
Then 27z’ is inside €2 so that, for an appropriate permutation o, 2nz" =
2rA,x’ is in Ry, with dist(2rz”,0Q) < 26 (The changes ¢ — 2¢ and
6 — 26 allow for some distortion if —¢ < v < 0 or 1/3 < v < u.). Using
the symmetries we have

Dngﬁn(x) = D1D3 (ajl (:L‘”)in(.l‘")) .

Omitting the argument ="/, we have

|D1Ds(aj, Ln)| = |(D1Dsaj, ) Ln + (D1aj,) D3 Ln
+ (D;;ajl )D]Ln + aj, D1D3izn|

2 n d
s c"’[((?jlc;l)n) + ((1 falzl)n")
n nd
t ((1 + cdp)™ ((1 +c;1)" + (1 +Zd2)"))

n2
T +lcd1)" ((1 Toayr Tt m)]

so that the contribution to f R |D1D2f,n| from outside Q is also finite.
u]

PROOF OF THEOREM 1. Let {y;} = y € IP(Z?) be a finite sequence
and g be a compactly supported function in LY(R?),1/p+ 1/q = 1.
For w € R?, let j(w) be uniquely defined by w — j(w) € [-1/2,1/2)2.
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Then

/ Z YjLn(w — j)dw

jez?
<| [ st Lntw = sl + | [ ow) 3 wlntw=i)du
R2
JjFi(w)
<l lglleim +| [ otw) 3 wlatw-i)dul.
R L
J7F3(w)

To estimate the second quantity we pass to the transform space. Let
{¢s} be a smooth partition of unity for R? subordinate to {R, e}
Then, in view of the decay of L,, and its derivatives at infinity, we have

ei(w—j):c

QZ/ De Dol a) (o)) ir

v=1 7a,u(w - .7)

where 75, := Ao~,. Consequently, by Fubini’s Theorem,

[ o) Y wikaw - i)

J#j(w)

Ln(z)e!™=9%dz) g(w)dw
? #i(w) (21r /Rz )
< Wz /R |Do.1 Do 2(90(2)Ln(2))]

yie —ij:
J 1wzg(w)dw
(w) Hv—l Yo,v (’UJ ])

Let

Hay(w)= Z H2 yj( _ )
i#i(w) Hv=17o {0 =J
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denote the mixed bivariate Hilbert transform corresponding to inde-
pendent directions ¥,.1,%,.2 in R%. Then H, is a bounded linear trans-
formation from (P(Z2%) to LP(R?) with norm ||H,||,,1 < p < +oo0.
Therefore, in view of Theorems 2 and 3 we have

[ stwonatin| =| [ atw) 3 Latw =

Jj€z?

< C(1+ Y o) il gl ars.
o

To show that ||I,y — Wyl||, — 0 as n — +00, it is enough to show this
for the sequences y = §;, i € Z2, where §;(j) = 1 if j = i and is zero
otherwise. Now

[|[1n6; = Wéil|Le(r2) = [ Inbo — Wéol|Lr(r2) = ||Ln — Xellp-

Theorem 3 implies that L, — Xq uniformly in R2. Finally

|Ln(w)| < 2 z l/ b0 ()L, (z)e™ dx
27r)2 Z T

v=1 Yo, "wl

X /, e |Dg1 Dy aLn(x)|dz = O(I_u}_P) for large |w|
allows the estimate
|Ln(w) = X (w)| = O(min(1, 1/]w[*)).
Hence, ||L,, — Xallp — 0 by the dominated convergence theorem.
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