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ON DUALITY IN RATIONAL APPROXIMATION
GERHARD GIERZ AND BORIS SHEKHTMAN

1. Introduction. Let K be a compact Hausdorff space and C(K)
be the space of real-valued continuous functions on K. For a given pair
of subspaces G,H C C(K), let R(G,H) = {g/h : ¢ € G,h € H
and h(t) > O for all t € K}. In [3] we gave a necessary and
sufficient condition for a function f € C(K) to belong to R(G,G).
The characterization was given in terms of the measures orthogonal to

G.
In this paper we generalize this result in three different ways:
1) We consider the case when G # H.

2) We give a formula for the distance between a function f € C(K)
and R(G, H).

3) For a given sequence of continuous functions fy, ..., f, we study
the existence of functions r; € R(G;, H) such that r; = g;/h with
gi €G;, he Hand ||f; — ri|]| < e

The last problem can be called a simultaneous rational approximation
with common denominator. This problem turns out to be relevant to
multi-variable rational approximation.

The second part of this paper is dedicated to various applications to
cases when the spaces G; and H are spanned by algebraic or trigono-
metric polynomials with gaps. In particular, some generalizations of
the results of J. Bak and D.J. Newman [1] and G. Somorjai [5] are
given.

2. The main theorem. Let Gy,...,G,,H C C(K) be subspaces
of C(K). Let f = (f1,..., fn) be an n-tuple of functions from C(K).
Consider the set

R(Gi,...,Gn; H) = {(%%) :g: € Gi,h € Hh(t) >0Vt € K}.

Clearly R(G1,...,Gn; H) C x_,C(K); R(Gi, H) = 0 if and only if H

does not contain strictly positive functions. For f = (f1,..., fn) we
Copyright ©1989 Rocky Mountain Mathematics Consortium

137



138 G. GIERZS AND B. SHEKHTMAN

introduce a notion of distances to R(G;, H) by

d(f,R(G1,...,Gn; H)) =

i Gy . (9% In )
mf{max{ fi hH.z—l,...,n} : ( ) ER(GI,...,Gn,H)}.

h’""7 h
We also use the standard identification of the dual space to C(K) with
the space M(K) of regular Borel measures on K.

THEOREM 1. Let f, R(G;, H) be as before and R(G;, H) # 0. Then
d(7’R(Gl .o, Gni H))
= sup{d(f,R(GY,...,G;H'")) : Gi,H D H
and dim(C(K)/G’)
=dim(C(K)/H') = 1}
zsup{5:2ﬁpi+1/20
for #iLGi,VlH,Z [l + vl # 0,

fi - fill < 5}
= sup{s Y fimitv>ey ] |mil,
L Guow LH, 3 (a + ] # 0},

PROOF. It is convenient to denote the above quantities as d;, d3, d3,
and d4 respectively. Clearly d; > d,.

We next show that d3 > d;. Indeed choose d < d;. Consider the set

W(F.e) = {(gl,m g ) € xIHIC(K), h(t) > 0

. G
Vie K: -
fi Y

Then our assumption is equivalent to

W(f,d)NGy x Gy x---x G, x H=0.
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It is easy to observe that W is an open convex set in x'*'C(K),
hence, by the Hahn-Banach theorem there exists a functional ¢ on
[x2!C(K)) such that

(1) 9lGy x Gy x -+ x G, x H and ¢(g1,-..,gn,h) >0

for every (g1,--- ,9n,h) € W(f,d). Since every ¢ is of the form
© = (1, im, v) € XM M(K), it follows from (1) that there exist
wiLlGi,vLH so that 3 p;(g:) +v(h) > 0 as soon as ||f; — 4[| < d. Let
[|fi = fill < d. Then, for any strictly positive h, choose g; = f;h. We
have, for any positive h,

> wilfih) +v(h) 20

or equivalently (3 ﬂu + v) > 0. To summarize, we have shown that,
for every d < dy,d3 > d. Hence d3 > d;.

Next we show d4 > d3. Suppose that ) fiu,- + v > 0. Then, for any
sequence of functions F; € C(K) with ||F;|| < 1, we have

OSZfilti+V=V+Z(fi—€Fi)#i=V+Zfilti—EZFilti~

Hence v + ) fini > € F;p;. Taking the supremum over all choices
of F;, we have v+ Y fip; > 3 |puil.

Finally d4y < d3. Let d < d4 and let p1; L G;,v L H so that Y fiu,+v >
d Y |pi]- Then, reversing the previous step, we see that Y fiu + v >
d " F;p; for any sequence of F; with ||F;|| < 1. Hence

@) 3" fimi+v > 0forall fillf; - fill < d.

Choose G = keru;, H' = kerv. We want to show that there is no
g, € Gi,h € H' so that h > 0 and |tfi — $|| < dforalli=1,...,n.

Indeed if there were, we would have g} = f;h and (3 fip; + v)(h) = 0.
That contradicts (2). 0

3. Examples and applications. We start with some applications
of the technique described above to the density of rational functions
with respect to Miintz polynomials.
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Let A = (A;) be an ordered infinite sequence of positive real numbers.
Let
E= span {1, t)\})‘eA C C[O,l]'

It was proved (cf. 1, 3-5]) that, for every ¢ > 0 and every f € Clo 1,
there exist q,h € E,h > 0 so that ||f — || < €. Here we consider the
problem of simultaneous approximation with a common denominator.
We will need the result proved in [3].

PROPOSITION 1. Let E = span {1,t*}xca. Let pLE, 0. Then
a) if \j — oo, then supsupp ut Nsuppp~;
b) if \; = 0, then 0 € suppput Nsuppp™.

THEOREM 2. Given fi,...,fn € C([0,1]) and € > 0, there exist
915---,9n,h € E with h(t) > 0 for all t € [0,1] so that

fi—%“<e fori=1,...,n.

PROOF. By Theorem 1 it is enough to show that, for any set of
measures Ui, ,fn,VLE and for any ¢ > 0, we can find f; with
[Ifi — fll < € and Y fiu; + v is not a positive measure. We first
consider the case when A\; — 0. Then there exist & > 0 and f, € Co,

so that ||fi — fi|| <  and
fil[o,a] = 3; = constant .

Then (3 fiti + )lj0,a) = (X Bitti +v)|j0,a)- Since (¥ Bipi + v) LE we
have from Proposition 1 that (} 8;u; +v)|[0,q) is neither a positive nor
negative measure. Hence (3 fiu; + v) cannot be positive.

Similarly, if A\; — oo, we choose f; so that ||f; — fi]| < € and f; is a
constant near the right hand side end point of the supp y;. Then, again
near the sup(supp (}_ fiui +v)), the measure 3" f;u; + v coincides with

the linear combination of measures p;v and thus by Proposition 1, the
measure Y, f;i; + v cannot be a positive measure. 0

COROLLARY. Given an infinite sequence \ of positive real numbers,
let

E =span{1,1;",£3%,- - ,tx}ar.amexn . a € C((0,1]).

i=1
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Then, for every f € C([0,1]") and € > 0, there exist g,h € E with
h(ti,--- ,tn) >0 for all (t1,...,t,) € [0,1]" such that ||f — #|| <e.

PROOF. We first approximate f(t;,---,t,) by the tensor product of
functions of one variable

fltr,ot) = > [ £is ().

j=li=1

We next approximate the functions {f;(¢;)} by the expressions of the
form g;(t;) over h(t) where g;(t;),h(t;) € span{l,t}},ea. Since we
can accomplish this process with the fixed denominator for all j, we
then can add the rational approximation to [] fi;(t;) together and still
remain in the class E, since only the numerators were added and the
denominator remains the same.

That Corollary leads to the following interesting problem. Let F C
C(K) be a subspace. Let

R(E) = {h g,heEh()>0VteK}.

PROBLEM 1. Suppose that R(E) is dense in C(K). Does it imply
that R(E ® E) is dense in C(K x K)?

While we do not know the answer to this problem (we suspect it is
negative), we can construct a subspace E C C(K) so that R(FE) is
dense in C(K), yet there are functions fi, fo € C(K) that do not have
a simultaneous approximation with a common denominator from R(FE):
Let K = [0,2r]; let E C C(K) given by

27 2x
E={feC(K): f(z)sinzdz = f(z) coszdx = 0}.
0 0
Then it was shown in (3] that R(FE) is dense in C(K). However if we
choose f; =sinz, fo = cosz, p; = sinzdzr, s = coszdx and v = 0, we
have

fip + faps + v = (sin? z + cos® z)dz = dz > —| sinz + cos z|dz.

7
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Hence, by Theorem 1, if we choose f = (f1, f2),G1 = Go = H = E we
have 1

d(f,Gi,H) > —.

(f ) > 7

The next problem deals with the approximation by means of rationals

of the form ¢ where g and h are chosen from different subspaces. Let

A = (}) and A’ = (/\;) be two different sequences of positive real

numbers; define

G = span {1,t*}ca, H = span{1,t*} ea C Clo.q-

PROBLEM 2. Are functions of the form £,9 € G,h € H dense in
Cio.)?

We will give two results in this direction here that can be viewed as
an extension of the theorems proved in [2] and [3].

THEOREM 3. Let G,H be a pair of subspaces of C(K) such that
R(G, H) is dense in C(K). Then every measure ul G has the property
that

supp u* Nsupppu™ # 0.

PROOF. Suppose that suppu™ Nsupppu~ = @. Then there exists a
function f € C(K) such that

flsuppu+ =1; flsuppu- = -1
Choose v L H to be identically zero. Then fu + v = fu = |u| which by

Theorem 1 implies that f € R(G, H). 0

THEOREM 4. Let (\;) be an infinite sequence of positive reals with
lim\; = 0. Let H = span {1,t*} C Clo,1). Let G be a subspace of Cig )
such that p LG implies supp u* Nsuppp~ 7 0. Then every f € Cjoy

with the property f(0) = 0 can be uniformly approzimated by elements
of R(G,H).

PROOF. Given ¢ > 0 and f € Cjp,y) with f(0) = 0, choose a > 0 so
that there exists f € Cjp,1) with [|f — fll < € and f'[O,a] = 0. Choose
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LG and v1H. If v # 0 we have fu + V|(0.a]- By Proposition 1 we
know that v ) cannot be a nonnegative measure.

Suppose now that v = 0. Then we have to prove that the inequality
fu > €|p| cannot hold for any € > 0. If it does, then (é),u > |u] and
hence the functional p attains its norm on the function(—1) v ('E[ A1)
which implies that supp u* Nsupp x~ = 0, a contradiction.

Examples of subspaces G satisfying the conditions of Theorem 4 are
given in [2] and [3].
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