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ATOMIC CHARACTERIZATIONS OF 
MODULATION SPACES 

THROUGH GABOR-TYPE REPRESENTATIONS 

HANS G. FEICHTINGER 

ABSTRACT. Given s G R and 1 < p, q < oo the modula­
tion space Mp g ( R m ) can be described as follows, using the 
Gauss-function go,go(x) '•= exp(—x2) 

Mp%(Rm) 

INMp%|| 

(Writing Mt, Mtf(x) := exp(ix • t)f(x),t,x G R m ) for the 
modulation operator. Among these spaces one has the clas­
sical potential spaces 

£ 2 ( R m ) _ j v / | 2 ( R m ) and the remark­
able Segal algebra 5 0 ( R m ) = M f ^ R ™ ) . It is the aim of 
this paper to show that for these spaces an atomic charac­
terization similar to known characterization of Besov spaces 
can be given (with dilation being replaced by modulation). 
Our main theorem is the following: Given s G R and some 
So # 0, go G Mj*j(Rm) (e.g., g G 5 ( R m ) or g G L1 with 
compactly supported Fourier transform) one has: 

THEOREM . There exist ao > 0 and ßo > 0 such that, for a < a 0 

and ß < ßo, there exists C = C(a,ß) > 0 with the following property: 
f e M^ q (R m ) if and only iff = Yin,k an,kMßnLakgo, for some double 
sequence of coefficients satisfying 

[ E (El0».*!")*^1 + Wr]1 / 9 < c||/|MpyRm)||. 
n k 

The convergence is in the sense of tempered distributions, and in the 
norm sense for p,q < oo. 
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1. In t roduc t ion . The investigation of modulation spaces has been 
suggested by the author, starting at first from the simple idea of 
replacing the dyadic partition used in the characterization of Besov-
spaces by an equidistant one. It turned out that the characterization 
used in the abstract (here it would have been sufficient to assume 
that go T1 0 is any Schwartz function or g0 € L1 with compactly 
supported Fourier transform, cf. [10], [11], [20], Kap. 5.2) is more 
elegant and admits shorter proofs of some of the basic properties of 
these spaces, such as the invariance of some of these spaces under the 
Fourier transform. 

The most interesting among these spaces are L 2 (R m ) = M% 2 (R m ) 
and S0(Rm) = M ^ R ™ ) . For p = q = 2, s = 0, m = 1 and g0 

being the Gauss function, our results may be considered as Gabor 
representation for / (cf. [17]), however, with an estimate on the 
coefficients in £2. This is in contrast to the classical situation (where 
the von Neumann lattice with aß = 2-K is chosen; in that case the 
operators Lx and Mt involved commute, but unbounded coefficients 
may arise). For p = q=lis = 0 one obtains an improved atomic 
characterization for the Segal algebra So(G) and for p = q = oo of its 
dual space (cf. [8], [7], [13]). A typical feature of our approach is the 
considerable freedom in the choice of go as "basic" function. 

As a corollary of the main result we shall have the following results: 

COROLLARY 1. Given f e <S(Rm), s e R and g0 e 5(Rm) , g0 # 0, 
there exists a,ß > 0 (depending only on go) such that f E £ 2 ( R m ) (the 
Bessel potential space, cf. [21]) if and only if 

f = / ^n^MßnLgkgo 
n,fc 

for a double sequence satisfying [%2n J2k lan,fc|2(l + Ini)28]1/2 < oc. 

COROLLARY 2. Given f e Ll(Rm) and g0 e S 0 (R m ) , 0o # 0, 
there exists a,ß > 0 (depending only on go) such that f G 5o(Rm) if 
and only if f = ]Cn,fcan,fcA /̂3n£afc<7o for a double sequence satisfying 
EnEfcKfcl <°0. 

As mentioned already in [13] the special choice #o =Gauss function 
implies a number of properties for So(Rm) (which are stated for general 
lea. groups in [7, 8], using a fairly different approach). 
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2. Basic properties of modulation spaces. We want to summa­
rize here a few facts concerning modulation spaces which may be de­
fined as inverse images under the Fourier transform of certain Wiener-
type spaces (for basic facts cf. [9] and [12]). In order to describe these 
spaces we need the following conventions: We shall need the weighted 
/^-spaces £?(R m ) , given by 

Lq
s := {/| | | / | ^ ( R m ) | | := (J l / W r h + W r ) 1 ' ' < oc} 

which are Banach spaces with respect to their natural norms for 
1 < q < oo. Because w = ws : x —• (1 + \x\)s, s > 0, satisfies 
w(xy) < Cw(x)w(y) for all x,y G R m it is a weight function on 
R m in the sense of Reiter [19], and Lq

s is invariant under translation, 
given by Lxf(z) := f(z — x). It also follows that L\ is a Banach 
convolution algebra (called Beurling algebra, cf. [19]) for s > 0 and 
one has Ll, * Lq

s Ç Lq
s for 1 < q < oo, together with the corresponding 

norm estimate. C°(R m ) denotes the space of continuous, complex-
valued functions vanishing at infinity, endowed with the sup-norm 
|| | |oo, and M ( R m ) denotes the space of bounded, regular measures 
on R m , which is considered as the dual space to C°(R m ) . We denote 
by TIP the image of Lp (considered as a subspace of <S'(Rm)) under 
the Fourier transform and assume that it is endowed with its natural 
norm, i.e., | | / | | ^ L P '= | | / | | L P - It is now clear from the basic properties 
of the Fourier transform that TLV is a translation invariant Banach 
space of tempered distributions which is a pointwise Banach module 
over ^ r L 1 (R m ) . Consequently it is possible to define the Wiener-type 
spaces WiJFlP^VÇ) (as introduced by the author in [9]) as follows: let 
k G P ( R m ) be any nonzero window-function (one should think of a 
positive plateau-like function, satisfying k(z) = 1 on a compact set Q) 
and define the control function as follows: 

K(f, k)(t) := \\(Ltk)f\\rLP := \\Mtk * f\\LP for t e Rm . 

Then 

W(TL*,L<1) := {/ G S ' ( R m ) | / G (-FL*)Ioc, K(f,k) G L^(Rm)}, 

endowed with its natural norm 11/1^(^1^,L2)| | := ||K(/,fc)|Z^||. 

Using this definition it is easy to verify that these Wiener-type spaces 
are translation invariant, but also invariant under multiplication with 
characters. More precisely, one has the following estimates for the 
operator norms of these operators: 

\\Lxf\W{TL^L%)\\ < (1 + | x | r | | / | ^ ( J T L P , ^ ) | | for all x € R m , 
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and 

\\Mtf\W(^L",L"s)\\ = \\f\W^L^Ll)\\ for all t € R" 

An essential tool for the discrete way of describing these spaces (this 
is the original definition of these spaces) is based on the existence of 
suitable partitions of unity. Since we do not need the most general 
description in our situation we can stick to the following (restricted) 
definition of a bounded uniform partition of unity of size 6 > 0 (for 
short a<5-BUPU) in .FL1: 

DEFINITION. Given 6 > 0 any bounded family in the Banach space 
$ = (^n)n € Zm in FLl(Rm) is called a Ó-BUPU in TLX if the following 
properties hold: 

(BP1) There is a lattice 6Zm in R m (for some positive 6) such that 
supp^n Ç B(6n,6) (the ball around 6n with radius 6). 

(BP2) £n€Z"V>nOr) = 1. 

Using BUPUs one can give the following discrete characterization: 
/ G W{TIP, Lfj if and only if, for some BUPU, one has 

[ E H / ^ n | | ? r L p ( l + | n | r 
neZm 

(and this expression gives an equivalent norm, cf. [9]). 

It is a consequence of this description that any window function k as 
described above (even any Schwartz function or any k G W{FLl,L\) 
defines the same space W^V^^Ll) and gives an equivalent norm, cf. 

The modulation space M£ ç (R m ) can now be defined as inverse 
images of the spaces W{TLv,Lq

s) under the Fourier transform. The 
invariance properties of Wiener-type spaces are easily translated into 
invariance properties of modulation spaces. Thus one has isometric 
translation invariance and the following estimates for the multiplication 
operators Mt : | |M t / |Af^| | < (1 + |*|)1l/|Mp%||. In particular, the 
spaces M{j (R m ) are character invariant Segal algebras (i.e., they are 
dense, isometrically translation invariant spaces in L 1 (R m ) , complete 
with respect to their own norm, hence Banach ideals in L x (R m ) (cf. 
[19; Chapter 6 & 2.2] for details about Segal algebras). 
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Since Fourier transformation is very well compatible with duality it 
is clear from the general results on decomposition spaces (of which 
Wiener-type spaces are a special case, cf. [12], [11], [10]) that modu­
lation spaces show the natural behaviour with respect to duality, i.e., 

one has (A/p%(Rn))' = M";, (R n ) , for 1 < p,q < oc. 

3. Atomic characterization for the modulation spaces. We 
want to prove the atomic characterization of modulations spaces indi­
cated in the abstract. Apparently we have to verify two partial results, 
one on synthesis (i.e., that the expression in the atomic characteriza­
tions are actually convergent to elements in M£ (Rm)) and, on the 
other hand, the decomposition result. We shall prove the last men­
tioned first. Because M J j ( R m ) is a Segal algebra we shall write S for 
this space throughout the proof (fixing s). 

VERFICATION OF THE MAIN THEOREM (stated in the abstract). 

A) Let g e S, g ^ 0 be given, and / (E M* g (R m ) . We shall 
prove the decomposition result first with respect to functions g G S 
with the additional property that suppg Ç K, some compact subset 
of R m . Since it is possible to replace g by Mßng, if necessary, we 
may assume that there exists 6 > 0 such that g(t) ^ 0 for \t\ < 6. 
Applying Wiener's theorem on the inversion of the Fourier transform 
(cf. [19; Chapter 1 k 3.6] we find that there exists h € Ll(Rm) such 
that h(t)g(t) = 1 for all \t\ < 6. Without loss of generality we may 
assume that h has compact support, e.g., h(t) = 0 for \t\ > 26. Now 
let $ = ((/?n)n€Zm D e a n y bounded, uniform spectral decomposition of 
unity of size < <5, i.e., a family given as inverse image under the Fourier 
transform of a é-BUPU. Consequently we have a = ^2nez

m ^n * o 
for any a G <S'(Rm) (for example), where ipn = Mßnipo for some ipo 
with supp V>o S B(0,6) =: Q. It is our aim to start with this spectral 
decomposition (at the moment we only have convergence in the weak 
topology, but part C) will show that one has norm convergence for 
1 < p, q < oc). Since ipn = Mßn(ipo * g * h) we can write 

/ = Yl (Mßn(*Po*g*hyj * / = : Y^ Mßn(fn*g), 
neZm neZ™ 

with fn := (ipo * h) * M-ßnf. For later use let us fix the following 
constants: 
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(i) For any compact set Q Ç R r n there exists CQ > 0 such that 

\\f\M\sp,q\\<CQ\\f\\p 

and (for later use) 

\\f\W(C°,U>)\\ < C Q | | / | | P for all / G L"(Rm) with supp/ Ç Q 

(cf. [9], Theorem 5 for a proof of the last statement). 

(ii) Using the discrete version of the norm on Wiener-type spaces (cf. 
[9]) we know that there exists C<j> > 0 such that 

E ll/»ll?(l + I W < E \\h\\1\\M0n^o*f\\q
P(l + \ßn\r 

neZ™ neZm 

<CS||Ä||?| |/ |Mp ' , ,(R'")| |«. 

In the next step we apply a variant of Shannon's principle which will 
allow us to replace, given the / n ' s , the convolution fn * g by a discrete 
sum of translates. Thus let us assume for the rest of this paragraph 
that / belongs to L p (R m ) and supp/ Ç Q. 

We proceed as follows, having a look on the Fourier transform side and 
using the notation Ll_l for the (translation bounded) Radon measure 
given as L U := E f c e Z m ** a n d U - J P : = T,keZm 6Pk' S i n c e SUPP# ^ K 

(compact) there exists p > 0 such that fg = S f c €zm(i 'pik/) â = 

(L-LJp * / ) ^ , or going back to the functions and using Poisson's formula, 
telling us that LJ-J is invariant under the Fourier transform 

f*9=({p~mlJLl)f)*g = p-m J2 f(k/p)Lk/p9-

Applying the same argument to each fn we have the following estimate 
for the sequence of coefficients an^ := p~Tnfn(k/p): 

( Yl l«-,/e|p)1/P < C p | | / n | l ^ ( C 0 , ^ ) | | < CPCQII /^HP for all n G Z ^ , 
keZ™ 

which gives together with the previous estimates, the required summa-
bility properties for the double sequence (a n ^) . 

B) Let us now consider the case of an arbitrary element g\ in S. 
Since the Segal algebra 5 Ç So(Rm) is continuously embedded into 
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Wiener's algebra W(R m ) = W^.L1) (cf. [8]), hence into the Segal 
algebra W(Lp,Ll) for 1 < p < oc, it is possible to approximate g\ 
in the norm of W(Lp,Ll) by elements g with compactly supported 
Fourier transform. In order to have the right constants (appropriate 
a priori estimates) let us note that we have the following facts at our 
disposition: 

(iii) The family p ~ m L-Ui/p is uniformly bounded in the space W(M, L00). 

(iv) There is a universal constant Cp > 0 (depending only on the norms 
used) such that the following estimates hold true (cf. [9], [12]): 

N i l < Cp\\g\W{Lp,Ll)\\ for all g € W(LP,Û), 

\\fß\W{M,V)\\ <Cp\\f\W(C°,Lp)\\ \\ß\W(M,L»)\\ 

for / e W{C°, Lp), p e W(M, Lp), 

II"*Slip < Cp\\v\W(M,L»)\\ HsHWWL1)!! 
fo r i / e W(M,Lp), geW(Lp,Ll). 

(v) Combining these estimates (with (i) above), we find some constant 
CQ (only dependent on the common support of / and p) such that 

\\(p-m\-U)f\W{M,Lp)\\ < C'QW f \\p if supp / ç Q. 
1/P 

Writing, for brevity, Dpf for (p~mL±Ji/p)f (discrete version of / ) , 
we obtain the following estimate in Lp (still assuming supp/ Ç Q and 
p chosen depending on the support of g as above): 

| | / * Si -Dpf*gi\\p 

< 11/ * (9i - 9)\\p + 11/ * 9 - Dpf * 9\\P + \\Dpf * (9 - 9i)\\p 

< \\f\\p\\9 -P i l l i -hO-h Cp\\Dpf\W(M, Lp) | | \\9 - 9i\W(L*, L i ) | | 

<\\f\\PCp\\g-g1\W(L^Ll)\\(l^C1
Q). 

Having this estimate (which does not depend on the support of g) it is 
clear that we can choose g such that 

\\g-9l\W{Lp,Ll)\\ < (2Cp(+C^)CQC ( A | | / i | |1)"1 , 

hence 

| | / * P i - ^ / * 5 i | | P < ( 2 C Q Q | | / i | | i ) _ 1 | | / | | p . 

file:////Dpf
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This estimate, being valid for each / = / n , we obtain, summing over 

f- Yl Mßn{D^fn^g)\Mi p,q\ 

neZn 

HI E Mßn({fn-D*fn)*g)\M;,t 
neZ" 

< £ \\Mßn\Mlq\\(fn-D*fn)*g\M;j (by(i)) 
neZn 

< Yl (1 + \ßn\)",CQ\\(fn -£»*/„) *Sllf 
neZ" 

(by (ii)) < CQ £ (1 + |/3n|n|/n||p(2CQC„||/l||1)-
1 

neZm 

< (2C„CQ | |ft| |1)-1CQC*||/i| |1 | |/ |Mp
s, (? | | = 1/2- | | / | M p

s J . 

We have thus found a linear mapping T^ : / —• X^neZm Mßn(Dyfn*g), 
such that Id - T^ is a contraction on M p g ( R m ) for 1 < p,q < oo. 
Consequently Ty is invertible on Mp and we have 

OC 

/ = ^ ( T - 1 / ) = T * ( £ ( J d - T * ) ' ( / ) ) := T*(h), with A G Mp%(Rm). 

Since ||ft|Mp%|| < C||/ |Mp%|| we have 

/ = Ty(h) = }^an,kMßnLQkg, 
n,k 

with - M . . ^ "E„ (Efc l«n,fc|
p)' P(i + \ßn\r] q < c2\\h\M; 

C2C | | / | M ' , | | , 

and the proof is complete in this case. 

C) We have now to discuss the synthesis problem, i.e., given any 
element in S = MJ*{(Rn) and a double sequence {an^) satisfying 
the summability condition stated above, the corresponding Gabor sum 
defines an element of Mp q ( R m ) . 

Given now g G MJ j (R n ) we start splitting it by means of a uniform 
spectral decomposition (as used above), i.e., we write 

9 = ^2 ^3*9= Yl MPj9j> w i t h 9j := ^o * M-ßjg, 
jez™ jeZm 
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and 

E llftlli(l + lil)M<Ci||^|MW||<oo. 

For later use let us note that the gj's have common compact support 
Q. Consequently they belong to any Segal algebra (cf. [19; Chapter 
6 & 2.2]), in particular to the Segal algebra W(Ll,Lp). Moreover, 
there is a constant C2 < 0 such that | |^-|W(LP ,L l)\\ < C2\\gj\\i 
for all j G Z m (cf. [9, Theorem 5] for an alternative proof of this 
assertion). Calculating within <S'(Rm) we obtain, using the identity 
LxMt = MtLxe

lxt for all x,t G R m : 

}^an,kMßnLakg = /]anMMßnLak(/^Mßjgj) 
n,k n,k j 

= Yl M<iJ ( Y. a>n.kL°l'Mßn9j) 
j n,fc 

with aJ
n k = exp(iak-ß(n — j)), hence \a?n k\ = \an^\ for all j , n, k G Z m . 

Rewriting the sum (in order to introduce some notations) one has 

h : = }an,kLakMßng =: ^Mßjhj^ := ^jTMßjhj, 

n,k j,n j 

k 

k 

and (cf. [9, Theorem 3]) the estimate 

I I M I P <C3 | |5>Vafc|W(A^P)H \\g3\W{L^Ü)\\ 
n,k 

<C4(Y\an^\P)1/P\\9A\l-
k 

Now supp hj,n Ç ßn -f supp^j Ç ßn + Q for all n, j G Z m . In order 
to get an estimate for the sum over the n's we observe next that the 
family (ßn-hQ)n£2,Tn constitutes an admissible uniform covering of R m 

(this means essentially that is a covering of uniformly bounded height, 
cf. [12, Cor. 2.6]) and consequently (this is another characterization 
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of Wiener-type spaces) there exists C5 > 0 such that 

IN M PJ = ||E^-«IM™|| = \\52hn\w(rv,Li) 
n n 

n 

^c* [ E ( E i°n,*ip)'/p(i+\n\yq] 1/q\\93\\i-

We can now carry out the last step, i.e., summation over the j's which 
yields immediately the required estimate, completing the proof. 

l|/i|MpyRm)|| 

< E I I M « M < Empiii IIM^;.,II 
3 3 

q/p 1 l/q A ^ ^ [ E l E K t i ^ ' V + wr] '(Ew + wngjU! 
n k j 

^ ^ [ E C E i ^ i ^ ' ^ + inirĴ iiffiMKii 
n it 

Besides the Corollaries stated already in the introduction one has 
among others, the following useful consequence. 

COROLLARY 3. (cf. [13]) The Banach space M f a ( R n ) (with s > 

0) is the smallest among all Banach spaces satisfying the following 

conditions: 

a) It is continuously embedded into 5 ; ( R m ) , 

b) It has non-trivial intersection with <S(Rm), 

c) It is isometrically translation invariant, 

d) It satisfies \\\Mt\\\ = 0 (1 + \s\) for t -+ 00. 

It is also possible to use the atomic characterization of the spaces 
M J j ( R m ) in order to give an alternative proof showing the freedom 
in choice of the function g0 used in the definition of Mp q (R m ) in the 
abstract (Note that for all results presented so far we could have worked 
with a function go — fc, with A; G P ( R m ) ) . That we could have used any 
non-zero window function k G W(TLX,L\) (which is equivalent to the 
use of k = go in MJ*{(Rm), thus in particular any Schwartz function 
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<7o £ <S(Rm), so especially the Gauss function) in our definition can 
be shown as follows: if the intergral expression involving a is finite 

for a given element go £ ^ i j ( ^ m ) (e-g-> w i th suppgo compact) it is 
easily verified that it is also finite for go replaced by MtLxg0, for any 
t ,xG R m , and in the estimate only an additional factor (1-1-\t\)s arises. 
Now inserting any g\ G A4|sj(Rm), written in the atomic way based on 
#o, it is clear that the integral expression (involving g\ now instead of 
go) is finite as well. Thus any non-zero element g0 € MJ sJ(Rm) gives 
another equivalent norm. This was proved using different methods 
already in [11]. 

4. Several remarks . 

REMARK 1. We have not discussed the cases involving p = oo 
or q = oo in detail here. However it is clear that only marginal 
modifications are necessary in order to get the result also for these 
limiting cases. The only serious difference is the fact that Gabor sums 
don't neccessarily converge in the norm topology of that space (more 
precisely, they are norm convergent for a given / if and only if it 
belongs to the closure of 5 ( R m ) in the corresponding space. We leave 
the verification of details to the reader (thus / G 5ó(Rm) - cf. [7] 
for applications invoilving this space - if and only if it has a Gabor 
representation involving bounded coefficients). 

REMARK 2. The above proof shows that the mapping / —• 
(an,k)(n,k)ez2 is a bounded linear mapping from a modulation space 
to the corresponding mixed norm weighted /p-space (with the same pa­
rameters), having as left inverse the (linear, bounded) operator from 
the sequence space associating to each double sequence the correspond­
ing Gabor sum. Thus modulation spaces are retracts of these sequence 
spaces (cf. [2] for the terminology). As a consequence, the results 
concerning interpolation of modulation spaces (as given in [11], de­
rived from the corresponding results for Wiener-type spaces) can be 
obtained as a consequence of our atomic characterization given above. 
One of the most interesting consequences is the fact that the modula­
tion spaces Mp p ( R m ) are invariant under the Fourier transform. 

As another consequence one could mention the possibility of using 
the atomic characterization in order to derive trace theorems for mod­
ulation spaces (similar to those of Besov spaces, cf. [11], [21]). 



124 ATOMIC CHARACTERIZATIONS 

REMARK 3. An alternative approach to our result could be given, 
starting with the atomic characterization of the minimal spaces 
M[s{(Rn) (which could be proved somewhat more easily than the gen­
eral case), and to substitute for g as in part a) its Gabor sum with 
respect to the general element g\ as in B). However, this method re­
quires elementary but combersome calculations. 

REMARK 4. It is clear that only slight modification would have 
been necessary in order to work with weighted modulation spaces {— 
modulation spaces based on weighted Lp-spaces of the form L^(R m ) , 
cf. [5] for a discussion of such spaces, e.g., w = ws in the most 
simple case on R m ) . Again one would have found that there are 
plenty of Banach spaces in this family (they can be shown to coincide 
with the spaces W(TLP

S, Lp
s)) which are invariant under the Fourier 

transform (cf. [14], [11] for details in this direction). Finally, we 
mention that the natural setting for these spaces (they don't need 
any dilation or differentiability structure of R m ) would be that of lea. 
groups. Because, in this more general setting the space of tempered 
distributions is not so well known (and at least more complicated to 
work with) an alternative approach has to be chosen for the definition 
of the inverse Fourier transform of (quite general) Wiener-type spaces 
of the form W^L^.L^). Such an approach has been presented in 
[11]. It is formulated in the most general form including also Banach 
spaces of Beurling-Björck ultra-distributions (which goes far beyond the 
nice family of spaces, Mp^(Rm) , treated here). In order to get atomic 
characterization of these spaces one has to modify our arguments again 
only in the expected way, using structure theory of lea. groups in order 
to get the fine BUPUs or arbitrary fine spectral decompositions, or 
alternatively the construction give in [6]. 

REMARK 5. A completely different approach to atomic decomposi­
tion, stressing the action of the Heisenberg group R m x R m x T on 
modulation spaces through 7r((x,y,t)) := tMxLy is given in [15]. The 
approach given there does not explicitly make use of the Fourier trans­
form in the way we have done. Moreover, that approach stresses the 
analogy between various situations where atomic decompositions arose 
in the literature, looking at them from a group theoretic point of view. 

REMARK 6. In conclusion let us mention that, despite the great 
similarity between the situation one has in the atomic description 
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of Besov spaces there is one big difference. Whereas Y. Meyer (see 
[18]) has found that in the case of Besov spaces, by means of a 
delicate construction, it is possible to find suitable functions go such 
that the set of atoms actually forms a complete orthogonal system 
it has been shown (cf. [1]) that it is impossible to find any go G 
5 0 (R m ) D 5 ( R m ) such that the family (MßnLakgo)(n^)eZ2 f ° r m s 

a complete orthogonal system in L 2 (R m ) . On the other hand, as 
far as its aim is concerned our method is very closely related to the 
method of nonorthogonal expansions using frames as described by 
Daubechies/Grossmann/Meyer in [3]. 
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