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CONVERSE RESULTS IN 
THE THEORY OF EQUICONVERGENCE 

OF INTERPOLATING RATIONAL FUNCTIONS 

M.A. BOKHARI 

1. Introduction. Since the first extension of Walsh's theorem in 
1981 [1], there have been in the last few years a number of direct 
theorems on the theory of equiconvergence of certain schemes of inter
pola tor polynomial sequences. A recent paper of Saff and Sharma [3] 
also gives some direct theorems, but it deals with the equiconvergence 
of two schemes of rational interpolants. Our object in this paper is 
to obtain a sort of converse of this theorem on the lines of a corre
sponding theorem due to Szabados [4] which is related to the Lagrange 
interpolant and the Taylor sections of an analytic function. 

Let / G Ap (the class of functions analytic in \z\ < p but not in 
\z\ < p, P > 1)- As usual 7rs will denote the class of polynomials of 
degree < s. For a given a > 1 and for a fixed integer ra > — 1, let 

( l . i ) 
^71 + 1711 

interpolate / G Ap in the n + m + 1 roots of unity. If, for a positive 
integer /, we set 

i-i 

(1 .2) &ln,m{z', f) = Rn+mAz, f) ~ Y, r n + m , n ( * , A " ) , 

i/=0 

where r n + m i n ( z , / , v) are certain rational functions given by (2.1) and 
(2.3), then Saff and Sharma showed that if a > pl+1, then 

(1.3) lim A£n ,m(*, / ) = 0 
n—+00 

for \z\ < p ' + 1 . And if cr < p / + 1 , then (1.3) holds for all z G C with 
\z\ ^ a. Moreover, this result is sharp in the sense that the region of 
convergence cannot be improved. 
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When G —• oo, we get an extension of a classic theorem of Walsh [5, 
p. 153]. In this case, we know that 

z-i 

(1.4) Az°°n,m(*, / ) - Ln+m(z, f)~Yl K+m(z, / , "), 
i /=0 

where Ln+rn(z,f) G 7rn+m is the Lagrange interpolant to f(z) in the 
(n -f m + l)-th roots of unity and 

n+m 

( L 5 ) K+m(zJi"):= ]^<Mn+m+i)+j^ , " = 0 ,1 ,2 , . . . , 
i=o 

With / ( z ) := ££L0ajfcZ* a n d î ^ n - o o | « n | 1 / n = P~l • 

Let 4̂* (or J4*C) , p > 1, denote the set of all functions which are 
analytic in \z\ < p (or analytic in \z\ < p and continuous in \z\ < p). We 
shall say that a sequence {Sn{z)}™=l is U.B. in \z\ < Y if {Sn(z)}%Lx 

is uniformly bounded in every closed subset of \z\ < Y • 

The following theorem is due to Szabados [4]: 

THEOREM A. Let I > 1 and m > - 1 be fixed integers. If f G A\C 

and if {&f°nm(zif)}™=i is UB- in \z\ < Pl+1 f°r some P > l> then 

We shall prove an analogue of the above theorem when a > 1 is finite. 

2. Preliminaries and statement of main result. Let / G A\C 
and let 
(2.1) 
r n + m , n ( z , / , 0 ) = P n + m , n ( 2 , / , 0 ) / ( z n - <jn), P n + m , n ( z , / , 0) G 7Tn+m , 

be the rational function which interpolates f(z) in the zeros of 
zm+l{zn -a'71). Set 

(2.2) a„,m(*) := 1 - zm+1<J-n , /?n,m(z) := z™+1(z" - a " n ) . 

Let JV(i/) := (1/ + l)(n + ra + 1), 1/ = 0 ,1 ,2 , . . . , and let SN{u) (z) 
denote the unique polynomial in TTN^ which interpolates the func
tion {aTliTn(z)}l/(zn - crn)f(z) in Hermite sense at N(v) + 1 zeros of 
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{ßn,m{z)y+l. Then Saff and Sharma (cf. [3, (3.6)]) established the 
following relation: 

SN(V)(Z) -OLn,m(z)SN{v-i)(z) = { / ? n , m ( z ) } ^ F n + m , n ( z , / , l / ) , 

where Pn+m,n(2,/,^) is a polynomial in 7Tn_L.m, v — 1,2,3, . . . . This 
enables us to define rational functions rn + m i T l(z, f,v),v = 1,2,.. . , of 
the form 
(2.3) 

rn+m,n(Zi fi V) = Pn+rnAZ) / i ")/(*" ~ O » Pn+rn,n{Z, /» V) € *n+m-

We state our main result: 

THEOREM 2.1. Let m > — 1 and I > 1 be fixed integers, and let 
f G A\C. if, for some p > 1 and for some a > p / + 1 , Me sequence 

{A£m,n(*>/)}~=1 0"*" ^ ( L 2 ) *5 ^ *n M < ^/+1> *fccw / £ ^P-

REMARK 2.1. Theorem 2.1 may be looked upon as a partial converse 
of the statement (1.3). A natural question which arises at this point 
is the following: If 1 < a < pl+l and if {A£n (z,f)}%Lx is uniformly 
bounded on every compact subset of the domain {z : \z\ ^ a } , is 
/ E A*p? We assert that, in general, the answer is in the negative. This 
is easily seen on taking f(z) = (z — n)~l where we choose a G (0,1) such 
that a < p( / + 1) a =: r /+ 1 . Then, / € Av and, from the Saff-Sharma 
Theorem (cf. (1.3)), we have Afn m(a , / ) —• 0 on every compact subset 
of {z: \z\ #<r}. But f £ Ap. 

REMARK 2.2. Theorem 2.1 is also valid if we consider m < - 1 . (See 
[3] for the construction of the rational functions r n + m , n (2 , / , i/),z/ = 
0 ,1 ,2 , . . . , when m < -1 . ) 

3. Some lemmas. In this section, we shall compare some polyno
mial interpolatory processes with some rational ones, and then show 
that the sequences { A f t + m ( * , / ) } ~ = 1 and { A ^ m ( * , / ) } , a > pl+\ 
given by (1.4) and (1.2) respectively, are either both bounded or both 
unbounded in the region \z\ < y/ä. It will enable us to show that / is 



76 M.A. BOKHARI 

analytic in \z\ < min(p, ff2(ì+i))> w n ^ c n ls t n e main idea that underlies 
the proof of Theorem 2.1. 

LEMMA 3.1. Let m > - 1 and a > 1. If f e A\C, then 

(3.1) lim {Ln+m(z, / ) - r n+m , n(z , / ) } = 0, for \z\ < sfa, 
n—»oo 

where L n + m ( z , / ) and Ä n + m , n (2 , / ) = £ n + m , n ( 2 , / ) / ( z n - <rn) are 
defined by (1.4) and (1.1) respectively. Moreover, the convergence in 
(3.1) is uniform and geometric on every closed subset of the region 
\z\ < Jd. 

PROOF. Let a; be a primitive (n + m + l)th root of unity. From the 
definition of Lagrange interpolating polynomial, we have 

"+™ n + m + l _ i uk 

Ln+m(z,f) = T * k T—T^f^) 
^—' y — iiìK n.4- m. -4- 1 z — ujk n + m + 1" 
ifc=0 

and 

n+™ ~n+m+l _ i ^k 

Bn+m,n(z, f) = E -T^r- • WT^T& - *">'<"*>• 
fc=0 

This gives us 

^t l j 1 ^n+m+l _ 2 u;kf(ujk) cjkn — Zn 

Rn+m,n(z,f) - L n + m ( z , / ) = Y " r ; —- • — — 

~ z-w* n + m + l zn - <rn 

ÎTi ~ n + m + 1 zn - (jn ' 
&=0 j = 0 

Since / G i4JC, there is an M > 0 so that |/(£)| < M for every |£| < 1. 
Let 1̂1 = r, r > 1. Then, from the above relation, we have 

\Ln+m(z,f) - Rn+m,n(*>f)\ <M(n + m + l ) r n + m : r " + * | r n _ a n | * 
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If a > r , we obtain 

lim \ max |ßn+m ,n(2, / ) - Ln^m{z, f)\\ < — 
n—»oc I \Z\=T ) G 

which establishes Lemma 3.1. 

LEMMA 3.2. Let m > —1 be a fixed integer and a > 1. If 
f G A\C, then the conclusion of Lemma 3.1 remains valid ifLn+m(z, f) 
and Rn+m,n(z,f) are replaced by P^_,_m(2,/,0) and (z , / ,0) (cf. 
(1.5), (2.1)) respectively. 

PROOF. It is easy to see that rn+m(z, / ,0) has the integral represen
tation 

dt, 

rn+m,n\Z, / , 0) 

~ liti Jìtì=s zn -an ' t - z' tm+l(tn - a~n) 

where a~l < 6 < 1. Also, we can write 

1 t f(t\ / n + m + l _ ~n+n+l 

/ce/.« - éijM=l B • ^ "'-
An elementary calculation now shows that 

r n + m , n ( ^ / , 0 ) - P n V m ( z , / , 0 ) 

(3.2) = _L / f(t)Kn(t,z)dt 
2?r JW=S (t - z)(tn - o-n)(zn - a

n)tn+m+l ' 

where 
(3.3) 

Kn(t,z) : = (tn+m+1 - zn+m+1)(t2n - tnzn - 1) - tn(tm+1 - zm+1) 

_ a~n{tn - zn)(tn+m+1 - tnzm+1 - 2 n + m + 1) . 

Since supit^! \f{t)\ < M for some M > 0, from (3.2) we obtain 

\rn+m,„(z,f,0)-P*+m{z,f,0)\ 
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whereas 

n-fra 
)_ Mi2n _ tnzn _ V 

t - Z 
J = U J 

n-l 

, v n+m m 
t ^ h l l =(fn _ tnzn _ 1) £ tj z"*™^ - tn ^ t ? Zm'j 

(3.5) ' " * 

j = 0 

If |z| = T > 1, and |t| = 6 < 1, then 

|tfn(*,2) 
t - Z 

< (62n + <5nrn + l)(n + m + l ) r n + m + 6n(m + 1 ) ^ 

+ a - n ( ( 5 n + m + 1 + <5nrm+1 + r n + m + 1 ) n r n - 1 . 

Notice that the relation (3.4) holds for all 6 e (a 1 ,1) , which, upon 
using (3.5) and then letting 6 —• 1, gives us 

I W . / . 0 ) - J5„(,./,o)i < ^"A" ; . 1 , " ;^ 

Here C is constant independent of n. If a > \z\ = r, then it is easy to 
see that 

lim ^ sup | r n + m , n ( 2 , / , 0 ) - P £ + m ( 2 , / , 0 ) | > < — 

which proves the lemma. 

LEMMA 3.3. Let m > —1 be a fixed integer and a > 1. If f e A\C, 
then the conclusion of Lemma 3.1 remains valid if L n + m (2 , / ) and 
Rn+m,n(zif) are replaced by P*+m(z,f,v) and 
1,2,3, . . . , (cf. (1.5) and (2.3)) respectively. 

PROOF. An integral representation of rn+m n{z,j,v),v > 1, is given 
by (cf. [S], (3.13)) 
(3.6) 

u f,Al f t n - ° n ^n,m{z)y-xHn{t,z,v)t<±,J± 
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where a 1 < 6 < 1 and 

Hn(t, z,v)\ = an,m(z)ßn,m(t) - an,m(*)/?n,m(*) 

(3.7) = tn+m+l - zn+m+l - <r-n(te)m+1(*n - zn) 

- a _ n ( t m + 1 - 2 m + 1 ) . 

Also, from (1.5), we have 
(3.8) 

P n * + m ( ^ / ^ ) - ^ / 7 — T 
2™ , / | < M ( I / + 1 

L)(n + m + l) * - 2 

Since { a n ^ W } ^ - 1 = l + E ^ - l ^ Y X ^ + V - ^ , from (3.6) and 
(3.7) r n + m , n ( a , / , ^) can be rewritten as 

(3.9) ^*n+m,n(2, /» ^ ) — Qn-f m,n(2j / , ^ ) H~ Tn-\.m^n(z, / , I/) 

with 

^ n + m ^ ( Z ' JiV) — 2ÏH J\t\=6 zn-an ' (P+ 1 (««- (T- n ) ) l '+ 1 

(3.10) { >tn + m + l = , n + ro+l^ 

T (? f u\ — J L f <n-<^n f(t)Jn(t,z) ,, 
^ n + m M ^ . / ^ , / ~ 2TTÌ J | « | = Ó zn-an (t™*1 (tn-(j-ri)Y+l Uii 

where 
' i / — 1' 

• / „ ( M ^ / M M ^ E C . )(-tm+1*-ny 
i= i J 

- a- n((<2)m + 1( t n - 2") + r + 1 - z m + 1 ) . 

Now one can easily see after some computation that 

(3.11) rw+m,w(*,/,v) = o ( i ± l ^ ) . 

Also, 

1 / 2 

(3.12) ïïm" { sup |Q„+ m ,„(*,/ , i / ) - P„*+m ,„(2,/,^)|} " < — 
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which follows from (3.10) and (3.8) on mimicking the procedure starting 
at (3.1) in Lemma 3.2. Therefore, from (3.9)-(3.12), we conclude that 

{ Ì ! / n T 2 

SUp | r n + m , n ( 2 , / , V) - P*+m{z, / , I/)| \ < — -
\Z\ = T } & 

REMARK 3.1. If / is a fixed positive integer then it follows directly 
from Lemma 3.3 that 

r . £ 1 £ i n l / n r2 
lim \ sup Vr n + m , n ( z , / , i / ) - V P * + m ( ^ / ^ ) \\ <-

i /=0 
CT 

Next, we prove 

LEMMA 3.4. Let I > 1 and m > - 1 be fixed integers and a > 1. J/ 
/ G A\C, then {A~n m(2,/ ,)}£°= 1 w £/.£. m |z| < >/<7 «/and only if the 
sequence {Afn ^(z, / ) } ~ = 1 w a/so w/iere A^°n m (z , / ) and A£n?m(z, / , ) 
are given by (1.4) and (1.2). 

PROOF. From the triangle inequality and the definition of A ^ m (2 , / ) 
and Afn m ( £ , / ) , we note that 

|A£ n , m (z , / , ) | - \A^m(z,f)\\ < |A£BiTO(z,/) - A ^ m ( , , / ) | 

(z,f)\ 
l-l l-l 

+ X ^ rn+m^iz, / , I/) - ] T P n + m ( 2 , /» ^ ) 
i /=0 i /=0 

An application of Lemma 3.1 and Remark 3.1 now gives the desired 
result. 

REMARK 3.2. If a > p 2 ( / + 1 \ then lemma 3.4 also holds if \z\ < y/ä is 
replaced by \z\ < p / + 1 . For this, it is enough to note that the lemmas 
3.1-3.3 are valid for the region \z\ < p / + 1 < y/ä. 
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4. Proof of Theorem 2.1. First, assume that a > p2^+l\ By 
the hypothesis of Theorem 2.1, {A£n m(2,/)}£°=1 is U.B. in \z\ < pl+1. 
From Remark 3.2, it follows that {Aj°°n m(z, /)}£°=1 is U.B. in \z\ < p ' + \ 
too. Thus, / G A*p by Theorem A. 

Next, consider p / + 1 < a < p2^ /+1). Then {Afn,m(*,/)}£+i, being 
a U.B. sequence in \z\ < pl+1 is also U.B. in \z\ < \fo. Now from 
Lemma (3.4), it implies that the sequence {Af°n m(2>/)}£Li is U.B. in 
\z\,y/â. If we let £z+1 := y/ä, then / G A\ (cf. Theorem A). Notice 
that £ > 1. Let px := supJT? : / € 4*} . Then pi > 1, / G A*pi and / 
has a singularity on |^| = pi. 

The proof will be completed by showing that p\ > p. Assume that 
Pi < p. Then the set D* = {z : p1*1 < \z\ < p / + 1 } contains infinitely 
many points, and {A^n m ( z , / ) } ^ = 1 ) , being U.B. in \z\ < p / + 1 , is 

bounded at each point of D*. On the other hand, a > p / + 1 > Pi+1. 
Thus, {Afnm(z,f)}^Ll can not be bounded at more than / points 
in the region \z\ > p1*1 (cf. [2, Remark 2.2]). This contradicts the 
boundedness of {A/,n ,m(2:, /)}^= 1 at each point of D*. Therefore, 
Pi > p . 
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