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OF INTEGRAL TRANSFORMS 
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ABSTRACT. Continuous approximation methods are de
scribed for obtaining a numerical solution f(t) to an integral 
transform g(s) = J K(s,t)f(t)dt, where the given function 
g(s) may be affected by noise and where the problem may be 
ill-posed. The approximate solution is expressed in the lin
ear form / * = £^CLj<f)j, where a,j are parameters and <j>j are 
certain basis functions; the values of aj are determined by 
the minimization of a regularising/smoothing measure, which 
takes account of both the discrete I2 error in the integral 
transform and the continuous L2 norm of / * or of one of its 
derivatives. A Generalized Cross-Validation technique, based 
on the work of G. Wahba, is used for determining the smooth
ing parameter, and efficient algorithms are developed for three 
specific sets of basis functions {<t>j}, including a novel algo
rithm when {<t>j} are chosen to be a set of eigenfu net ions. 
Numerical examples are given to compare the merits of the 
various algorithms. In the case where the function g(s) is not 
affected by noise, the established "Method of Truncated So
lutions" is adopted and an improved version of this method, 
based on B-splines, is described and then tested on numerical 
examples. 

1. Introduction. Consider the Fredholm integral equation of the 
first kind 

(1) J K(s,t)f(t)dt = g(s), c<s<d, 
Ja 

where K(s,t) is a given kernel and g(s) is a given function, (the range 
[c,d] of values of s, does not necessarily coincide with the range of 
integration [a, 6]). 

We may write (1) in the form of an operator equation 

(2) Kf = g where K : F-+G, 
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which is a well-posed problem provided that it has a unique solution 
f £ F, which depends continuously on g e G. However, it is easily 
shown [1], that such an equation may be ill-posed, and hence a small 
perturbation in g may result in a large change in / ; it is therefore 
appropriate to adopt a régularisation method to obtain numerical 
solutions, based on the minimization of a measure of smoothness (see 
Tikhonov [2], Ribiére [3]). 

In general we shall consider the problem (1) where the function g(s) 
is not known explicitly but where n measured observations of g are 
given with a possible "white-noise" contamination. That is, the data 
are 

(3) g(si) = f K{Sl,t)f{t)dt + e(st), i = 1,2,. . . ,n, 
Ja 

where E(SÌ) ~ N(0,a), i = 1,2, . . . , n , (i.e., e(si) are independent 
errors with a normal distribution of mean zero and common variance 
a2 (unknown)). 

Two important continuous approximation methods have been adopted 
in the literature for the problem (1). Firstly, Baker et al. [4] and Lewis 
[5] have considered a "Method of truncated solutions", for problems 
where g(s) is exact, based on eigenfunction expansions. This method 
is discussed in §2 below, where it is modified to adopt B-splines and 
deal with data in the discrete form. Secondly, Wahba [6] has introduced 
a cross-validation method for coping with the general data (3), based 
on a reproducing kernel Hilbert space formulation. This method is 
studied here for the "natural" basis {K(si,t)} and it is shown to have 
certain advantages but to be of limited practical applicability. Two 
other bases are considered in the context of cross-validation, namely 
B-splines and eigenfunctions. Our use of eigenfunctions in the context 
of a generalized cross-validation appears to be new. 

2. The method of truncated solutions. Baker et al. [4] 
and Lewis [5] have studied the "Method of truncated solutions" for 
obtaining a numerical solution to (1) when the kernel is symmetric, 
i.e., K(s,t) = K{t,s). 

On defining eigenvalues Xj and corresponding eigenfunctions </>j(s), 
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j = 1,2,.. . , of the kernel K(s, t) by the relation 

(4) f K(a,t)4>j(t)dt = Xjt/fjis), j = 1,2 
Ja 

it is easy to deduce that, for a symmetric kernel, {<fij(s)} is an orthog
onal system which may be made orthonormal by choosing 

(5) 
Ja 

The first step in the method is to determine, by a least squares or 
related technique, an approximation gm(s) to g(s) of the form 

m 

(6) gm(s) = J2aJ(/)J(s). 

The second step is then to determine an approximation fm(t) to f(t) 
by solving (1) with g replaced by gm, namely 

(7) / K(s,t)frn(t)dt = grn(s). 
Ja 

It immediately follows from (4), (6), (7) that / m may be determined 
explicitly in the form 

m 

(8) fm(t) = Y,aJXïlMt)> 
J' = l 

where the Xj are ordered such that |Aj| > |Aj+i|. 

In practice the eigenfunctions </>j(s) are not determined exactly, but 
rather they are fitted by splines. Whereas Lewis [5] used a truncated 
power function basis, we here adopt a B-spline basis. A particular 
eigenfunction <fr(t), corresponding to an eigenvalue A, is approximated 
in the form 

N 
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where N4j denotes a normalized cubic B-spline based on the j t h knot. 

Substitution in (4) (deleting j) gives 

N b N 

(9) Ylci I K(s,t)N4j{t)dt = \^CjN4j{s). 
3=1 J a j=i 

On approximating the integrals by B-splines using a least squares or 
comparable procedure, 

(10) Pj(s)= / K(sìt)N4j(t)dt = ^2bijN4i(s)ì 
J a 2 = 1 

and, substituting into (9) and discretizing over N points in s, it follows 
that 

(11) NTBc = ANTc, 

where N = [N4j(sk)], B = [60-], c = [Cj]. 

Since B-splines are linearly independent, we obtain 

(12) B e - A c , 

namely a linear algebraic eigenvalue problem for A, c. 

(If we prefer to discretise over more than N points in s, then we must 
use (11) rather than (12) as our algebraic eigenvalue problem). 

A number of techniques were tested by us for determining the coeffi
cients ÜJ in (6), based on suggestions in [3], and the optimal procedure 
in practice was to minimize 

n m 

(i3) ELMi(*')-^)i2 

t=i j=i 

where Si are the data points. 

The choice of m, the number of eigenfunctions, is critical in this 
method. If it is too small, then accuracy is inadequate; if it is too 
large, then highly oscillatory eigenfunctions corresponding to small 
eigenvalues may "swamp" the solution. 
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Eigenvalues of the Kernel K(sft) 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
0. 

-0. 
0. 

TABLE 1 

lamda(i) 

.810845240+00 

.956663500-

.658894630-
,107377020-
.24633031D-
.740854430-
.201032270-
.336024640-
.373008120-
.33961212D-
.231412420-
.106968020-
.560976570-

-01 
-02 
-02 
-03 
-04 
-04 
-05 
-06 
-07 
-07 
-08 
-09 

2.1. Numerical results. We have successfully tackled many problems 
of the form (1), and one such problem is given by 

K(s,t) = \ / s 2 + t2, 0<2,t< 1, 0(5) = ((1 + s2)i - s 3 ) / 3 

for which the approximate Xj and <j)j are shown in Table 1. 

Excellent results were obtained for iV = 13, and m up to 8. The 
approximate and true solutions / differed by less than .0004 on [0,1] 
for n — 6 and the errors are shown in Table 2. 

However, for m > 9, substantial errors growing with m appeared in 
the solution. 

In our tests it was observed that good results were normally obtained 
for equally spaced knots, so that knot choice was not a significant 
problem. However, for non-exact data in which noise is present, as 
in problem (3), poor results were obtained. 
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E r r o r s - 6 EigenPunct ions 

TABLE 2 

3. Smoothing/regularisation methods for noisy data. If the 
problem (1) is solvable but still-posed, then we wish to approximate 
/ by /*, by minimizing over a specified approximation space, the 
smoothing measure (see [2], [3]), 

(14) Ix[f^g] = lJ2(Kr(sl)-g(sl))
2 + X [ [r(r)(t)}2dt, 

n ,-=1 Ja 

where A is the smoothing parameter and r is the order of regularization. 

In all cases /* is expressed in the form 

(15) r Yla^^ 
where 4>j are certain basis functions. In some cases {</>j} are specified 
in advance, and define the approximation space. In other cases {(f)j} 
are deduced by the minimization of (14) over a specified space (e.g., 
Z/2[a, ò]), typically by using a variational principle. 
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It is very important to choose the correct value of A. and so we 
have adopted the generalized cross validation method of Wahba [6] 
and minimized 

(16) V(A) = - | | ( / - . 4 ( A ) s | | 
n 

- Trace (/ - A{\)) 
in 

2 

where A7*(s) = ,4(A)g, g =[<;(*,•)]. 

There are a number of possible choices or deductions of sets of basis 
functions {0j}\ we discuss the relevant merits of three such sets and 
give efficient algorithms in each case. 

3.1. Kernel function basis. First we deduce a basis by minimizing 
over a specified approximation space, based on a general discussion of 
Wahba [6], and Kimeldorf and Wahba [7]. 

Suppose / G £2(0,1] m (1)< then by the Riesz representation theorem 
there exist functions r/,s in L2[0,1] such that 

Kf(s) = </,,.,/) = f r,M)f(t)dt. * = *,,... ,s„. 
Ji) 

Thus rjs(t) = K(sJ)< and it follows that if we minimize (14) over all 
/* in L2[0,1], then /* takes the form 

a ÌÌ 

(i7) r(o = 5>»Mo = 5>/v(s,-.o. 
? = i ? = i 

We have thus "deduced1' that the appropriate basis is o, — K{s,A). 
Substituting (15) into (14) and minimizing over a,, (i = 1,2 n) we 
obtain a system of equations for a = {o,}, 

(18) (Q+nA/ )a = g, 

where Qrj = f0 K(si,t)K(sjJ)dt. 

Hence we may deduce that A(X) (in (16)) is given by 

A{\) = Q{Q + n\I)-\ 
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and 
/ - A{\) = 1- VD{D + nXiy1 VT 

(by eigenvalue decomposition where Q = VDVT). 

It follows that, if di are the diagonal entries in D, then 

where z = VrTg. 

Clearly the minimization of V(X) can be carried out very simply via 
this explicit algebraic formula. Having determined the optimal value 
A, say, of A, then a, are determined by solving (18) for this A. 

3.2. B-Spline basis. Following Wahba [6], and O'Sullivan and 
Wahba [8], we now exploit the computational efficiency of B-splines. 
We define k interior knots x i , . . . ,x^ and place x _ 3 , . . . , #o a t « and 
£fc+i,... ,x^+4 at b. Then, using normalized cubic B-splines iV4j, as 
our specification for 0j , i.e., 

k+4 

(20) rw = tflA(<). 

and, on substituting into (14) and minimizing over the space of all 
approximations of the form (20), we obtain a system of equations for 

(21) (ETE + nA£)a = £ T g , 

where a [a i , . . . , a f c + 4 ] T , g = (g(si)... g(sn))
T 

rb pb 

Bij= / NAl(t)NAj{t)dt, Etj= / K{Si,t)N4j 
Ja Ja 

(t)dt. 

Note that E is a non-square (n by A; -j- 4) matrix in this case, and B 
is not the identity matrix so that (21) is potentially more difficult to 
solve than was (18) above. 
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Now Kf*(s) = i4(A)g, where 

A{\) = \Y{WT\Y + n\I)-lWT with W = EB~l/2. 

Thus 
/ - A(A) - / - UrV(£> + n\I)-lVT\VT, 

where W-rTWr = VDVT (by eigenvector decomposition). 

The matrix J51//2 may be determined from 

B = V\DV^ (by eigenvector decomposition) 

in the form 
Bl'2 = ViD

l'2V^. 

We now deduce that 

(22) V(\) = 
£?=i S2(*) - Ej=i4 * 2 (4 + 2nA)(rf, + nA)-2l 

AE?=i 4K + "A)-> + J ^ ± i l l 2 

where z = VTWTg. 

The minimization over A of V(A) can, in form (22), now be readily 
computed and, for the optimal A = A, (21) may be solved for a. 

3.3. Eigenfunction basis. Suppose that we now adopt the new (in 
cross-validation approximation, 

m 

(23) /*(*) = 5>i*;(*), 

where (j)j are approximate eigenfunctions, determined in B-spline form 
(as in §2) 

fc+4 

(24) 0;(*) = £ c p i ^ 4 p ( t ) -
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Substituting (23) and (24) into (14), and minimizing over the space of 
approximations of the form (23), we obtain a system of equations for 

(25) (QTQ + nAJ)a = QTg, 

where Q is the m x n (non-square) matrix Qij = [AJ^J(SÌ)] and the 
n x n identity matrix I results from the orthonormality of {</>j}. 

We observe that the problem (25) is noticeably simpler than that (21) 
obtained for a B-spline basis. 

It may be deduced that 

A(\) = Q(QTQn\I)-
1QT 

= QV(D + n\I)-1VTQT, 

where QTQ = VDVT (by eigenvector decomposition). Hence 

/ - .4(A) = / - QV{D + n\I)-1VTQT, 

which leads to the formula 

-1 [LIU 92(*i) - E£i(*»)2(* + 2"A)(4 + n\y 
(26) V(X) 

[*Z?=M+n\)-l + ^]' 

where z = VTQTg. 

The minimization over A of V(X) in this explicit form is readily carried 
out, and we note that precisely the same computer code may be used 
here as for splines (22) but with Q and n replacing W and Ä; + 4, 
respectively. For the optimal A = A, (25) is then solved for a. 

Numerical results and features for the three distinct Cross-validation 
methods of 3.1, 3.2, 3.3 will be discussed below. 

4, Numerical results for cross-validation methods. We now 
test the three methods of §3. As might be expected from the similarity 
of their analysis, we have observed in practice that somewhat compara
ble results are obtained by using either B-splines or eigenfunctions as a 
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basis. Although the eigenfunctions need to be determined initially, the 
cross validation algorithm based on them is then a slightly faster one 
than that for B-splines. The situation with regard to the use of kernel 
functions is somewhat different. The actual algorithm, based on (17) is 
certainly simplest of the three cross-validation algorithms, but the use 
of K(si,t) as a basis function can be unfortunate in some cases. 

We consider the three algorithms in turn, and first show ill-conditioning 
is averted by the inclusion of À ^ 0 in the first algorithm. 

4.1. Kernel function bases. Unless otherwise stated, we take the order 
r of regularization in (15) to be zero. We have found this choice of r 
satisfactory in the problems we have tested. However, we note that 
higher values might well be necessary to ensure smoothness in other 
problems. 

Consider the example 

rOO 

/ e-stf(t)dt = g(s) 
Jo 

and transform this, under t = x(l — x)~l into a finite interval problem 

/ (1 - x)-2e~sx{l-x)~X f[x{\ - x)~l]dx = g(s). 
Jo 

Defining K(s,x) = (1 - x)-le~sx(l - x)~l and h(x) = (1 - x)~l 

f[x(l - x ) _ 1 ] , we obtain 

(27) / K(s,x)h(x)dx = g(s), 
Jo 

where h(x) is in Z/2[0, !]• The matrix Q (of kernel inner products) has 
components 

(28) Qij^ / K(sut)K(Sj,t)dt= j — — \ ; 

thus Qij = (si+Sj)'1. It follows that, for Si equally spaced (s2 oc z), [Q] 
is proportional to the Hilbert matrix. Clearly, then, the solution of the 



62 R.R BENNELL AND J.C. MASON 

linear system (18) for À = 0 is extremely ill-conditioned, and, without a 
smoothing factor the accurate determination of a is difficult. However, 
we have found that the inclusion of even a very small À regularizes the 
numerical problem into a well-conditioned one. This is equivalent to 
the interesting statement that only a very small multiple of an identity 
matrix needs to be added to the Hilbert matrix to greatly reduce its 
condition number. 

The Hilbert matrix traditionally occurs in least squares polynomial 
approximation on a continuum, using a power basis, and the present 
example is an analogue in the context of approximation by kernel basis. 

The above clear advantage of the method is, however, immediately 
balanced by the observation that, in this case, 

K(sj,t) = e-S*t 

and hence the approximation (17) of f*(t) to f(t) is a sum of negative 
exponentials. Clearly this is a poor approximation basis unless it so 
happens that f(t) is itself a rapidly decaying function. 

In Table 3, we show the numerical results obtained for 

(29) 0(s) = l / (s + l) + e(«), 0 < s < l , 

where e(s) = iV(0,0.01). 

The approximation to the true solution f(t) — e~l is good, and 
the method has simultaneously achieved both regularization of an ill-
conditioned problem and smoothing of the data noise. Noticeably less 
accurate results were obtained as the noise level was raised. 

We also tested problems where the solution f(t) was not exponentially 
decaying and extremely poor results were sometimes obtained. This 
confirms that this basis has very limited areas of application. 

4.2. Cubic B-spline basis. Consider 

(30) / V + t2)lf2f{t)dt = [(1 + s2)3/2 - *3]/3, 
Jo 

for which the true solution is f(t) — t. 
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X10 - 1 

10-, 

9 

8J 

lì 

6j 

5 

~ 3 

£ 2J 

FCt) = expC- t ) 

1 

— True Solution 

Approximation 

I I I I I I I I | I I I I I I M I | I TI I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | TI M I I I I I | I I I I I I I I I | I I I I I I I I I | 

0 1 2 3 4 5 6 7 8 9 10 
X10"1 

TABLE 3 

In Table 4, we show numerical results obtained for the same data 
noise level as (29), and see that good results were obtained. 

We have tested many problems using 6-splines and have obtained 
consistently satisfactory results. 

4.3. Eigenfunction basis. We have considered the problem 

/ K(s,t)f(t)dt = g(s), 
Jo 

where 
R7, rt-Jf1-«)«' 0 < ' < « < ! . 
n ^ l > - \(l-t)8, 0<8<t<l, 
and 

g(s) = ^(l-2s* + s3), 
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X 1 0 " 1 

1 1_ 

TABLE 4 

Eigenvalues of the Kernel K ( s t t ) 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

approximation 

0.101321180*00 
0.253303050*01 
0.112579050*01 
3.633293590-02 
0.405238910-02 
0.281294880-02 
0.206047200-02 
0.156617650-02 
0.122344020-02 
0.771354290-03 
0.317646340-03 
0.420597040-35 
0.407596710-05 

true 

0.101321180*00 
0.253302960-01 
0.112579090-01 
0.633257400-02 
0.405284730-02 
0.281447730-02 
0.206777930-02 
0.158314350-02 
0.125087880-02 
0.101321180-02 
0.837365150-03 
0.703619330-03 
0.599533630-03 

absCrel. error) 

0.478061430-08 
0.374078180-06 
0.369114140-06 
0.571526230-04 
0.113067180-03 
0.543084820-03 
0.353385380-02 
0.107172670-01 
0.219355020-01 
0.238703830*00 
0.235486480-01 
0.994022380*00 
0.993201440*00 

TABLE 5. 

which has true solution f(t) = t(l — t). The kernel K(s,t) has 
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FCt) = t ( l - t ) 
True Soluticn 

X10"1 

t 
TABLE 6. 

eigenvalues, À» = (in)'2, and corresponding eigenfunctions 

</>i(s) = \PÌ sin(nrs), i = l , 2 , . . . . 

In Table 5 we show the approximations to the first 11 eigenvalues, 
and Table 6 shows the approximation to /(£) obtained using the 
corresponding eigenfunctions as the basis, with g(s) measured exactly. 

As with the previous methods the approximation was found to dete
riorate with increasing levels of noise in the data, and the value of A 
which minimizes V(X) was correspondingly difficult to determine accu
rately. This problem may be overcome by considering a higher degree 
of smoothing. 
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