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ON IKEBE'S CRITERION 

DAN AMIR 

ABSTRACT. A 0-2 law for the metric projection is shown 
to hold in most of the common Banach spaces. 

Let V be a linear subspace of the normed space E. Denote by P\ the 
(set-valued) metric projection of E onto V, P\ x =: {r G V : ||.r - r|| = 
d(x, V)}. V is called proximinal if P\ x ^ 0 V.r G E, semichebyshev if 
\Pyx\ < 1 Vx G E, and Chebyshev if both, i.e., if |P r . r | = 1 V.r G £ . 
If r G / Y J \ then | | j - - v\\ < \\x - 0|| = | | j - | | , hence | |r| | < 2||.r||. For 
equality to hold, it is necessary that \\x - r|| = ||.r||. i.e.. that 0 G Py.r. 
If V is semichebyshev, this implies that r = 0, hence x = 0. In [8], 
Ikebe showed that if V is a non-Chebyshev finite-dimensional subspace 
of E = C[a, 6], then there are .r # 0 in E and r G P\ .r with | |r| | = 2||.r||. 
so that 

(*) | | r | |<2 | | . r | | VxeE. r G P\ x 

characterizes the Chebyshev property in this case. 

Ikebe's proof uses the well-known Haar characterization of finite-
dimensional Chebyshev subspaces of C[a,b}. In Singer's survey [14: 
Proposition 3.2, p. 28] it is observed that Ikebe's result holds also 
when E = C(Q), Q any compact Hausdorff space. In the "added in 
proof part of his survey (p. 92), Singer mentions a generalization to 
E = C(Q, i / ) , H a Hilbert space, due to K.H. Hoffmann [7]. 

Motivated by these results, we say that the normed space E has 
Ikebe's property (Ik) if, in £\ every linear subspace satisfying (*) is 
semichebyshev. We say also that E has (Ik1 ) (respectively, (Ik1)) if this 
criterion is valid for all 1-dimensional (respectively. 1-codimensional) 
subspaces. Strictly convex spaces have the (Ik) trivially. 

Geometrically, (Ik) (respectively (Ikj) or (Ik1)) means that, for every 
plane (respectively, line or hyperplane) F which supports the unit ball 
BE at more than one point, there is a translate of F which supports 
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BE at a set containing a segment of length 2. To see that these 
three properties are different, consider the following two 3-dimensional 
spaces: 

l.E = {£\ 0 R) 2 , i.e., R 3 with the norm ||(£,f/,C)|| = ((Kl + M) 2 + 
C2)1/2 (Figure La) has Iki but not Ik1. 

2. E with the unit ball {(f,7/,C) : |C| 
(Figure Lb) has Ik1 but not Iki. 

< i , ( 2 + (i + ICI)2/;2 < 1} 

FIGURE l.a. FIGURE Lb. 

In the same "added in proof part, Singer mentions a paper by W. 
Pollul ([13], unpublished) from which he cites the above characteriza
tion of Ik1 (i.e., For every / G £*, | | / | | = 1 with Mf =: {x G BE \ 
f(x) — 1} containing more than one point, there are y, z G Mj with 
\\y — z\\ = 2) as well as the observation that C(Q), L\(fi) and also 
C[a,6] with the Li-norm satisfy a property stronger than Ik, namely: 

(Ik{) Every nontrivial segment in any face has a parallel segment of 
length 2 in the same face (i.e., if, for every x,y G BE, x ^ y, f G 
E*, U/H = 1, and f(x) = f(y) = 1, there is z G E with f(z) = 1 and 
IMI = ||2i + 2 ( x - y ) / | | x - y | | | | ) . 

Although these will follow from more general results, we present direct 
proofs of Pollul's results (slightly generalized). 

PROPOSITION 1. Let E = Za(^) (^ any measure) or E = C(Q)LlM 

(JA a positive Borei measure on the compact Hausdorff Q). Then E 
has (lk\). 
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PROOF. Let / , x , y be as above. / can be considered as a norm-1 
L-^ -function on the measure space (the proof for the non <r-finite case 
is almost the same). The assumptions imply that |x| = fx and \y\ — fy 
a.e. L e t 2 = 2 / ( | x | - | y | ) - / l l * - v l l - Since 0 = / ( / x - fy)dp = J(fx -
fy)+dfi - J(fx - fy) dfi, we have 
\\f(fx-fy)+\\ = \\(fx-fy)+\\ = \\(fx-fy)-\\ = \\f(fx-fy)-\l while 
Ik-2/11 = | | / ( /* - /y ) l l = | | / ( / * - /» ) + l l + l l / ( / x - / » ) - | | . Therefore 
\\z\\ = 1 = f(z). Also zx = z+2{x-y)l\\x-y\\ = 2/( |x | - |y | ) - / | |x-y | | 
satisfies libili = 1 = f(z\). If x, y are continuous, so are z and z\. D 

If Q is a compact Hausdorff space and a : Q —+ Q is a continuous 
involution (i.e., with a2q = q Vq G Q), then (^(Q) denotes the closed 
subspace {x G C(Q);x((jg) = x(q) Vç G Q} of C{Q). The class of 
Ca(Q) spaces contains the class C(Q) and the class of CQ(T) spaces 
(T locally compact) as special cases. In C„{Q) we have the "skew 
Tietze extension theorem'' : If K is closed in Q with A' fl aK = 0, then 
every x0 G C(Ä') has an extention x G C(Q) with ||x|| = ||x()|| (take 
x = (xi -xi ocr)/2, where xx G C(Q) is any norm-preserving extension 
of x0). 

PROPOSITION 2. E = C„(Q) has property (Ikj). 

PROOF. Let / , x , y be as above. / is represented by a norm-1 Borei 
measure // on Q satisfying -ß{A) - ß(crA) for every Borei subset A of Q 
(cf., e.g., [1, Lemma 2]). f(x) = / (») = 1 means that x(q) = y(q) = 1 
on spt//+ and x(q) = t/(<?) = - 1 on spt//~ = <r(spt//+). We may 
assume that ||x - y\\ = x(q0) for some q0 G Q. Then q() £ spt// 
and there is h G Cff(Q) with h(q0) = ft(spt^+) = 1, ||/z|| = 1. Let 
s = (l-\x-y\/\\x-y\\)h-(x-y)/\\x-y\\, zx = z+2(x-y)/\\x-y\\ = 

(1 - |* - » l / lk - «ID* + (* - »)/ll* - »II- Then c, ci G C ( Q ) , | |c| | = 
1 = (qo) = -Zl(qo) = ||Ä1 | |, and / (c) = / ( d ) = 1. D 

The C„(Q) spaces are a subclass of Lindenstrauss spaces, i.e., those 
Banach spaces whose dual is (isometric to) an Li(fi) space. An 
intermediate class is that of Grothendieck spaces, and another subclass 
is that of affine function spaces on Choquet simplices (cf. [9]). 
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In his memoir [12], Lindenstrauss characterized the Li(//)-predual 
spaces by a ball intersection property. We say that a normed E has 
the n.2.i.p if every family of n mutual intersecting closed balls in E has 
a nonempty intersection. He proved that the 4.2.i.p implies the n.2.i.p 
for every n, and that (if E is complete) it is equivalent to E* being an 
Li(^)-space. Other relevant results from [12] are: 

(a) If a normed E has n.2.i.p, so does its completion (but the converse 
is false). 

(b) To check n.2.i.p it suffices to consider translates of the unit ball. 

(c) If E, Ei, E2 . . . have n.2.i.p (for some n > 3), so do the vector-
valued function spaces ($2k (BEk)CQ, ($2k (BEk)x and C(Q,E) (Q any 
compact Hausdorff), while ($^A. Œ-EJOI and L\(//,£*) (ft any measure) 
have the 3.2.i.p. 

A. Lima [10, 11] studies 3.2.i.p and improved some results of 
Lindenstrauss. He showed that 3.2.i.p is equivalent to the following 
decomposition property: 

(A3) 

Vx,2/, G E 3z,u,v e E 

with 

x = z + u,y = z + v,\\x\\ = \\z\\ + IMI, IMI - ||*|| + IMI 

and 
| | x - y | | = | | u - i ; | | = | |«| | + | H | , 

and that the 3.2.i.p, unlike the 4.2.i.p, is self dual, i.e., a Banach space 
E has the 3.2.i.p if and only if E* has the 3.2.i.p. 

The finite dimensional spaces with 3.2.i.p are characterized in [6] to 
be the spaces R 0 R 0 • • • 0 R, where the direct sums are in the l\ or 
(x sense. Lima [11] studies n.2.i.p in operator spaces and proved that: 

(a) The space K(E, F) of the compact linear operators from E to F 
has 3.2.i.p if and only if E and F have 3.2.i.p and either E or F* is an 
L\(n) space. If F is a dual space, then the same condition is necessary 
and sufficient for the space L(E, F) (of bounded linear operators from 
E to F) to have 3.2.i.p. 

(b) L(Li(/i),Li(i/)) has 3.2.i.p. L{C^C\) does not have 3.2.i.p. 
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Lima characterized 3.2.i.p by faces of the unit ball (i.e., by sets of the 
type Mf = f-1ir\SE,f G SE*) : A real Banach space E has the 3.2.i.p 
if and only if, for every pair A/i, M2 of disjoint faces of BE, there is a 
face A/ of BE such that Mi C A/, A/2 C -A/ . 

Fullerton [5] defined the (CL) property of the normed space E: 
For every maximal face A/ of the unit ball BE, we have BE = 
conv(Af U - A / ) . From Lima's characterization it follows at once that, 
for real Banach spaces 3.2.i.p => (CL) (if x G f?£\conv(A/ U -A / ) , 
apply the Hahn-Banach theorem to get a face disjoint with both M 
and -Af). Since L ( ^ , L f ) has (CL), the converse implication fails 
[11]. Lindenstrauss observed that Fullerton's results show that (CL) 
implies a property somewhat weaker than 3.2.i.p, namely: 

(3°.2.i.p) Every 3 mutual intersecting balls, two of which intersect 
exactly in a single point, have a nonempty intersection. 

3°.2.i.p can be stated in terms of extreme points, e.g., | / (e) | = 1 for 
every / G extf?^*, e G extBE, or also: For every e G extBE, x G SE, 
at least one of the segments [e,x], [-6, x] lies on the sphere S#. 

It is shown in [11] that, if E* has 3°.2.i.p., then E has "almost 
CL", i.e, BE = conv(A/ U -Af) for every maximal face M of BE- In 
particular, in the finite dimensional case the following are equivalent: 

(i) E has (CL), 

(ii) E* has (CL) and 

(iii) E has 3°.2.i.p. 

LEMMA 3. If M is a face of BE such that BE = conv(A/ U -A/ ) , 
then, for every x,y G A/, x ^ y, there are u,v G M with u — v — 
2 (*-») / l | s -y | | . 

PROOF. For every z G M, M — z spans a maximal subspace F of E 
whose unit ball is (M - M)/2. In particular, x - y G F and there are 
% v G M with (x - y)/\\x - y\\ = (u- v)/2. D 

THEOREM 4. (CL) spaces have (Ik}). 
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PROOF. Immediate, by the last lemma. D 

COROLLARY 5. 3.2.i.p implies (Ik}). In particular, all Lindenstrauss 
spaces have (Ik!), hence (Ik). 

Observe that 3°.2.i.p is satisfied trivially if BE has no extreme points. 
Therefore the following example of a space E with extBß = 0 which 
fails (Iki) shows that 3°.2.i.p does not imply (Ik): 

EXAMPLE 6. Renorm c0 by | | |x|| | = maxfllxll«,, \xi\ + |x2 | />/3, 
\2x2\/\/3). The dual space is tx with |||y|||* = max(|^i|, \gx\/2 + 
| \ / 3^ | /2 ) + i : r=3 1**1- Consider g = (0, l /x /3 ,1/4 ,1/8 ,1/16, . . . ), then 
\\\g\\\* = 1 and Mg = {(t, 1 ,1 ,1 , . . . ) : \t\ < 1/2} which has diameter 
1. Observe that the dual fails the 3°.2.i.p If y = ( 0 , ^ , 0 , . . . ) and 

z = (2, ^ , 0 ,0 , . . . ), then B(0, l)flB(y, 1) = {y/2}, £(0, l ) n ß ( : , 1) = 

{ ^ / 2 } a n d B ( y , l ) n B ( z , l ) = { ( l , ^ /3 ,0 , . . . ) } . 

So far we have 2 classes of norms with the Ik - the strictly convex 
ones and the "very square ones. What about mixing the two? 

PROPOSITION 7. If (Ek) is a (finite or infinite) sequence of strictly 
convex spaces, then (E®-E*)c0 and ( E 3 ) ^ ) 1 have Ik}). 

PROOF. Let V C E ® E k be a linear subspace, x = (xk) € PylQ and 
0 r V = (vfc) G Pyx. We may assume ||x|| = 1. Then there is g € V x 

with \\g\\ = 1 = #(x) = E#*(xfc)- We now apply the representations 
(E®EkyC0 = E e ^ ) „ ( £ e £ f e ) î = ( E © ^ ) « [2, P . 35]. 

In the (52®Ek)c0 case, we have maxjt||xjt|| = max||a;fc — Vk\\ = 
1, E llObll = 1- Therefore gk(xk) = flfc(xfc - %) = \Ì9k\\ V*. If <fc ^ 0, 
then gk{xk) = 0fc(#fc - w*) = ||<7fc|| implies by strict convexity that 
#fc = Xk — Vk, i.e., Vfc = 0. Therefore we must have gm = 0 for some 
m. Let 21 = x - Xm + vm / IK»| | , z2 = x - x m + vm / | | i /m | | . Then 
ll^ll = 1 = g(zj) for j = 1,2, which shows (Ik}). 

In the {J2®&k)i case, we have E l i c l i = E I N ~ vk\\ = 1 
and max 11& 11 = 1. Therefore gk{xk) = ||xfc|| and gk(xk - vk) = 
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\\xk — Vk\\ VA:. Strict convexity implies that Xk and yk — Xk — Vk 
are nonnegatively proportional. If Xk # 0 or yk # 0, then there are 
<*k,ßk > 0 and ßk € E with \\uk\\ = 1 = gk(uk), %k = a ^ , ?/*• = 
ÄWfc. If Xk = yk = 0, take a* = A: = 0 and it* arbitrary. Let 
zk = 2(aA; - /?fe) - t**/||x - 2/||. Since £c*fc = E Ä = 1, we 
have £ ( a * - & ) = 0 hence £ ( a * - /?*)+ = £ ( a f c - A ) " , so that 
9(*) = IMI = Efc 2(a* - & ) / £ ; I«; - £;l = 1, as well as 

x + 2 
Ik-2/11 

_ v - |2(afc &)-+2(a f c-/? f c)l 

EK-ÄI 
2K - &)+ 

EjK-ftl 
= l. 

REMARK 8. A completely analogous computation shows that, if E 
is strictly convex and if Li(ii,E)* = L^ß.E*) (e.g., when ß is finite 
and E* has the Radon-Nikodym property with respect to /x, [3 p. 98]), 
then Li(/*,£?) has (Ik}). 

Similarly, we can consider CQ{Q,E) where £ is strictly convex. The 
dual space is M(Q, £""), the space of regular Borei J£*-valued measures 
on Q with finite total variation [4, p. 387]. Q0 =: {q G É? : ar(ç) # y (g)} 
is a nonempty open set, and the variation of the JE^-valued measure 
9 on Q0 must be 0 (by strict convexity of E). Taking an Urysohn 
function <p supported in Q0, z\ = (1 - <p)x + <p(x - y)/\\x - y\\, z2 = 
(1 - tp)x - <p(x - y)l\\x - y\\ shows (Ik}). 

On the other hand, the other way of combining strict convexity with 
(CL) may fail. E.g.: 

EXAMPLES 9. We already saw that (({ 0 R) 2 has Ikx but fails 

Ik1, £? = (/Je/e)2, i.e., R 4 with the norm | | (U; , ( , I J ,C) | |== (( |u; |+|S | )2+ 

(I7?! + ICI)2), fails even Iki (consider the segment l/\/2{(*, 1 - t , t/2, 

1 - t/2) : 0<t< 1}). 
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The characterization of the 2-dimensional spaces with (Ik) follows 
immediately from the following two obvious observations: 

PROPOSITION 10. In any normed space E, if [u,v] is a segment 
of length 2 on the unit sphere, then the 2-dimensional subspace F = 
span(u, v) has the parallelogram unit ball BE = conv(±?x, ±v). 

PROOF. || ±U\\ = || ± v|| = || ±uv\\/2 = 1 determines the sphere SF. 

PROPOSITION l l . If E has (Ik1), then, for every supporting hyper-
plane H of the unit sphere SE which is not semichebyshev, H D SE 
contains a segment [u, v] of length 2. 

COROLLARY 12. Among the 2-dimensional spaces, those having (Ik) 
are exactly the strictly convex ones, and i\ = ^ . 

COROLLARY 13. The property (Ik) is not inherited by subspaces, 
quotient spaces or dual spaces. Also, the 4.3.i.p does not imply (Ik). 

PROOF. The 2-dimensional space whose unit ball is a square with 2 
semicircles (Figure 2.a) does not have (Ik), although its dual (Figure 
2.b) does. The rest follows from Propositions 1 and 2 and from the fact 
that, by Helly's theorem, every 2-dimensional space has 4.3.i.p. a 

w o 
FIGURE 2.a. FIGURE 2.b. 

L. 
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Among the 3-dimensional spaces, besides the strictly convex ones, (\ 
and £^, we have (by Proposition 7) also the spaces whose unit balls 
are "double cones" (Figure 3.a) or "tomato cans" with strictly convex 
bases (or, more generally, of the type conv(A U —A), A strictly convex 
(Figure 3.b)). 

FIGURE 3.a. FIGURE 3.b. 

REFERENCES 

1. Y. Benyamini, Separable G spaces are isomorphic to C(K) spaces, Israel Jour. 
Math. 14 (1973), 387-293. 

2. M.M. Day, Normed Linear Spaces, 3rd edition, Springer, 1973. 

3 . J. Diestel and J.J. Uhi, Vector measures, Math. Surveys 15, Amer. Math. 
Soc. 1977. 

4 . N. Dinculeanu, Vector Measures, Pergamon, 1967. 

5. R.E. Fullerton, Geometrical characterization of certain function spaces, Proc. 
Inter. Symp. Linear Spaces, Jerusalem, 1961, 227-236. 

6. A.B. Hansen and Â. Lima, The structure of finite-dimensional Banach spaces 
with the 3.2.i.p. Acta Math. 146 (1981), 1-23. 

7. K.H. Hoffmann, Über ein Eindeutigkeitskriterium bei der Tscheby scheff Ap
proximation mit regulären Funktionensystemen, Funktional analytische Methoden 
der Numerische Mathematik, Oberwolfach (Birkhäuser Verlag), 1967, 71-79. 

8. C. Y. Ikebe, A characterization of Haar subspaces in G[a,b], Proc. Japan 
Acad. 44 (1968), 219-220. 

9. A. Lazar and J. Lindenstrauss, Banach spaces whose duals are L\ -spaces and 
their representing matrices, Acta Math. 126 (1971), 165-193. 

10. Â. Lima, Intersection properties of balls and subspaces in Banach spaces, 
Trans. Amer. Math. Soc. 227 (1088), 1-62. 

11. , Intersection properties of balls in spaces of compact operators, Annal. 
Inst. Fourier Grenoble 28 (1978), 35-65. 



32 ON IKREBE'S CRITERION 

12. J. Lindenstrauss, Extension of compact operators, Memoirs Amer. Math. 
Soc. 48 (1964). 

13. W. Pollul, Über ein Eindeutigkeitskriterium für besten Approximationen, 
unpublished. 

14. I. Singer, The theory of best approximation and functional analysis, SIAM 
regional conference series in applied mathematics, No. 13, 1974. 

S C H O O L O F M A T H E M A T I C A L S C I E N C E S , T H E R A Y M O N D AND B E V E R L Y S A C K L E R 
F A C U L T Y O F E X A C T S C I E N C E , T E L - A V I V UNIVERSITY, R A M A T AVIV, ISRAEL 


