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(0 .3) I N T E R P O L A T I O N O N T H E Z E R O S O F -„ (x ) 

M.R. AKHLAGHI. A.M. CHAK AND A. SHARMA 

1. I n t r o d u c t i o n . Balazs' and Turan's work [1] on (0.2) interpo
lation in 1957 led to considerable interest in the general problem of 
Birkhoff interpolation. However, in spite of the recent classic book on 
this subject by G.G. Lorentz et al. [2]. the problem of (0.3) interpo
lation on the zeros of nn(.v) seems to have been ignored. Similarly, 
although we know [2. p. 10] that (0 .2.3) interpolation is regular on 
any real distinct nodes, i.e.. is always nnicinely solvable, there is no 
known formula for the explicit expression for the interpolant, except in 
the trigonometric case on equidistant nodes. 

Recently Vanna has found some quadrature formulae using values and 
third derivatives of 7r„(.r) together with values of the first derivatives 
at ± 1 on using his method in [3]. However, his approach is not via 
interpolators' formulae. In view of this, we propose to show that (0.3) 
interpolation is regular for // > 4 on the zeros of ~,,(.r) and to give 
the explicit formulae for the fundamental polynomials. (For // < 3. the 
problem is not regular because Polya conditions are not satisfied and 
for // = 3. the problem is trivial.) It turns out that the quadrature 
formula of Vanna can be obtained by integrating the polynomial of 
(0.3) interpolation. The methods used here show that the problem of 

(0. 1 /• - 3. /•) on zeros of 7r„(.r) is regular for any positive integral 
/• > 3. 

In §2. we give the preliminaries and state the main results. The 
proof of Theorem 1 is given in §3 and the fundamental polynomials are 
derived in *j4. §5 comprises the proof of Theorem 2 and the fundamental 
polynomials for the (0.3) case are given in §0. In |j7. we apply the 
results to derive a quadrature formula. 

2. Pre l iminar i e s and m a i n resul t s . It is known that the 
polynomials 7r„(,r) satisfy the differential equation 

(2.1) (l - . / - V = - » ( » - 1)/;. » > 2. 

For // = 0 and 1.7r,,(.r) = 1.7r,(.r) = .r and irn(.r) = (1 - .r2)P!,-\(-r) 
where P,,(.v) denotes the Legendre polynomial of degree // with P„(\) — 1. 
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We shall require 

(2.2) { n',:(l) = -n2(n - l ) 2 /2 = (-lY'n'^-l), 

C d ) = -»2(n - l)2(ii + l)(n - 2)/8 = (-l)"+ 17r;,"(-l) . 

We recall that P„_i(l) = 1 = ( — 1 )"~x,P„_i( — 1) and that 

, , , , jK-i(l) = H ( n - l ) / 2 = ( - l ) " i ^ I _ 1 ( - l ) . 
^•6) \ ^ / _ , ( l ) = ( » + l ) » ( » - l ) ( » - 2 ) / 8 = ( - l ) " - 1 ^ ' _ 1 ( - l ) . 
We shall also make use of the known identities 

(2.4) 

f (n + l)P„ + ,(.r) = (2n + 1)J-P„(J-) - « P . - i d ) . 
( l - . r 2 ) P ^ ( x ) =„P„_l(x)-nxP„(jr). 

iiP„(.r) = J - P / 1 ( X ) - ^ I _ I ( J T ) . 
[(ii + l)P„(.r) =P/ 1 + 1( J-)- J-P/ , ( J-) . 

The known orthogonal property 

(2.5) fy - xa)Pi_,(J.)p;_I(x)dx = 2J§zrr^-

where eyA denotes the Kronecker delta and the recursion relation 

(2n - 1 ) ^ . , ( / ) = (II - 1 ) P » + H F / , _ 2 ( J ) 

leads to 

ù f ( i -n /? ._ i (0^- i (0* 

(2.0) 2(/i - 1)W(/J + l)/(2w - 1)(2/? + 1), A- = n + 1, 
_ ; 2 / i ( / / - p ( / / - 2 ) , _ 1 

( 2 » - l ) ( 2 « - ; j ) * A — /? 1, 

0. otherwise. 

We also note the integrals 

( ^ ^ - . ( • ' K - i W ^ M i + f - i ) " ^ ) ^ 1 , A - - i < n 
1 X!, .i-^-i(j-)/i[.-,U)Ar = (1 - (-l)"+*-)*l^l). A<ii. 
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Let - 1 = x\ < -" < xn-i < xn = 1 denote the zeros of ir„{x). We 
recall the known identity 

From (2.4), we have 

(l-x2)K-i(x) 

= n(n-\)[ _ K+l(x) 2 ( 2 n - l ) _ J*_3(:r) 1 

2 n - l | 2n + l (2n - 3)(2n + 1) n _ l W 2n - 3 J 

Multiplying both sides by (1 - x2)F/._j(x) and using (2.5), we observe 
that, for 2 < k < n — 1, we have 
(2.9) 

,1 r »("-I) 2(TI-2)(TI-3) i, _ „ _ o 
/ , x , x, j (2n-l)(2n-3) 2n-5 ' K ~ n Z 

/ 7rw(x)7Tib(x)cte = < 
J~l [o, k^n-2. 

We shall prove that the problem of modified (0,3) interpolation on 
zeros of 7rn(x) is regular. More precisely, we shall prove 

THEOREM 1. lfQ(x) E 7r2n-i satisfies the conditions 

(Q(x„) = 0 i / = l , 2 , . . . , n , 
(2.10) { Q ' ( + 1 ) = Q ' ( - 1 ) = 0, 

I Q ' " ( * „ ) = 0, i/ = 2 , . . . , n - l , 

2/ien Q(x) = 0. 

As a consequence we will derive 

THEOREM 2. 77ie problem o/(0,3) interpolation on the zeros ofirn(x) 
is regular. 

The proofs of Theorems 1 and 2 will depend on the elementary 
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LEMMA 1. Let g(x) be a given polynomial of degree < m and let 
Lg(x) denote the linear function interpolating g(x) at ±1. Then the 
only polynomial solution of the differential equation 

Z{\-x2)y"-n{n-\)y = g{x) 

is given by 

y = —J-—L(J(x)+ f (g(t)-L(J(t))K(x,t)dt, 
n(n-l) J J_i 

where 

i/=2 
2v(y — l)Xu.n 

The proof of this lemma is a simple consequence of the relation (2.7) 
and is left out. If we set 

we have 

LEMMA 2. The following identities are valid: 

(2.12) H - l 
(n - fc)(n + fc - l)(2fe - l)wfc(x) 

fa 2k(k - l)Afc.„ 

(2.13) 

/ (1 - t)(K-x(t) - K-i(-W(x,t)dt 

y>' (n - k)(n + k- l)(2k - l ) i r w (x ) ( - l ) w + t 

~ fa 2k(k - l)Afe.TO 
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and 
(2.14) 

f1 f <t\w<r i\Ht - 1 v ^ ( 2 A - - l K ( x ) ^ . _ 1 ( J / ) 

J_t /,(**<*,/)* = n{n_1)PLi(Xj) E ^ _ 1 ) A , „ • 
where AA.?, ÎS piven in (2.11). 

PROOF. These identities are easy to verify on using the expression 
(2.11) for K(x,t) and the formulae (2.7). In particular, from (2.7) we 
have 

J p,„_1(x)dx = i + (-iy, J xP'„_l(x)dx = \-{-ir. 

We also use the differential equation for Pn-i(x), viz., 

(1 - x2)K-i(x) - 2 < - i W + n(n - l)Pn-X(x) = 0. 

G 

3. Proof of Theorem 1. From (2.10) we see that the polynomial 
Q{x) e 7r2„_i must be of the form ir„{x)s(x), s(x) G 7r„_i. The 
conditions Q'"{xu) = 0, v = 2 , . . . , n - 1, after simplification imply that 

3(1 - xl)s"(xv) - n(n - l)s(xv) = 0, v = 2 , . . . , n - 1. 

Since s(x) e 7rn_!, the above conditions show that s(x) satisfies the 
differential equation 

(3.1) 3(1 - x2)s"{x) - n{n - l)s(x) = (Ax + B)P'n_l(x). 

The requirement Q'{±\) = 0 implies that s (± l ) = 0. Putting x = ±1 
in (3.1) we get A + B = -A + B = 0, which shows that ,4 = £ = 0. 
From Lemma 1, it follows that s(x) = 0, which completes the proof, o 

4. Fundamental polynomials for modified (0,3) case. We can 
now find the fundamental polynomials of modified (0,3) interpolation. 
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\Ve shall denote them by {ru(x)}"< cr\(x), a„(x) and {p,Ax)}"=2 
respectively. 

a) The polynomials pu(x),v — 2 n - 1. These polynomials are 
determined by the conditions 

( pu{xj) = 0, j = 1 n, 

fi'(*j) =f>»J< J = 2 n - 1 -

Putting p„{x) = TT„(X)S„(X), and using (4.1), we see that 

1 - x * 
3(1 - x2jW{xj) - n(n - l)sv{xj) = KJ-TJ-^, j = 2 n - 1. 

Equivalently, s,y(x) satisfies the differential equation 

3 ( l - j r 2 K ( j ) - n ( n - l K W 

From p'ly(±l) = 0, we get s„(±l) = 0 so that putting x = ±1 in the 
above differential equation, we obtain 

B = Ar„, A = 
(î-^M/^x,,))*-

Using these values and simplifying, we derive 

„2\J'/„\ ^ / ~ i u /^ \ M / W 3(1 - x2K(x) - n(n - !)*„(*) = — i 

where /'„(.r) is given by (2.11a). 

By Lemma 1, we have 

1 fl 

*(*)= p.; , v / h(t)K(x,t)dt 
rn-i\Xv) J-i 

and from (2.14) in Lemma 2 we get 

» - I 

(4-2) S " ( X ) =
 B2/M.li2P3 , r„, E 

1 '^(2A--l)7r,(x)P/!_1(^) 

^ ( n - l ) 2 ^ ! ^ ) ^ &(*-l)At.„ 
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and pv(x) = 7Tn{x)siy(x). 

b) The polynomials cr\(x), a„(x). From symmetry it follows that 
o~n(x) = -ai(-x) where cr\(x) is determined by the conditions that 
(Ti(xu) = 0, v = l , . . . , n ; a[(xi) = l ,a i (x„) = 0 and (j'"(xy) = 
0, J/ = 2, . . . , n — 1. Setting o~i{x) = 7rn(x)a(x) we see that a ( l ) = 
0, a ( - l ) = ( - l ) ' 7 n ( n - 1). As above, we see that o(x) satisfies the 
differential equation 

3(1 - x2)a"(x) - n{n - l)a(x) = (Cx + D)P,
1)_i{x). 

Since a ( l ) = 0 , we get 

D = -C = -l/n(n-l). 

Applying Lemma 1 we get 

aM=("2l(r-".)x'-^Tj/i':-')(P--'(')-p:--(-1)Wj-')i'' 
and using (2.13) in Lemma 1 gives an explicit form for a(x). Indeed, 
we obtain 
(4.3) 

= ( - ! ) " ( ! -x) _ y . 1 (2k-l)(n-k)(n + k-l)(-l)"+kn(x) 
{ ' 2 n ( n - l ) f^2 2n(n - l)k{k - l)Afc.„ 

c) 77ie polynomials r„(x),2 < v < n — 1. Since r^(x) is determined 
by the conditions 

{ r„(x) = 6vj, j = 1, n, 
r > J ) = < ( x „ ) = 0 , 
C(x>) = 0, j = 2 , . . . , n - l , 

we set 

1 - x 2 

M * ) = Î ô M * ) "H 7rn(x)/?„(x), /3„(x) G TT/,-1. 
1 - X J 

From r'u{±\) = 0, it follows that #,(±1) = 0. As in case (b), we see 
that r'l'(xj) = 0, j = 2 , . . . , n — 1, implies that 

3(1 - * » ) # ( X j ) - n(n - !)&(*,•) = _ - ^ ( r — ^ / „ ( x ) ) w / 
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j = 2,...,n-l. 

Since j3|,(±l) = 0 and since ß„{x) e 7rn_i, it follows from the above 
that /?„(#) satisfies the differential equation 

(4.5) 3(1 - x2)#,'(x) - n(n - l)ßv{x) = lv(x) 

where 7„(x) is a polynomial of degree n - 1 which satisfies the inter
polating conditions 

7,(±1) = 0 

1 — x? / 1 — r 2 \ , , ; 

* « * > — < ^ + (r^w)w ' -* • • - - ' • 
Some elementary calculations show that 7Ï,(X) can be explicitly given 
by 
(4.6) 
^ M n ( n - l ) r l - x

2 - ( l - x g ) C ( * ) l 
™ ; (l-x2)<(xv)l x-xv Ì 

1 - x2 {6(1 - e„(x)) + 2(g - x„)Ç(x) + (x - x„)2C'(x)} 
< ( x „ ) ( x - x , , ) 3 

From Lemma 1, we now get 

&(*)=/ lv{t)K{x,t)dt 

where A'(x,£) is given by (2.11) and 7„(£) is given by (4.6). 

d) The polynomials r\(x),rn(x). These polynomials are similar to 
those in (c) above. They also satisfy (4.6) with v replaced by 1 and n 
respectively. It is then clear that rn(x) = r i ( - x ) . We shall find r\(x) 
explicitly. To do so, we set 

(4.7) n(x) = (1 - x)(Ax + B)£l(x) + 7Tn(x)/?i0r), &(*) G *n-U 

where we choose A and B such that ri(xi) = 1 and ßi(x\) = 0 when 
ri(̂ i) = 0. Then 

2(B -A) = l and 2(B - A)e[(-1) + (3J4 - B)^(-l) = 0. 
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Since t{-l) = 1 and ^ ( - 1 ) = | $ 5 ^ = -'^^j^1, it follows easily 
that 

(4.8) A = n 2 " n + 2 , B=n2-n + Q. 

From r'"(xj) = 0, we get 
(4.9) 

1-x? 
3(l-x2

j)ft(xj)-n(n-l)ß1{xj) = -^—^-A'"(xj), j = 2 , . . . , n - l 

where A(x) = (1 - x)(Ac + B)*i(x) and A,B are given by (4.8). 
Now 

1 -x2 

< ( - l ) \ l (l+Xi)2 + (l + x J ) 3 J ( ^ + ß ) 

-(ï^) î (-^+ 2 A-A>}-
Elementary calculation shows that the unique polynomial 71 (x) which 
satisfies the conditions 

7i(±l) = 0, ll(Xj) = -lÇ-?LA»'(Xj), j = 2 , . . . , n - l , 

is given by 

„w-^LL.-1 )^('+'W-i)-«.w 
< ( - ! ) [ (1 + x)2 

6{1 + (1 + x)fi(-l) + 1(1 + *)2li '(-l) - W f l 
(1 + x)* J" 

Then from (4.9), we see the differential equation for ßi(x) to be 

3(1 - x2)ft(x) - n(n - l)/3i(x) = 7i(*)-
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By Lemma 1, we then have 

ßi{x) = [ 
Jo 

and n (x) is given by (4.7). 

K{x,t)ii{t)dt 

5. Proof of Theorem 2. We shall show that if Q(x) e 7r2n-i and 
satisfies 

(5.1) Q(xu) = 0, Q'"(x„) = 0, v = 1,2,. . . , n, 

then Q(x) is identically zero. 

By Theorem 1, there exists a unique polynomial Q{x) G it2n-i such 
that 

Q(xu) = 0, i/ = l , . . . , n 
Q ' (_ l ) = C, Q'(l) = D, C 2 + D 2 # 0 

Q , , '(xJ) = 0, j = 2 , . . . , n - l . 

From the fundamental polynomials of modified (0,3) interpolation 
we have 

Q(x) = Cai{x) + Dan{x). 

If we now impose the requirement that Q'"{—\) = Q'"{\) = 0, then 
we get a homogeneous system of two equations whose determinant A 
is given by 

k'(-i) <(-i)\ A = 

Since (T„(x) = — <Ti(—x), we have 

A = -K ' ( i ) - oi"(-i)}K'(+i) + < ( - i ) } . 
From the explicit formula for G\(x) in §3, we have 

<j\(x) ±a(-x) 

= 7Tn(x)a(x) ± 7Tn{-x)a(-x) = 7Tn(x)(a(x) ± ( - l ) n a ( - x ) ) 

_ (ax + ß)7rn(x) 

~ 2n(n - 1) 

(2 fc - l ) (n - fc ) (n + k - l)((-ir+k ± l)7rn(x)7Tk.(x) 
n-l 

-E 
fc=2 

2k(k - l)n(n - l)At.„ 
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where a = ( - 1 ) " + 1 ±1,0= ( -1)" ± 1 (i.e., a + ß = ±2). Since 

((ax + ß)*n{x))':U = (a + /?)<"(1) + 3 a < ( l ) 

= ± 2 C ( l ) + 3 a < ( l ) 

(nAxfaix))™^ = 3 « ( l K ( l ) + < ( 1 ) + < ( D ) 

= 3 n ( n - l ) f c ( f c - l ) ( B 2 _ | | + fc2 A), 

it is easy to check that, when n is even, cr"'(l) + a'"{-l) < 0 and 
cr'i — a"'(—l) > 0 and that the same holds when n is odd. 

Thus A ^ 0 which shows that C — D = 0. By Theorem 1 this implies 
that Q(x) = 0, contrary to our hypothesis. This completes the proof 
of Theorem 2. 

6. Fundamental polynomials of the (0,3) case. The funda
mental polynomials for the (0,3) case will be denoted by {r*}" and 
{Pt(x)Yi- They are characterized by theorem properties, viz., 

(6.1) [rt(xj) = 6vr 

\pt(xj)=0 

r* (Xj)=0, u,j = l,...,n 

Pi"'(xj) = pvj, u,j = l,...,n. 

It is easy to check that 

1 
K(x) = 

r„(x) 
r'/ '(l) 

(Ti(x) <J„{x) 

< ( 1 ) <'(!) 

Pl(x) = £ 

rl"(-l) < ( - l ) < ' ( - l ) 

pv(x) ai(x) a„(x) 
p'l'{\) aï"(l) < ' ( 1 ) 

Pt"(-1) < ( - l ) < ' ( - ! ) 

where 

v — 1,. . . ,n, 

i/ = 2 , . . . , n - 1, 

A = K ' ( l ) - < ( - l ) ) ( < ( l ) + < ( - l ) ) . 

The expressions for p\(x), p*,{x) are simpler. Indeed, we have 

/*<*) = - £ (Ti(ar) or„(x) I », x _ l 
<//'(!) <'(1) I' P,,A ' ~ A 

^ l ( j - ) - < T l ( - j ) | 

<T' ,"(-1) < ( ! ) I 
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7. Application to quadrature. For a given function / € C3[—1,1], 
we denote by Rn(f,x) the unique polynomial interpolant of modified 
(0,3) interpolation of f(x) on the zeros of 7rn(x). Thus 

( Rn(f,Xu) = f(Xy), V = l , - , n , 

KUiXl) = f'M> K(f,Xn) = f'(Xn), 
K(f,Xj) = f'"(*j)> j = 2 , . . . , n - l . 

By Theorem 1, we have 

n n - 1 

Rn(f,x) = ^ / ( x , ) r , ( x ) + / ' ( i i ) a 1 ( i ) + / ' ( x n K ( x ) + ^ r ( x , ) p , ( 4 

Integrating both sides from —1 to 1 we get a quadrature formula, exact 
for polynomials of degree 2n - 1. On simplifying, it turns out that 

f(x)dx =An(f(l) + / ( - I ) ) + ß« £ pÌ
K î' 

+ Cn(/'(1) - / ' ( - I ) ) + Dn £ ^ " ^ r ( 4 
k=2 

where 
(6.2) 

An — J _ ! ri(x)dx = J _ j r n ( x ) d £ = n ( 2 n - l ) ( 2 n 2 - 8 n + 9 ) ' 

pg^Oc) = J_i rv(x)dx, i/ = 2 , . . . , n - 1, 
; ^ D _ 4 (n-2) (n -3) 
1 , c ' ' ^ " ~~ n ( 2 n - l ) ( 2 n 2 - 8 n + 9 ) ' 

C n = / ^ <n(x)dx = - / ^ an(x)dx = - ( 2 w_ 1 ) ( 2* ä_ 8 n+ 9 ) , 

p2_ i ( j | / f = J_! Pv{x)dx, v = 2 , . . . , n - 1, 
n n — î 

, ^ n n ( n - l ) ( 2 n - l ) ( 2 n 2 - 8 n + 9 ) * 

These formulae were obtained by Varma in a very nice simple way 
without the use of the fundamental polynomials of modified (0,3) 
interpolation. But he could not obtain the quadrature formula without 
using / ' ( l ) and /'(—1). But in view of Theorem 2, we can give such a 
quadrature formula. Indeed, we have 

/ f(x)dx = £ Alf(xv) + Y Btf'M, 
J-i i i 
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where 

r _ Bn rr(l)-iT(-l) t . _ 1 n 

and 

P „ * , ( l - * * ) r i " ( l ) - r j " ( - l ) 

Moreover, 

*? = - * ; = -- c" < ( i ) - < ( - i ) ' 

where J 4 W , B M , C W and D„ are given by (6.2). 

It is interesting to note that the method used above can be adapted 
to derive the fundamental polynomials of (0,2,3) interpolation on zeros 
°f 7T/J(X). We propose to return to this later. 
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