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IDENTITY-PRESERVING EMBEDDINGS OF
COUNTABLE RINGS INTO 2-GENERATOR RINGS

K.C. O'MEARA, C.I. VINSONHALER AND W.J. WICKLESS

ABSTRACT. A technique is presented for embedding
countable rings with identity into 2-generator rings with iden-
tity so that the embedding respects the identity elements and
the centers. As applications we provide a number of examples
of finitely generated rings with interesting pathology.

1. Introduction. A common theme in the study of algebraic
structures is the embedding of a given structure into a less complicated
one. In this note we consider the problem of embedding countable
rings into 2-generator rings so that the identity element is preserved.
Embeddings not preserving the identity have been constructed by
several authors. Each of the papers [1, 4 and 5] presents a method
for embedding countable rings into 2-generator rings, but none of the
methods respects the identity. We will use a modification of the ideas
in [5] to solve the more difficult identity-preserving problem. Our
embedding has the added advantage of respecting the centers. The
payoff is a variety of interesting consequences, some known, but others
which we were unable to find in the literature. For example:

(1) Embedding Q into a 2-generator ring A provides an example of
a countable-dimensional Q-algebra A which cannot be decomposed as
A= Q®zR, for R a ring which is free as a Z-module.

(2) A slight modification of the embedding technique permits the
construction of a finitely generated primitive ring R with non-zero socle
such that eRe is not finitely generated for some primitive idempotent
e, and R*, the group of units of R, is not finitely generated. Thus,
although “being finitely generated” is a Morita invariant, associated
structures do not, in general, inherit this “finitely generated” property.

(3) Any countable commutative ring can be made the center of a
2-generator ring.

(4) There exists a 2-generator simple ring of characteristic zero.

It is perhaps worth noting that a group-theoretic analogue of (4) is
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the existence of a finitely generated infinite simple group. Such a group
was constructed by Higman in [2].

Our techniques also apply to embedding countably-generated alge-
bras over a field F into 2-generator F-algebras. In this setting we can
duplicate some of the results of [3].

We employ the following conventions and notation. All rings R
contain an identity element 1p and all ring embeddings # : R — S
preserve the identity, that is, 8(1g) = 1s. For any subset X C R, (X)
denotes the subring of R generated by X (1g need not be in (X)). An
n-generator ring R is one for which there exists a subset X C R with
|X|=n and R = (X). The group of units of R is denoted by R*.

We shall frequently use the following simple observation: a countable
ring R is not finitely generated if and only if there exists an ascending
chain R; C Ry C --- of proper subrings of R with UR,, = R.

If a is a countably-infinite ordinal, then M,(R) denotes the ring of
all Ry x Ry column-finite matrices over R with the rows and columns
ordered according to a. In particular, M, (R) is the usual ring of Rg x ¥¢
column-finite matrices over R, whereas M 2(R) is the ring of Ry x R
column-finite matrices containing Rg x Ng blocks, where each block is
an element of M, (R). Notice that if V is the free right R-module
on Ry generators, then M, (R) is simply the matrix representation of
Endg(V) with respect to an ordered basis for V of order type a. For
a positive integer n, M, (R) is the usual ring of n x n matrices over R.

2. The main result. We start with a lemma which reduces the
problem of embedding into 2-generator rings to that of embedding into
finitely generated rings.

LEMMA. If R is an n-generator ring, then M, 12(R) is a 2-generator
Tng.

PROOF. Let R be generated by r,...,r,. Let S = M, 2(R) and
define a,b € S by
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10

where all non-displayed entries are zero. Note that b=! = d"*!, and

that
1
0

(b~'a)? = 0 ‘ =e € (a,b) C S,

whence

=rie € (a,b) for1 <k <mn.

It follows that re € (a,b) for each r € R. Then b~ lreb=U-1 is
the matrix with r in the ¢j position and 0 elsewhere, 1 < 7, j < n.
Therefore {a,b) = M, 2(R). O

REMARK. Let ¢ : R — M,,.2(R) be given by

r

Then ¢ is an identity-preserving ring monomorphism which maps the
center of R onto the center of M, 2(R). D

We now present the main result.

THEOREM. Any countable (respectively, finite) ring with identity can
be embedded in a 2-generator (respectively, finite 2-generator) ring
with identity, the embedding preserving the identity and respecting the
centers.
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PROOF. Let R be a countable ring with identity, and let ry,72,... be
a listing of the elements of R. We produce a sequence of three identity-
preserving ring embeddings, the composition of which embeds R in a
5-generator ring whose center contains the center of R. The result then
follows from the Lemma and subsequent remark.

Denote S = M,,(R) and define ¢, : R — eSe by ¢,(r) = r - e, where

is the matrix unit of S with 1z in the first row, first column and 0’s
elsewhere. Let

Ty T2 0
1
1
a= , b= 1
in S. Note that
(*) ab*e = riy1e = 01 (Tey1), for 0 <k < oco.

In particular, ¢, (R) C (a,b,e) C S.

A deficiency of our container S is that the top corner eSe (the
codomain of the embedding ;) is too small relative to the bottom
corner (1—e)S(1—e). The idea of our next step is to embed S into a ring
T so that the corresponding top and bottom corners are isomorphic.

Let T = M,2(R) and define ¢ : S — T by

’ )
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Denote :
(o )
f=vle) = 0
\ )

and let 2 = plese :eSe — fTf. Then g1 (R) C (p(a), p(b), p(e) =
fYCT. Let
1
(o )

fu= 0 ,

k )

a matrix unit of T. Then there are T-module isomorphisms Tf =
[12, Tfin = T(1 — f), since each of these modules is isomorphic to
a countable product of columns of T. (Note that we could not have
claimed that Tf = T(1 — f) if we had taken T = M_(S).) It follows
that there exist v € fT(1— f) and w € (1 - f)T f such that vw = f and
wv =1— f. Define p3: fTf — T by p3(x) = £ + wrv. Then g3 is an
identity-preserving ring embedding. Moreover, 8 = p3p2p; : R — T is
an identity-preserving ring embedding with (R) C (p(a), p(b), f, v, w).
It is easy to check that, for r € center R,

Or)y=rf+w(rflv=rf+w(rl)v=rf+ (1) (wv)=rf+r(l-f)

()

so that # maps the center of R onto the center of T. This completes
the proof. 0
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3. Consequences.

COROLLARY 1. For any countable field F', there erists a simple F-
algebra A which is generated as a ring by two elements. In particular,
there exists a simple, finitely generated ring of characteristic zero.

PROOF. By the Theorem, there exists a 2-generator ring S containing
F in its center. Choose a maximal ideal M of S and let A = S/M.
Since F N M = 0, we have that F' embeds in the center of A, whence
A is the desired algebra. O

REMARK. Corollary 1 supplies, for any countable field F', examples
of simple finitely generated F-algebras A whose centers have infinite
transcendency degree over F. For we may take any countable field
extension K of F of infinite transcendency degree, and then embed K
in the center of a finitely generated simple ring A. For a more definitive
result on this topic, the reader should consult [3, Theorem 1]. 0

If A is a finite-dimensional Q-algebra it is well-known (and elemen-
tary) that A = Q®, R, where R is a subring of A such that (R,+) is a
free abelian group. However, the Theorem provides an example to show
that this decomposition does not, in general, extend to the infinite di-
mensional case (equivalently, infinite dimensional Q-algebras need not
have a basis relative to which the structure constants are integers).

COROLLARY 2. There exists a countable dimensional Q-algebra A
which is not of the form Q ®, R, where R is a ring with (R,+) a free
abelian group.

PROOF. Let §; € S3--- C S, C --- be a chain of proper subrings of
Q with Q = US,, and let A be a Q-algebra. Note that if A is of the
form QQ® R, with R as above, then A = UA,,, where each A, = S,,® R
is a proper subring of A, hence A cannot be finitely generated as a ring.

By the Theorem we can produce a ring embedding 6 : Q — A, where
A is a finitely generated ring. Since 6 preserves the identity, A is a
Q-algebra in the natural way. By our earlier remarks, A cannot be of
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the form Q® R. DO

The following proposition is presumably well-known, but for the sake
of completeness we include its proof. Unlike some other authors, we use
the expression “finite ring” to describe a ring containing only a finite
number of elements. We shall use Proposition 1 to show (Corollary 3)
that the Theorem fails in the setting of commutative rings — even the
ring Q of rational numbers cannot be embedded in a finitely generated
commutative ring.

PROPOSITION 1. Let A be a finite-dimensional algebra over a field
F. If A is finitely generated as a ring, then A must be finite.

PROOF. We first show that if F is a field which is not finitely generated
as aring, and A # 0 is a finite-dimensional algebra over F', then A is not
finitely generated (as a ring). Clearly we may assume F is countable.
Then F = US,, for some chain §; C S; C --- of finitely generated
proper subrings of F. Let B = {b;,...,b,,} be an F-basis for A. Then
there exist c;jx € F' (the structure constants) such that

m

b,‘b]' = Z Cijkbk-

k=1

For each n, let
T, = (Sn, all the c;jx) C F.

Then the T, form a chain, F = UT,, and since F is not finitely
generated, T,, # F for all n. Now let

A, =(T,,B)CA forn=1,2,... .

Since all the c;j lie in T, we have A, = Y - T,b; # A for all n.
Thus the A, form a chain of proper subrings of A, and their union is
A, which shows A is not finitely generated. It follows that if A # 0 is
finitely generated, then F' must be finitely generated.

To complete the proof, it will suffice to show that an infinite field
F cannot be finitely generated as a ring. Let P be the prime subfield
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of F. We prove by induction on r that an infinite field of the form
F = P(ai,...,a,) is not finitely generated (as a ring). When r =
0, F = P = Q is not finitely generated. Suppose r > 0. Let
K = P(ai1,...,a,—1). If a, is transcendental over K, then K[a,] has
an infinite number of primes. Let

Rn:(K’Pla---mel/le--ql/Pn% n=1727"'7

where py,ps,... is an enumeration of the primes of K[a,|. Then
R, C Ry C ... with F = UR,, and, since K[a,] is a unique factorization
domain, R,, # F for all n. Thus F is not finitely generated in this case.
On the other hand, if a, is algebraic over K, then K is an infinite
field and hence not finitely generated by induction. But now F is a
finite-dimensional K-algebra, whence F' is not finitely generated by the
result established in the first half of the proof. 0

COROLLARY 3. A non-zero commutative algebra A over an infinite
field F cannot be embedded in a finitely generated commutative ring.

PROOF. Suppose A can be embedded in a finitely generated commu-
tative ring R. Choose a maximal ideal M of R. Then R/M is a finitely
generated field, hence finite by Proposition 1. This contradicts the fact
that F can be embedded in R/M. 0

A construction similar to that employed in the proof of the Theorem
provides the following example.

EXAMPLE. There exists a primitive, finitely generated ring R with
non-zero socle such that:

(1) For some primitive idempotent e € R, eRe is not a finitely
generated ring, and

(2) R*, the group of units of R, is not a finitely generated group.

PROOF. We construct R as a finitely generated subring of M, (Q).
Let {r; | 1 < i < oo} be an enumeration of Q and, as in the proof of
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the Theorem, let

0 1
Ty T2 - Tnp 1 0
1 0
a= , b= 1 , e= .
Let
01

and define R = (e,a,b,c). Note 1 = e+ bc € R.

As in the proof of Theorem, Qe C R, whence eRe = Q is not finitely
generated. It is easy to check that, for any n x n rational matrix A,
the matrix (4 ) is an element of R rational vector space of countable
dimension, the natural action of R on V makes V a faithful simple

R-module. Hence R is primitive, and plainly has non-zero socle.

Let N = {r € R|rankr < oo} = socle R and let R = R/N. Note
that a,e € N and that ¢ = (b)~!, where T=r + N forany r € R. It
follows that R = Z[l_),E_l], with b-transcendental over Z; in fact R is
just the group ring over Z of the infinite cyclic group generated by b.
A simple computation shows that the only units of R are £(b)7, j € Z.

Let 7 € R*. Then7 € (R)*, so r is of the form + b + x or + ¢/ + r for

some j > 0,z € N. First we show that the possibility r = & + z,j > 0,
cannot occur. To see this, note that any such r will have the form
0'7):
Here U is a k x 1 rational matrix, W is a k x w rational matrix, I is
the w x w identity matrix, and k£ = [ + j is a positive integer chosen
such that any row below the k-th consists of all 0’s except for one 1
contributed by the matrix &. (Without loss of generality, choose k
such that [ > 0.) To see that r is not a unit we construct a non-zero
s € M,,(Q) such that st = 0. The matrix s will be of the form

r=

S1 82
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Let Ui,...,U; be the column vectors of U and, since | < k, choose
(81y---,8k) # (0,...,0) such that (s;,...,s¢)-U; =0, 1<i<I.
If {W; | k+1 <1< oo} is the set of column vectors of W, let, for
i>k, si =—(s1,...,8k) - W;. Then it is easy to check that sr = 0.

Thus, if r is a unit of R, 7 = ¢’ 4z, where j >0, z € N. We show
that, in this case also, we cannot have j > 0. This follows since any
r = ¢ + r with j > 0 can be put into matrix form r = (3 g) where A
is a t x t matrix for some positive integer ¢ such that the last row of A

is zero. Let s = ("(‘)l 8) where A’ # 0 is a t x t right annihilator of A.

Then 0 # s € M, (Q) and rs = 0, again contradicting the fact that r is
a unit. Thus a unit must have the form £ +1 for some z € N. It follows
that R* = UR, where, for t > 1, R, is the set of all matrices in M, (Q)

of the form ('3 f,) such that A € GL(¢,Q) and B is any t X w rational

matrix for which (g Ig) € R. Inasmuch as the R;’s form a chain of

proper subgroups of R*, we infer that R* is not finitely generated. O

Our final result, on centers, utilizes much of the machinery developed
to this point.

PROPOSITION 2. The center of a 2-generator ring can be an arbitrary
countable commutative ring.

PROOF. Let R be a countable commutative ring and let T = M,,(R).
By the proof of the Theorem (note T' = M,,2(R)), there exists a finitely
generated subring B C T with

r

B2 centerT:{ T :reR}.

Employing the construction of the first and second paragraphs of the
Example, we can produce a finitely generated subring C of T which
contains the standard matrix units of T. Let A= (BUC) C T. Then
center A = center T = R. In view of the Lemma, we can replace A by
the appropriate M, 2(A), to obtain the desired 2-generator ring with
center exactly R. O
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REMARK. Proposition 2 provides a quick proof of the fact that there
are exactly 2%° non-isomorphic 2-generator rings (and hence “most” 2-
generator rings are not finitely presented). For there are certainly 2%
non-isomorphic countable commutative rings (e.g., localizations of Z),
each of which can be made the center of a 2-generator ring. A further
consequence is that there is no “universal” 2-generator ring R which
contains copies of all countable rings, because such an R could have
only countably many 2-generator subrings.

Added in proof. Dr. Peter Neumann has kindly pointed out that
the group-theoretic analogue of Proposition 2 (i.e. the centre of a
2-generator group can be an arbitrary countable abelian group) was
established by Phillip Hall in “Finiteness conditions for soluble groups”,
Proc. London Math. Soc. 4 (1954), 419-436.

We are also grateful to Jan Okninski for pointing out how Example
contrasts with the commutative case: for any finitely generated com-
mutative ring R, its group of units R* is finitely generated if and only
if the additive group of the Jacobson radical of R is finitely generated.
This is shown by H. Bass in “Introduction to some methods of algebraic
K-theory”, Conference Board of the Mathematical Sciences 20, AMS,
1973.
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