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MIXED MODULES IN L* 

R. GÖBEL AND B. GOLDSMITH 

ABSTRACT. By assuming the set-theoretic hypothesis 
V = L we show that, for a large class of rings R, there ex
ist, for any regular not weakly compact cardinals /c, strongly 
«-cyclic mixed Ä-modules having endomorphism algebra iso
morphic to the split extension of the fi-algebra A by the ideal 
of bounded endomorphisms provided A is free qua Ä-module 
and K > \A\. 

1. Introduction. In this paper we deal with endomorphism algebras 
ER(G) of certain mixed R-modules G in the universe V — L. We shall 
always assume that R is a non-zero commutative ring with 1, with a 
given countable multiplicatively closed subset S of non-zero divisors. 
Let A be any fixed Ä-algebra which is 5-reduced and 5-torsion-free. 
(These and related concepts are defined in §2.) It has been established, 
working only in ZFC, that inter alia the following realization theorem 
holds; see [1] and [2]. 

THEOREM. If A is an S-reduced, S-torsion-free R-module then there 
exists a mixed R-module G with ER{G) = A 0 Bd(G). {Here and 
throughout the paper Bd(G) will denote the ideal of bounded endomor
phisms ofG; (j) G Bd(G) if and only if there is an s e S with (G<t>)s = 0.) 

Indeed the results can be extended to derive arbitrarily large rigid 
systems and semi-rigid proper classes (i.e., classes which are not sets.) 
Assuming V = Lwe can sharpen these results considerably by imposing 
only slightly stronger conditions on the algebra A. In this context 
cyclic A-modules will either be copies of A or torsion i4-modules A/s A 
for some s G 5. Recall that, in general, a module is said to be E-
cyclic if it is a direct sum of cyclic modules. Observe that E-cyclic 
modules are reduced. A module is K-cyclic, for some cardinal K, if any 
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submodule of cardinality < K is contained in a E-cyclic submodule of 
cardinality < K. Furthermore a module H is said to be strongly «-cyclic 
if any submodule HQ of H, with |i?o| < «> is contained in a E-cyclic 
submodule H\ of cardinality \H\\ < « with i / / # i «-cyclic. 

By imposing the additional condition that A be cotorsion (see [1], 
[3], [4] or §2) we shall obtain the following strengthened version of the 
above quoted theorem. 

THEOREM l. l . (V = L) Let A be a cotorsion-free R-algebra and « 
any regular not weakly compact cardinal > \A\. Then 

(i) there exist strongly K-cyclic A-modules G™(a < 2K) of cardinality 
« such thatER(G%) = 4®Bd(G£) andt(G%), the torsion part ofG™, is 
equal to T where T is any prescribed strongly K-cyclic torsion A-module. 

(ii) if (j> : G£ —> G™i is a homomorphism and (a,«) ^ (a 1 ,« 1 ) , then 
(j) is bounded. 

(iii) if G is any strongly KQ-cyclic A-module of cardinality «o < K, 
then 0 : G™ —> G is bounded. 

We remark that if « is singular or weakly compact then it is known 
that any strongly «-cyclic module must be E-cyclic, and so the con
ditions imposed on « in Theorem 1.1 are necessary. Observe that the 
modules constructed in Theorem 1.1 are only strongly «-cyclic qua 
^-modules. However it is easy to obtain a similar family of strongly 
«-cyclic Ä-modules: 

COROLLARY 1.2. Let R be cotorsion-free and let A be any R-algebra 
with free underlying R-module structure and « any regular not weakly 
compact cardinal > \A\. Then 

(i) there exist strongly K-cyclic R-modules H™(a < 2K) of cardinality 
« such that ER(H%) = A®Bd(H%) andt{H%), the torsion part ofH%, 
may be any prescribed K-cyclic torsion R-module. 

(ii) if 4> : H% —> H™x is a homomorphism and (a, K) / (a1, «*), then 
0 is bounded. 

(iii) if H is any strongly K^-cyclic R-module of cardinality «o < K, 
then (j) : H™ —> H is bounded. 
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PROOF. This follows immediately from Theorem 1.1. given that A is 
free qua Ä-module. D 

It follows immediately from Corollary 1.2, that, in V = L, essentially-
rigid families of maximal size exist (and are composed of "almost" free 
modules) for all regular not weakly compact cardinals. Similarly using 
Corollary 1.2(i), (ii) it follows that a proper essentially rigid class (i.e., 
not a set) of almost free Ä-modules exists. (We remark that part (iii) 
of Corollary 1.2 has been used in the proof to establish part (ii) of 
Corollary 1.2.) It also seems worth observing that when working in 
ZFC it is only possible to establish the existence of proper essentially 
semi-rigid classes of i2-modules [1]. The existence of an essentially-rigid 
class would be in conflict with the Vopenka-principle (cf. [12]). 

It is, by now, a well established procedure to use this type of 
realization result to show the existence of various pathological groups 
and modules. It is worth noting that the usual choices made for the 
algebra A to produce such results are such that A is a free quâ R-
module. Hence the restriction in Corollary 1.2 is not serious if one 
wants to show the existence of such pathological modules (cf. [1], [3].) 

As a final application of our result we derive a generalization of 
Griffith's solution of the Baer problem. Recall that a torsion-free 
abelian group G is a Baer-group (see [8; Vol II, p. 189]) if every mixed 
group M splits when M/tM = G. Griffith [13] showed that Baer-
groups are free. Extending the notion of Baer-group to Baer-modules 
in the obvious way we obtain 

THEOREM 1.3. (V = L) If G is a Baer-module which is contained in 
some Ç&S~ÏR, then G is a submodule of a free R-module. 

PROOF. Suppose G is a Baer-module of cardinality K. Since K + is 
automatically regular we may find from (1.1) a strongly /c+-cyclic R-
module H with torsion part tH of cardinality K. Moreover, ©* S~lR Ç 
H/tH follows from the construction of H and thus G may be embedded 
in H/tH. Let K denote the preimage of G in H. Since \K\ = K < K+ 

we conclude K is contained in a E-cyclic submodule of H containing 
tH. But, if G is a Baer-module then K = tH 0 G, whence G is a 
torsion-free submodule of a free module. D 
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REMARK. If R is a domain with quotient field Q countably gener
ated over R, then S~lR = Q for a suitable (countable) 5. In this 
case all torsion-free modules are submodules of some ®S~1R and the 
implication of Theorem 1.3 holds for all 5-torsion-free Baer-modules 
G. 

We remark that Griffith's solution of the Baer problem has been 
recently extended to arbitrary torsion theories over Dedekind domains 
in [10]. 

Finally observe that the results obtained in this paper are indepen
dent of ZFC. This follows since the torsion part of our modules is 
prescribed; in particular if T — 0 then we reduce to the cotorsion-free 
torsion-free case and this is known to be independent [3]. 

2. Preliminaries. In this section we develop some notation and 
derive two simple results which are useful for the rest of the paper. 

Throughout, R shall be a commutative ring with 1 having a count
able multiplicatively closed subset 5 containing no zero divisors and 
satisfying the Hausdorff condition ns^sRs — 0- We enumerate the 
non-units in 5 as $i, «2»••• a n d define qn in 5 by qn = Yli<n si- Thus 
qn(n < LJ) is a null sequence of non-units in 5, and if m < n < u> then 
the fraction qn/qm. is a well-defined element of 5. The 5-topology on 
an Ä-module M has the countable set of submodules Ms(s G 5) as a 
basis of neighbourhoods of 0; it is Hausdorff if and only if f l s €sMs = 0 
or, as we shall also say, if and only if M is 5-reduced. The notation M 
is reserved for the 5-completion of M and the completion topology on 
M coincides with the S-topology. The notions of 5-pure, S-divisible 
and 5-torsion-free are defined in an analogous fashion to that used for 
Abelian groups. Note that if <\> : M —* N is a homomorphism then 0 ex
tends uniquely to a homomorphism 0 : M —• N. Where no confusion is 
likely we shall continue to call the unique extension 0. Throughout the 
rest of the paper A shall denote a fixed Ä-algebra which, quâ iï-module, 
is cotorsion-free; recall that an ß-module G is said to be cotorsion-free 
if it is 5-reduced, 5-torsion-free and Hom(ß, G) = 0. (See [4] for fur
ther details.) Since the set 5 is fixed throughout we shall often omit 
the prefix 5. 

We shall say that B is a standard mixed A-module with a chain of 
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summands {Bn} if B can be written in the form 

B = ® n < a ; ( û , ^ ® \Un<uj (ß,n)A, 

where Ann(a,n) = qnA, Ann(/?,n) = 0 and InyI are non-empty index 
sets (usually infinite) and, moreover, B can be expressed as Un<UJBn 

where each Bn is a direct summand of B. We shall also write B — T® F 
where T is the torsion part of B and F is free. Similarly Bn = Tn 0 Fn. 

Let G be a free Ä-module, G = ®i£i eiR and x e G. Then the 
support [x] of x (with respect to the given decomposition for G) is 
defined by [x] = {i £ I\n / 0 where x = Ee^r;}. Clearly [x] is a finite 
subset of / . If y e G then it is well known that y may be represented 
as y = Ee^r* where {r^} is a null sequence, and so the support of y, [y], 
may be similarly defined. In this case [y] is a countable subset of / . 
More generally, if X is a subset of G we define [X] = Uxex[a:]. 

LEMMA 2.1. If F is a free A-module with a strictly increasing 
chain of summands {Fn} (n < a;),F = Un<u,Fn and <j> : F —> G 
is an unbounded homomorphism from F into a torsion module G, 
then there are decompositions Fn+i = Fn 0 Dn and basis elements 
dn G Dn (n < LJ) such that {dn<j)} is unbounded. 

PROOF. Consider any decomposition Fn+i = Fn 0 Cn and, since 
cn ^ 0, write cn — cnoA 0 C\. If we can find elements cn G Cn 

with the properties of the dn in (2.1) then we select these. If not we 
conclude, without loss of generality, that (0C n )0 is bounded. Since 
F = F0 0 0 n < u ; Cn we conclude that F0(j> is unbounded. Choose basis 
elements en of F0 so that {en(j)} is unbounded. Now set dn = en + cno 

and take Dn = dnA(BC„. A routine check shows Fn+\ = Fn 0 Z>n and 
the elements dn have the desired properties. D 

In the sequel we shall several times use properties of strongly «-cyclic 
modules, and so now give a characterization of such modules. Because 
of Shelah's singular compactness theorem there is nothing to show if K 
is singular. Hence we restrict ourselves to regular cardinals. 

LEMMA 2.2. Let K be a regular uncountable cardinal. Then G is a 
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strongly K-cyclic A-module if and only if G — Ua<KGa7 a K,-filtration, 
where \Ga\ < K and G/Gß is K-cyclic for all non-limit ordinals ß. 

PROOF. Assume G is strongly K-cyclic and let G = UG^ be any K-
filtration by sets G\ and suppose inductively that Ga(a < 7) has been 
constructed. If 7 = a + 1 then, since \Ga\ < K we can find Y 2 G^UG^ 
with |yI < K,Y E-cyclic and G/FK-CVCHC. Set G7 —Y. If 7 is a limit, 
take G7 = Ua<1Ga. Conversely suppose G = Ua<KGa,\Ga\ < K,Ga 

is E-cyclic and G/Gß is K-cyclic for all non-limit ordinals ß. Now if 
X Ç G with \X\ < K then X Ç G a , some a. Let Y = Ga+\. Since 
a + 1 is not a limit we have X Ç 7 , \Y\ < K , G / F K-cyclic. Thus G is 
strongly K-cyclic. D 

We shall refer to the module GQ in a filtration of a strongly K-cyclic 
module G as the a layer of G. Finally we make the following simple 
observation: 

LEMMA 2.3. IfGa(a < K) is any layer of the strongly K-cyclic module 
G then there is a layer G ß D Gn such that Gß is closed in the S-topology 
on G. 

PROOF.: Since a + 1 is not a limit, if we set ß = a -h 1 then Gß D Ga 

and G/Gß is K-cyclic. However since cyclic and K-cyclic v4-modules are 
necessarily reduced, this ensures Gß is closed. 

To place the construction of strongly K-cyclic groups in a more general 
setting we introduce the notion of almost cotorsion-free (cf. [9].) 

DEFINITION. A reduced A-module G is said to be almost cotorsion-
free if every homomorphism a : B —> G is bounded where B = 
®n<u; £n̂ 4 with Ann(^n^4) = qnA. If we now assume that the base ring 
R is a countable Dedekind domain then we obtain the characterization 

THEOREM 2.4. Let R be a countable Dedekind domain which is not a 
field and let S = R\{0}. If G is a separable R-module then the following 
are equivalent: 
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(1) G is almost cotorsion-free. 

(2) Every homomorphism a : B 0 R —• G is bounded where B = 

®n<u> tnR with AnntnR = qnR; 

(3) Rp C G for any localization Rp of R. 

PROOF. (1) implies (2) since fi is a direct summand of B. (2) 
implies (3) since Rp is a complete discrete valuation ring and so we 
could construct an unbounded map B 0 R —• G. Finally to see 
that (3) implies (1) consider any (p : B —• G with 0 unbounded. 
Then B<p is a cotorsion submodule of the reduced module G. It now 
follows, since R is Dedekind, that we have B(j) = A 0 G, where A is 
torsion-free algebraically compact and C — T is the cotorsion hull of 
T = t(B(p). (cf. [8, Theorem 55.5].) If A ^ 0 is algebraically compact 
it contains a copy of Rp, and so we must conclude that A — 0. It now 
follows, by an analogous argument to that given by Harrison (see [8, 
Theorem 56.5]), tha t if T is unbounded (and thus T/T / 0) we have 
(T-)1 = H o m ( Q / f l , f / T ) / 0 where Q is the field of fractions of R 

and ( ) l denotes the first Ulm submodule of ( ). But this is clearly 
impossible since T Ç G and G is separable. Thus 0 is bounded. 

We note tha t if R is an incomplete Dedekind domain and G is a 

K-cyclic fi-module of cardinality K > \R\Hn then G is almost cotorsion-

free. This follows, since if Rp C G then \Rp\ < \R\H" < K which 

would imply that Rp is contained in a free fi-module. But then 

Hom(fi, R) / 0 and this is possible if and only if R is complete (cf. 

[4]. Since this was excluded the result follows. D 

3 . T h e m a i n algebraic cons truc t ion . When using the set-
theoretic condition V — L to realize endomorphism algebras it is by 
now standard (cf. [3], [5], [11]) to develop the necessary algebraic tools 
separately in a series of step-lemmas. In this section we develop two 
such step-lemmas which will be vital to our construction in the final 
section of this paper. 

STEP-LEMMA A. Let K > \A\ be a regular uncountable cardinal, 

G a strongly K-cyclic A-module, B a standard mixed A-module with 
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a strictly increasing chain of summands {Bn} and </> : B —• G an 
unbounded R-homomorphism. Then there exists an extension Bl of B 
such that 

(i) Bl is a H-cyclic A-module; 

(ii) B1 jB is S-divisible and S-torsion-free; 

(iii) Bn is a direct summand of Bl; 

(iv) (/) does not extend to an R-homomorphism Bl —> G. 

PROOF. The proof is split into two cases: 

Case (i). F(\) is unbounded. 

(a) F(j) C tG. In this case we can find a countable rank v4-summand 
F* of F (say F = F* © F**) such that F*0 Ç tG. Since \F*\ < K and 
K is regular, F*0 is contained in some layer Gj of G. As observed in §2 
we can find a layer GÌ D GJ such that GÌ is closed in the S-topology 
on G. Set G? = Ti (& Hi where Ti is torsion and Hi is torsion-free. 
Thus we have a sequence F*-+GÌ^>HÌ. Then, by a similar argument 
to [6, Lemma 2.1], we can find an extension F 1 of F* with F 1 a free 
^-module, Fl/F S-divisible S-torsion-free, F*(= Fn H F*) a direct 
summand of F 1 and such that 07r does not lift to an ß-homomorphism 
F 1 - Hi. 

Now set B 1 = Fle>T®F** and we note that (i), (ii) and (iii) all clearly 
hold. However if 0 extends to an fi-homomorphism <f>1 : B1 —• G then, 
since Fl/F* is S'-divisibie, we can conclude that Blcj>1 Ç Ĝ  = G .̂ 
This however is impossible since it then follows that <\>XfK restricted to 
F 1 would extend </>7r. Thus (iv) also holds. 

(b) F<p Ç tG. Choose, as is permitted by Lemma 2.1, decompositions 
F n + i = F n © D n and elements dn G D n such that {dn0} is unbounded. 
Set F* = e n < a ; d n ,4 and write F = F* ® F**. Since |F*^ | < « we 
can find, as in (a) above, a closed layer GÌ — GÌ of G such that 
F*<£ Ç GÌ ntG = Ti say. Observe that T{ Ç T i + 1 = tGi+x. Since 
F*0 is unbounded we can construct inductively elements e{ = diq^, 
with ki strictly increasing, qkn = 1, such that Annje^c/)} form a strictly 
descending chain and the ei<j) have pairwise disjoint supports; these 
supports are calculated in J where Ti+i = QjçjtjA. There will be 
no loss in generality if we assume that the elements e; are indexed by 
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i G UÜ. 
Now consider y = Yll<UJ e7, an element of F* . Observe that yep G ft. 

However [y(j>] = U[e;(/>], and so y<p has infinite support (calculated in J.) 
Thus we conclude ycj) G T i + 1 . However, ycf) G Ti+Ì, so it follows tha t 
ycf) G Gl+l. But if y<j) G G then y</> G Ti n G C f t = G7 by the choice of 
G{. This is clearly a contradiction since G{ Ç G;+i and so we conclude 
2/0 ^ G . 

Define a divisibility chain ?/n (n < u;) for y by i/o = y, yn — 
J2i>ndi(QkJqkn) and set B1 = {F\ynA{n < UJ)) 0 F** e T. It 
is immediate that (ii) and (iv) hold. However by observing tha t 
dn = yn — 2/n+i(7fcn+i

 o n e easily obtains tha t (F*iynA(n < LJ)) = 
®n<u; ynA. Moreover (iii) will follow if (Bi<ndiA is a summand of (F* , 
2/n^4(^ < u;)). However a direct calculation shows tha t 

Case (ii). F 0 zs bounded. Since 0 is unbounded we deduce tha t Tcj) 
is unbounded and so there exists an unbounded v4-module B*, a direct 
summand of T with B*<p Ç Tz unbounded where 7f is the E-cyclic 
torsion part of some closed layer Gz of G. But now it follows that 
we can find b G È* with bef) (£ G; if B*(f) Ç G then we would have 
B*0 C Tj H G = Ti —Ti, and this is impossible since T? is E-cyclic 
torsion and B*0 contains torsion-free elements. 

Write b = Y^i^^m w n e r e {ai} ls a basis of B* and define a 
divisibility chain for b by b = feo^fc = Hnt>kaMnjQk)' Note tha t 
[fr* — òfc+iSfc+i] = {a; |n; = A:} and this is a finite set since the sequence 
qni is Cauchy. Let N = {k G u\[bk - fyt+iSfc+i] 7̂  0} and note tha t 
this is an infinite subset of UJ since the support of b is infinite. There 
will be no loss in generality in assuming N = UJ. Then, for A: < u;, 
write ek — Yln-=ka^ O D s e r v e tha t , by a suitable re-arrangement of 
the original basis of B*, we can take eit as a basis element of B*. 
Set E = ®k<u>ekA and note that F is a summand of B*, whence of 
T; T = E 0 D say. Then b — EekÇk has a "normal" form and we have 

bm - &m + l s m + l = Crnim < Uj). 

Consider now y = J2k<v fk^k e ^ where fk is a free generator 
of F . Let F* = ®k<u,fkA and let F = F* ® F**. Now define a 

divisibility chain y^ for y by y0 = y,yn — ^2k>n 
fk(qk/Qn). If y<t>$ G 

set Bl = {F*,ynA(n < UJ)) 0 F** 0 T, and a routine check shows (i) -

(iv) hold. If, however, ycj) e G then set x = b + y and observe x<\> £ G 
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since x(j) — ycj) -f 60 and bcfi £ G. Let xm = 6m + 2/7« and observe 
that the sum of the modules x^A is direct since the elements fm are 
independent. Now set Bl = (F © F*,xn / l (n < u;)) © D © F**. Since 
(F©F* ,x n , 4 (n < u;)) = ©n<u,en,4 © ©n < a , :rn,4, B1 is a E-cyclic A-
module. Moreover Bl/B is 5-divisible and S-torsion-free and 0 does 
not extend to an i?-homomorphism from B1 to G since x<p £ G. Thus it 
only remains to verify (iii). But observe from the above argument giving 
B1 to be E-cyclic that T is a direct summand of Bx (and tB1 = T.) 
Thus it suffices to verify that Fn is a summand of Bl. If Fn Ç F** this 
is immediate so we can reduce the argument to showing that ®7<n f?A 
is a summand of (F © F*,xnA(n < UJ)). However a direct calculation 
gives (F © F*,£n ,4(n < a;)) = ©,:<n e,-i4 © ©?<r, . M © ©?>r/ x?v4. G 

STEP-LEM M A B. Let B be a E- cyclic mixed A-module of infinite 
rank having a strictly increasing chain of summands {Blr} and let 
B* — B © D, where D is a free A-module of countable rank or 0. 
Then, if (j) is an endomorphism of B* leaving B invariant and 0 is not 
an element of A(& BdB, there exists an extension Bx D B* such that 

(i) Bl is E-cyclic, 

(ii) Bl j B* is S-divisible and S-torsion-free, 

(iii) BT1 is a direct summand of B1 for all n, 

( i v ) 0 ^ F ( ß 1 ) . 

PROOF. Suppose 0 : B —> B is not an element of A © BdB. Let 
B = T © F . Denote by 0* the homomorphism induced from 0 by 
mapping modulo T, 0* : F —> F. If 0* is not multiplication by a € A 
then, as in [3, Corollary 2.8.], there is an extension F 1 D F which 
satisfies (i)-(iii), and 0* does not extend to an endomorphism of F 1 

since if it did extend to 01 then (01)* would extend 0*. Suppose then, 
that 0* is multiplication by an element of A. Thus there exists a unique 
a G A such that 0 — a : B —• T. (The uniqueness is immediate, for if 
we have a, a1 then a — a1 : B —> T which is clearly impossible unless 
a — a1 = 0.) Set ip = (f) - a : B —* T. Clearly ^ is unbounded. Then, 
for all n < LÜ and 6 € >4, we have qnip — b £ BdB. (This follows 
immediately from Lemma 3.1. below.) But from Step-Lemma A we 
deduce that, for each pair (qk,b), there exists an element xkh € B such 
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tha t xkb(qkip - b) £ B. Moreover xkh is a divisibility chain of xkh and 
Bn is a direct summand of (B,xk

n
hA(n < a;)). 

Now pick a free ,4-module D of countable rank, say D = ©e,v4, 
and let d = ^2n<lAj^nQn £ D. Let {d n} be a divisibility chain for 
d. If dip $ (B e D,dnA(n < UJ)) then setting ß * = ß ® Z) and 
Bl = (B® D,dnA(n < UJ)) will do since this Z?1 will clearly satisfy 
(i)-(iv). 

If dip G (B © D,dnA(n < UJ)) then there exists a G j4,tyfc G 5 such 
that d(qkrp - a) G B © D. Set w = d + x*a and put wn = dn + xkn. 
If Wip G (B 0 D,iün j4(n < ce?)) then there is m G u;,6 G i4 such that 
w{qm\p - b) e B C& D. Without loss of generality we may take qm — qk 

and so obtain w(qkip — b) G B (& D. But then we have w(qk\p — b) = 
( d + x ^ X ^ - ò ) G ß © D implying that d{a-b)+xka(qkxp-b) G fî®D. 
Since d G D and xka(qkip — b) e B this forces a = 6, and so 
xka(Qkip - a) e B - contradiction. Set ß 1 = ( ß © D,w n j4 (n < UJ)); 
(ii) and (iv) are then immediate. Moreover (i) follows exactly as in 
Step-Lemma A while (iii) follows as in Step-Lemma A once we observe 
tha t (B@D,wnA(n < UJ)) = (B,xkaA{n > UJ) < 0 < D,dnA(n < UJ)). 
This completes the proof of Step-Lemma B. D 

If the implication of Step-Lemma B holds for D = 0 we say that 
Option I holds; otherwise we will use Step-Lemma B as stated and we 
say tha t Option II holds. 

LEMMA 3.1. If B = T © F is a E-cyclic A-module and F ^ 0 then 
A © Bd B is S-pure in E(B). 

PROOF. Suppose scf) G A © Bd B where 0 G E(B). Letting * denote 
homomorphisms induced modulo T = tB we have that there is an 
a e A such tha t (s(f) - a)* — 0. Thus s(p* = a* = a and if we consider 
any basis element / of F we get f(s(p*) = fa implying a = sb for some 
b G A. Thus s((p - 6) G Bd B, and since this latter is clearly pure in 
E(B) we conclude tha t <t> - b G Bd B, whence (p G A © Bd B. Thus 
A © Bd B is S-pure in E(B). o 

4 . P r o o f o f t h e m a i n t h e o r e m . In this section we construct A-
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modules with the properties claimed in Theorem 1.1. The construction 
proceeds inductively with the underlying sets being prepared in a 
suitable fashion for the o-machinery to yield the desired type of A-
module. The set-theoretic preliminaries are s tandard (see *[14]) and 
similar constructions have been used previously in [3], [5], [7] and [11]. 
Let K be the given regular not weakly compact cardinal > | J4 | . Choose 
any sparse stationary subset E Ç {À < K \ cf(X) = LÜ}. Using Solovay's 
decomposition theorem we get a partition E = Ee U E^ U Ua<KEn 

into pairwise disjoint stationary sets Ea(a G F = KU {e, A:}). Let 
H = Un<KHn be any K-filtration of some set H of cardinal K and let X 
denote a family of 2K incomparable subsets of K. Since we are assuming 
V — L holds we may assume oK(En) for all a G T and derive Jensen 
functions {(j)a : Hn —» Hn,a G Ee} guessing endomorphisms of H and 
Jensen sets {Un Ç Hn : a G E^} guessing kernels of homomorphisms 
into ,4-modules of cardinality Ko < K. In addition, we obtain, for each 
7 < K, Jensen sets of the form {((/>«, +a, *a) Ç H^ x A : a G £ 7 } - These 
latter sets are supposed to guess the additive and scalar multiplicative 
structure on the Hn and homomorphisms of these modules. (Thus 
+ a Ç H^, 'ÖL Ç H<* x v4 x Hn, (j)a C H%.) Further details of Jensen sets 
and functions may be found in [14, p. 226.]. Suppose tha t the torsion-
module T has a filtration T = \Jn<KTn where T a is E-cyclic. Such a 
filtration exists since T is assumed to be strongly ^-cyclic. For each 
X G X and a < n we define inductively an ^4-module H* with domain 
H^, and the desired A-modules will be obtained as Hx — Un<KH*. 
The filtration of T may be so arranged that , for a < ß < K, Tn is 
a direct summand of Tß if a £ U{ET : r G X U {e,/c}}; let T^ a be 
some fixed complement of Ta in T^. The induction depends on X and 
proceeds as follows: 

(1) H* — T0 and each H* (a < K) is a E-cyclic ^-module . 

(2) If a is a limit then H* = Uß<rtH£. 

(3) If a < ß < K and a £ U{ET : r G X U {e'fc}} then i f* is a direct 
summand of H*. 

(4) If # * has been defined let (4.0) # * + 1 = ff^ei4®Tft+u except 
in the following cases: 

(4.1) If a G Ee and 0^ : H* —> / / * is a homomorphism not in 
,4 0 B d / / * and Option I holds then we choose a sequence an in a\£7 
strictly increasing to a. Since an £ E we have by (3) tha t { # * } 
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forms a chain of direct summands of Hx. Now apply Step-Lemma B 
to obtain an i?-module B1 — Hx+X extending Hx such that 0O does 
not lift to an endomorphism of Hx

+l. Step-Lemma B (iii) ensures that 
(3) remains satisfied at this new stage, since if 7 < a and 7 ^ UEr 

then there exists an with 7 < an. But then Hx is a summand of H*n 

which is, in turn, a summand of i /*+ 1 . 

(4.2) If a G Ek and Un Ç Hx is a submodule then let TT : 
Hx —» Hx/Ua be the canonical projection. If n is an unbounded 
homomorphism into a strongly tto-cyclic ^-module Hx/Un (where 
Ko < K) then we apply Step-Lemma A to obtain an extension Hx

+l 3 
Hx. Moreover if an is a strictly increasing sequence with limit a then 
H£n is a summand of H£+l and TT does not lift to Hx

+l. Step-Lemma 
A (iii) ensures, in a fashion similar to (4.1) above, that (3) remains 
satisfied at this stage. 

(4.3) If a G E1 for some 7 G X and {Hn,+n,-n) is a Ko-cyclic A-
module with 4>n : H* —> (i/r t,-h*, *ft)

 a n unbounded homomorphism, 
then we construct H*+l via Step-Lemma A as in (4.2). Once again (3) 
is preserved. 

As we noted at each stage this inductive construction is consistent, 
and so we obtain an ^4-module Hx = \Jn<KH*. Since the filtration 
of T is smooth we also obtain T — tHx. A routine check shows that 
since T is strongly K-cyclic so also is Hx. Before establishing the main 
result we derive the following simple result which is clearly analogous 
to corresponding results in [5] and [11]. 

LEMMA 4.1. Let B — Un<KBa be a K-filtration of the mixed A-
module B and (j) : B —» H a homomorphism into the A-module H. / / 
V = {v £ K \ 4> \ Bv is bounded } is unbounded in K and cf(n) > UJ 
then 4> is bounded. 

PROOF. For each v e V let qn(u) € S be such that Bv 0 qn(u) = 0. 
Clearly if {n(v) \ v G V"} is bounded then 0 is bounded. Suppose 
{n{v) I v G V} is unbounded and choose a strictly increasing sequence 
n(v\) < •— < n{vr) — -. Since V is unbounded and C/(K) > a;, we 
can find a v G V with Vi < v for all i. But v G V implies 0 f Bv is 
bounded, and since BVi Ç Bu we have n(i^) < n(v) contrary to the 
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unboundedness of the sequence n(vj). This establishes the lemma. D 

Since X — 2K and T — tHx for each X G X, it suffices to derive 
the following four results to derive the main Theorem 1.1: For any 
X ï Y G X we have 

(a) E(Hx) = A®BdHx. 

(b) If (j) : Hx —-> HY is a homomorphism then 4> is bounded. 

(c) / / 4> : Hx -^ G is a homomorphism into a strongly K^-cyclic 
A-module of cardinality KQ < K then <f) is bounded. 

(d) If K < Kl are regular not weakly compact cardinals > \A\ and Yl 

is the indexing set associated with the construction at the cardinal K1 , 
then any homomorphism 0 : Hx —» HY is bounded. 

PROOF, (a). Clearly A 0 BdHx Ç E{HX). So suppose that there 
is a 4> G E{HX)\A 0 BdHx. Let C - {a < n\Hx<j) C Hx} and 
observe that C is a cub in n. Denote by Co and C\ respectively the 
sets {a e K | (j) \ Hx G A®BdHx} and {a G C | <t> \ Hx £ A®BdHx 

and Option II holds}. We claim Co and C\ are bounded. C\ is bounded 
since the construction in 4.0. ensures that there exists a ß > a with 
ß < \A\ < K &t which Option I may be chosen. If Co were unbounded 
in K then, for all v G Co, there exists av G A such that (0 — au) \ Hx 

is bounded. But then if v < ß G Co we would have that (cj> — au) \ Hx 

and ((f) — aß) \ Hx are both bounded. However this implies that au—aß 

is bounded on Hx which can only happen if av = aß {—a say.) But 
then (cj) — a) \ Hx is bounded for all v G Co- It now follows from 
Lemma 4.1. that 0 — a is bounded, a contradiction. Thus Co is also 
bounded. 

Let C* = C\(Co U Ci);C* is still a cub in K. From oK(Ee) we have 
that De — {v G De | $v — (j) \ Hx) is a stationary set so there exists 
a G DenC*. Thus (j)a = </> \ Hx : Hx - • Hx. By the construction 4.1, 
(j)n does not lift to a homomorphism <j>1 : Hx

+l —» / / ^ i . However Step-
Lemma B (ii) gave that Hx

+l\H
x is S-divisible, and since Hx/Hx

+i 

is «-cyclic we conclude that Hx
+i is the completion of Hx in /fx. But 

this immediately tells us that (j) extends to a homomorphism Hx
+l —• 

Hx+li or, equivalently, <f> \ Hx = (j)n extends, a contradiction. Thus 
no such (j) exists and we have established that E(HX) = A 0 BdHx. 
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(b). Suppose 0 : Hx —•> HY is unbounded. Then it follows, as in the 
proof of (a), from Lemma 4.1. that C = {v < K \ Hx0 Ç Hx, 0 f 77* 
unbounded} is a cub in K. Note that 77* = H% qua sets. Let 
(+yi-y) from 77 r x HY -+ HY and 77 r x .4 -+ 77y denote the 
module structure on HY. From oK(E1) (7 G « \^ ) w e see that 

w 7 - {t/e E1 i + y r (ffI/xff1/) = + l / , . y f (ff,xi4) = v , 0 r HU = </>,,} 
is a stationary set in « because of the choice of Jensen sets in the 
construction. Since C is a cub we can find a G CnWy. Step-Lemma A 
(ii) ensures Hx

+l\H
x is 5-divisible and, as in the proof of (a) above, we 

conclude that i/*+i is the closure of 77* . Observe that the construction 
4.3. implies (j) \ Hx : Hx —• Hx does not lift to a homomorphism 
77*+1 —> H* . However since a G E1 and 7 ^ F we have from the 
construction of 77 y that 77y is closed. This immediately implies that 
(f) Î 77* = </>rt does extend to a homomorphism /JT*+1 —> 77 y , a 
contradiction. This establishes (b). 

(c). This is identical to the proof of (b) but using the construction 
4.2. rather than 4.3. 

(d). If <p : 77* -* HyX is a homomorphism then \HX<t>\ < \HX\ = 
K < Ac1 = |77y I , we conclude that Hx(j> is E-cyclic since HY is AC-
cyclic. If Hx 4> is not bounded then we can find a projection onto either 
a free module or an unbounded direct sum of cyclic modules. In either 
case these modules are strongly K-cyclic which contradicts (c). Thus 
Hx(f) is bounded. D 
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