MIXED MODULES IN L*

R. GÖBEL AND B. GOLDSMITH

Abstract

By assuming the set-theoretic hypothesis $V=L$ we show that, for a large class of rings R, there exist, for any regular not weakly compact cardinals κ, strongly κ-cyclic mixed R-modules having endomorphism algebra isomorphic to the split extension of the R-algebra A by the ideal of bounded endomorphisms provided A is free quâ R-module and $\kappa>|A|$.

1. Introduction. In this paper we deal with endomorphism algebras $E_{R}(G)$ of certain mixed R-modules G in the universe $V=L$. We shall always assume that R is a non-zero commutative ring with 1 , with a given countable multiplicatively closed subset S of non-zero divisors. Let A be any fixed R-algebra which is S-reduced and S-torsion-free. (These and related concepts are defined in §2.) It has been established, working only in ZFC, that inter alia the following realization theorem holds; see [1] and [2].

Theorem. If A is an S-reduced, S-torsion-free R-module then there exists a mixed R-module G with $E_{R}(G)=A \oplus \operatorname{Bd}(G)$. (Here and throughout the paper $\operatorname{Bd}(G)$ will denote the ideal of bounded endomorphisms of $G ; \phi \in \operatorname{Bd}(G)$ if and only if there is an $s \in S$ with $(G \phi) s=0$.)

Indeed the results can be extended to derive arbitrarily large rigid systems and semi-rigid proper classes (i.e., classes which are not sets.) Assuming $V=L$ we can sharpen these results considerably by imposing only slightly stronger conditions on the algebra A. In this context cyclic A-modules will either be copies of A or torsion A-modules $A / s A$ for some $s \in S$. Recall that, in general, a module is said to be Σ cyclic if it is a direct sum of cyclic modules. Observe that Σ-cyclic modules are reduced. A module is κ-cyclic, for some cardinal κ, if any

[^0]submodule of cardinality $<\kappa$ is contained in a Σ-cyclic submodule of cardinality $<\kappa$. Furthermore a module H is said to be strongly κ-cyclic if any submodule H_{0} of H, with $\left|H_{0}\right|<\kappa$, is contained in a Σ-cyclic submodule H_{1} of cardinality $\left|H_{1}\right|<\kappa$ with $H / H_{1} \kappa$-cyclic.

By imposing the additional condition that A be cotorsion (see [1], $[3],[4]$ or $\S 2)$ we shall obtain the following strengthened version of the above quoted theorem.

THEOREM 1.1. $(V=L)$ Let A be a cotorsion-free R-algebra and κ any regular not weakly compact cardinal $>|A|$. Then
(i) there exist strongly κ-cyclic A-modules $G_{\kappa}^{\alpha}\left(\alpha<2^{\kappa}\right)$ of cardinality κ such that $E_{R}\left(G_{\kappa}^{\alpha}\right)=A \oplus \operatorname{Bd}\left(G_{\kappa}^{\alpha}\right)$ and $t\left(G_{\kappa}^{\alpha}\right)$, the torsion part of G_{κ}^{α}, is equal to T where T is any prescribed strongly κ-cyclic torsion A-module.
(ii) if $\phi: G_{\kappa}^{\alpha} \rightarrow G_{\kappa^{1}}^{\alpha^{1}}$ is a homomorphism and $(\alpha, \kappa) \neq\left(\alpha^{1}, \kappa^{1}\right)$, then ϕ is bounded.
(iii) if G is any strongly κ_{0}-cyclic A-module of cardinality $\kappa_{0}<\kappa$, then $\phi: G_{\kappa}^{\alpha} \rightarrow G$ is bounded.

We remark that if κ is singular or weakly compact then it is known that any strongly κ-cyclic module must be Σ-cyclic, and so the conditions imposed on κ in Theorem 1.1 are necessary. Observe that the modules constructed in Theorem 1.1 are only strongly κ-cyclic quâ A-modules. However it is easy to obtain a similar family of strongly κ-cyclic R-modules:

COROLLARY 1.2. Let R be cotorsion-free and let A be any R-algebra with free underlying R-module structure and κ any regular not weakly compact cardinal $>|A|$. Then
(i) there exist strongly κ-cyclic R-modules $H_{\kappa}^{\alpha}\left(\alpha<2^{\kappa}\right)$ of cardinality κ such that $E_{R}\left(H_{\kappa}^{\alpha}\right)=A \oplus \operatorname{Bd}\left(H_{\kappa}^{\alpha}\right)$ and $t\left(H_{\kappa}^{\alpha}\right)$, the torsion part of H_{κ}^{α}, may be any prescribed κ-cyclic torsion R-module.
(ii) if $\phi: H_{\kappa}^{\alpha} \rightarrow H_{\kappa^{1}}^{\alpha^{1}}$ is a homomorphism and $(\alpha, \kappa) \neq\left(\alpha^{1}, \kappa^{1}\right)$, then ϕ is bounded.
(iii) if H is any strongly κ_{0}-cyclic R-module of cardinality $\kappa_{0}<\kappa$, then $\phi: H_{\kappa}^{\alpha} \rightarrow H$ is bounded.

Proof. This follows immediately from Theorem 1.1. given that A is free quâ R-module. ㅁ

It follows immediately from Corollary 1.2 , that, in $V=L$, essentiallyrigid families of maximal size exist (and are composed of "almost" free modules) for all regular not weakly compact cardinals. Similarly using Corollary $1.2(\mathrm{i})$, (ii) it follows that a proper essentially rigid class (i.e., not a set) of almost free R-modules exists. (We remark that part (iii) of Corollary 1.2 has been used in the proof to establish part (ii) of Corollary 1.2.) It also seems worth observing that when working in ZFC it is only possible to establish the existence of proper essentially semi-rigid classes of R-modules [1]. The existence of an essentially-rigid class would be in conflict with the Vopenka-principle (cf. [12]).

It is, by now, a well established procedure to use this type of realization result to show the existence of various pathological groups and modules. It is worth noting that the usual choices made for the algebra A to produce such results are such that A is a free quâ R module. Hence the restriction in Corollary 1.2 is not serious if one wants to show the existence of such pathological modules (cf. [1], [3].)

As a final application of our result we derive a generalization of Griffith's solution of the Baer problem. Recall that a torsion-free abelian group G is a Baer-group (see [8; Vol II, p.189]) if every mixed group M splits when $M / t M \cong G$. Griffith [13] showed that Baergroups are free. Extending the notion of Baer-group to Baer-modules in the obvious way we obtain

THEOREM 1.3. $(V=L)$ If G is a Baer-module which is contained in some $\oplus S^{-1} R$, then G is a submodule of a free R-module.

Proof. Suppose G is a Baer-module of cardinality κ. Since κ^{+}is automatically regular we may find from (1.1) a strongly κ^{+}-cyclic R module H with torsion part $t H$ of cardinality κ. Moreover, $\oplus_{\kappa} S^{-1} R \subseteq$ $H / t H$ follows from the construction of H and thus G may be embedded in $H / t H$. Let K denote the preimage of G in H. Since $|K|=\kappa<\kappa^{+}$ we conclude K is contained in a Σ-cyclic submodule of H containing $t H$. But, if G is a Baer-module then $K \cong t H \oplus G$, whence G is a torsion-free submodule of a free module.

REMARK. If R is a domain with quotient field Q countably generated over R, then $S^{-1} R=Q$ for a suitable (countable) S. In this case all torsion-free modules are submodules of some $\oplus S^{-1} R$ and the implication of Theorem 1.3 holds for all S-torsion-free Baer-modules G.

We remark that Griffith's solution of the Baer problem has been recently extended to arbitrary torsion theories over Dedekind domains in [10].

Finally observe that the results obtained in this paper are independent of ZFC. This follows since the torsion part of our modules is prescribed; in particular if $T=0$ then we reduce to the cotorsion-free torsion-free case and this is known to be independent [3].
2. Preliminaries. In this section we develop some notation and derive two simple results which are useful for the rest of the paper.

Throughout, R shall be a commutative ring with 1 having a countable multiplicatively closed subset S containing no zero divisors and satisfying the Hausdorff condition $\cap_{s \in S} R s=0$. We enumerate the non-units in S as s_{1}, s_{2}, \ldots and define q_{n} in S by $q_{n}=\prod_{i \leq n} s_{i}$. Thus $q_{n}(n<\omega)$ is a null sequence of non-units in S, and if $m \leq n<\omega$ then the fraction q_{n} / q_{m} is a well-defined element of S. The S-topology on an R-module M has the countable set of submodules $M s(s \in S)$ as a basis of neighbourhoods of 0 ; it is Hausdorff if and only if $\cap_{s \in S} M s=0$ or, as we shall also say, if and only if M is S-reduced. The notation \hat{M} is reserved for the S-completion of M and the completion topology on \hat{M} coincides with the S-topology. The notions of S-pure, S-divisible and S-torsion-free are defined in an analogous fashion to that used for Abelian groups. Note that if $\phi: M \rightarrow N$ is a homomorphism then ϕ extends uniquely to a homomorphism $\hat{\phi}: \hat{M} \rightarrow \hat{N}$. Where no confusion is likely we shall continue to call the unique extension ϕ. Throughout the rest of the paper A shall denote a fixed R-algebra which, quâ R-module, is cotorsion-free; recall that an R-module G is said to be cotorsion-free if it is S-reduced, S-torsion-free and $\operatorname{Hom}(\hat{R}, G)=0$. (See [4] for further details.) Since the set S is fixed throughout we shall often omit the prefix S.
We shall say that B is a standard mixed A-module with a chain of
summands $\left\{B_{n}\right\}$ if B can be written in the form

$$
B=\underset{\substack{n<\omega \\ \alpha \in I_{n}}}{\overbrace{i}}\left(\alpha, v_{c}\right) A \oplus \underset{\substack{n<\omega I \\ \beta \in I}}{\oplus}(\beta, n) A
$$

where $\operatorname{Ann}(\alpha, n)=q_{n} A, \operatorname{Ann}(\beta, n)=0$ and I_{n}, I are non-empty index sets (usually infinite) and, moreover, B can be expressed as $\cup_{n<\omega} B_{n}$ where each B_{n} is a direct summand of B. We shall also write $B=T \oplus F$ where T is the torsion part of B and F is free. Similarly $B_{n}=T_{n} \oplus F_{n}$.

Let G be a free R-module, $G=\oplus_{i \in I} e_{i} R$ and $x \in G$. Then the support $[x]$ of x (with respect to the given decomposition for G) is defined by $[x]=\left\{i \in I \mid r_{i} \neq 0\right.$ where $\left.x=\Sigma e_{i} r_{i}\right\}$. Clearly $[x]$ is a finite subset of I. If $y \in \hat{G}$ then it is well known that y may be represented as $y=\Sigma e_{i} r_{i}$ where $\left\{r_{i}\right\}$ is a null sequence, and so the support of $y,[y]$, may be similarly defined. In this case $[y]$ is a countable subset of I. More generally, if X is a subset of G we define $[X]=\cup_{x \in X}[x]$.

Lemma 2.1. If F is a free A-module with a strictly increasing chain of summands $\left\{F_{n}\right\}(n<\omega), F=\cup_{n<\omega} F_{n}$ and $\phi: F \rightarrow G$ is an unbounded homomorphism from F into a torsion module G, then there are decompositions $F_{n+1}=F_{n} \oplus D_{n}$ and basis elements $d_{n} \in D_{n}(n<\omega)$ such that $\left\{d_{n} \phi\right\}$ is unbounded.

Proof. Consider any decomposition $F_{n+1}=F_{n} \oplus C_{n}$ and, since $c_{n} \neq 0$, write $c_{n}=c_{n o} A \oplus C_{n}^{1}$. If we can find elements $c_{n} \in C_{n}$ with the properties of the d_{n} in (2.1) then we select these. If not we conclude, without loss of generality, that $\left(\oplus C_{n}\right) \phi$ is bounded. Since $F=F_{o} \oplus \oplus_{n<\omega} C_{n}$ we conclude that $F_{o} \phi$ is unbounded. Choose basis elements e_{n} of F_{o} so that $\left\{e_{n} \phi\right\}$ is unbounded. Now set $d_{n}=e_{n}+c_{n o}$ and take $D_{n}=d_{n} A \oplus C_{n}^{1}$. A routine check shows $F_{n+1}=F_{n} \oplus D_{n}$ and the elements d_{n} have the desired properties.

In the sequel we shall several times use properties of strongly κ-cyclic modules, and so now give a characterization of such modules. Because of Shelah's singular compactness theorem there is nothing to show if κ is singular. Hence we restrict ourselves to regular cardinals.

Lemma 2.2. Let κ be a regular uncountable cardinal. Then G is a
strongly κ-cyclic A-module if and only if $G=\cup_{\alpha<\kappa} G_{\alpha}$, a κ-filtration, where $\left|G_{\alpha}\right|<\kappa$ and G / G_{β} is κ-cyclic for all non-limit ordinals β.

Proof. Assume G is strongly κ-cyclic and let $G=\cup G_{\alpha}^{1}$ be any κ filtration by sets G_{α}^{1} and suppose inductively that $G_{\alpha}(\alpha<\gamma)$ has been constructed. If $\gamma=\alpha+1$ then, since $\left|G_{\alpha}\right|<\kappa$ we can find $Y \supsetneq G_{\alpha} \cup G_{\alpha}^{1}$ with $|Y|<\kappa, Y \Sigma$-cyclic and $G / Y \kappa$-cyclic. Set $G_{\gamma}=Y$. If γ is a limit, take $G_{\gamma}=\cup_{\alpha<\gamma} G_{\alpha}$. Conversely suppose $G=\cup_{\alpha<\kappa} G_{\alpha},\left|G_{\alpha}\right|<\kappa, G_{\alpha}$ is Σ-cyclic and G / G_{β} is κ-cyclic for all non-limit ordinals β. Now if $X \subseteq G$ with $|X|<\kappa$ then $X \subseteq G_{\alpha}$, some α. Let $Y=G_{\alpha+1}$. Since $\alpha+1$ is not a limit we have $X \subseteq Y,|Y|<\kappa, G / Y \kappa$-cyclic. Thus G is strongly κ-cyclic.

We shall refer to the module G_{α} in a filtration of a strongly κ-cyclic module G as the α layer of G. Finally we make the following simple observation:

LEMMA 2.3. If $G_{\alpha}(\alpha<\kappa)$ is any layer of the strongly κ-cyclic module G then there is a layer $G_{\beta} \supseteq G_{\alpha}$ such that G_{β} is closed in the S-topology on G.

Proof.: Since $\alpha+1$ is not a limit, if we set $\beta=\alpha+1$ then $G_{\beta} \supseteq G_{\alpha}$ and G / G_{β} is κ-cyclic. However since cyclic and κ-cyclic A-modules are necessarily reduced, this ensures G_{β} is closed.

To place the construction of strongly κ-cyclic groups in a more general setting we introduce the notion of almost cotorsion-free (cf. [9].)

Definition. A reduced A-module G is said to be almost cotorsionfree if every homomorphism $\sigma: \hat{B} \rightarrow G$ is bounded where $B=$ $\oplus_{n<\omega} t_{n} A$ with $\operatorname{Ann}\left(t_{n} A\right)=q_{n} A$. If we now assume that the base ring R is a countable Dedekind domain then we obtain the characterization

THEOREM 2.4. Let R be a countable Dedekind domain which is not a field and let $S=R \backslash\{0\}$. If G is a separable R-module then the following are equivalent:
(1) G is almost cotorsion-free.
(2) Every homomorphism $\sigma: \hat{B} \oplus \hat{R} \rightarrow G$ is bounded where $B=$ $\oplus_{n<\omega} t_{n} R$ with Ann $t_{n} R=q_{n} R$;
(3) $\hat{R}_{p} \subsetneq G$ for any localization R_{p} of R.

Proof. (1) implies (2) since \hat{R} is a direct summand of \hat{B}. (2) implies (3) since \hat{R}_{p} is a complete discrete valuation ring and so we could construct an unbounded map $\hat{B} \oplus \hat{R} \rightarrow G$. Finally to see that (3) implies (1) consider any $\phi: \hat{B} \rightarrow \hat{G}$ with ϕ unbounded. Then $\hat{B} \phi$ is a cotorsion submodule of the reduced module G. It now follows, since R is Dedekind, that we have $\hat{B} \phi=A \oplus C$, where A is torsion-free algebraically compact and $C=T^{*}$ is the cotorsion hull of $T=t(\hat{B} \phi)$. (cf. [8, Theorem 55.5].) If $A \neq 0$ is algebraically compact it contains a copy of \hat{R}_{p}, and so we must conclude that $A=0$. It now follows, by an analogous argument to that given by Harrison (see [8, Theorem 56.5]), that if T is unbounded (and thus $\hat{T} / T \neq 0$) we have $\left(T^{*}\right)^{1}=\operatorname{Hom}(Q / R, \hat{T} / T) \neq 0$ where Q is the field of fractions of R and ($)^{1}$ denotes the first Ulm submodule of (). But this is clearly impossible since $T \subseteq G$ and G is separable. Thus ϕ is bounded.
We note that if R is an incomplete Dedekind domain and G is a κ-cyclic R-module of cardinality $\kappa \geq|R|^{\aleph_{o}}$ then G is almost cotorsionfree. This follows, since if $\hat{R}_{p} \subseteq G$ then $\left|\hat{R}_{p}\right| \leq|R|^{\aleph_{o}}<\kappa$ which would imply that \hat{R}_{p} is contained in a free R-module. But then $\operatorname{Hom}(\hat{R}, R) \neq 0$ and this is possible if and only if R is complete (cf. [4]. Since this was excluded the result follows.
3. The main algebraic construction. When using the settheoretic condition $V=L$ to realize endomorphism algebras it is by now standard (cf. [3], [5], [11]) to develop the necessary algebraic tools separately in a series of step-lemmas. In this section we develop two such step-lemmas which will be vital to our construction in the final section of this paper.

STEP-LEMMA A. Let $\kappa>|A|$ be a regular uncountable cardinal, G a strongly κ-cyclic A-module, B a standard mixed A-module with
a strictly increasing chain of summands $\left\{B_{n}\right\}$ and $\phi: B \rightarrow G$ an unbounded R-homomorphism. Then there exists an extension B^{1} of B such that
(i) B^{1} is a Σ-cyclic A-module;
(ii) B^{1} / B is S-divisible and S-torsion-free;
(iii) B_{n} is a direct summand of B^{1};
(iv) ϕ does not extend to an R-homomorphism $B^{1} \rightarrow G$.

Proof. The proof is split into two cases:
Case (i). F F is unbounded.
(a) $F \phi \subsetneq t G$. In this case we can find a countable rank A-summand F^{*} of F (say $F=F^{*} \oplus F^{* *}$) such that $F^{*} \phi \subsetneq t G$. Since $\left|F^{*}\right|<\kappa$ and κ is regular, $F^{*} \phi$ is contained in some layer G_{j} of G. As observed in $\S 2$ we can find a layer $G_{i} \supseteq G_{j}$ such that G_{i} is closed in the S-topology on G. Set $G_{i}=T_{i} \oplus H_{i}$ where T_{i} is torsion and H_{i} is torsion-free. Thus we have a sequence $F^{*} \xrightarrow{\Phi} G_{i} \xrightarrow{\pi} H_{i}$. Then, by a similar argument to [6, Lemma 2.1], we can find an extension F^{1} of F^{*} with F^{1} a free A-module, $F^{1} / F S$-divisible S-torsion-free, $F_{n}^{*}\left(=F_{n} \cap F^{*}\right)$ a direct summand of F^{1} and such that $\phi \pi$ does not lift to an R-homomorphism $F^{1} \rightarrow H_{i}$.
Now set $B^{1}=F^{1} \oplus T \oplus F^{* *}$ and we note that (i), (ii) and (iii) all clearly hold. However if ϕ extends to an R-homomorphism $\phi^{1}: B^{1} \rightarrow G$ then, since F^{1} / F^{*} is S-divisible, we can conclude that $B^{1} \phi^{1} \subseteq \bar{G}_{i}=G_{i}$. This however is impossible since it then follows that $\phi^{1} \pi$ restricted to F^{1} would extend $\phi \pi$. Thus (iv) also holds.
(b) $F \phi \subseteq t G$. Choose, as is permitted by Lemma 2.1, decompositions $F_{n+1}=F_{n} \oplus D_{n}$ and elements $d_{n} \in D_{n}$ such that $\left\{d_{n} \phi\right\}$ is unbounded. Set $F^{*}=\oplus_{n<\omega} d_{n} A$ and write $F=F^{*} \oplus F^{* *}$. Since $\left|F^{*} \phi\right|<\kappa$ we can find, as in (a) above, a closed layer $G_{i}=\bar{G}_{i}$ of G such that $F^{*} \phi \subseteq G_{i} \cap t G=T_{i}$ say. Observe that $T_{i} \subseteq T_{i+1}=t G_{i+1}$. Since $F^{*} \phi$ is unbounded we can construct inductively elements $e_{i}=d_{i} q_{k_{i}}$, with k_{i} strictly increasing, $q_{k_{n}}=1$, such that Ann $\left\{e_{i} \phi\right\}$ form a strictly descending chain and the $e_{i} \phi$ have pairwise disjoint supports; these supports are calculated in J where $T_{i+1}=\oplus_{j \in J} t_{j} A$. There will be no loss in generality if we assume that the elements e_{i} are indexed by
$i \in \omega$.
Now consider $y=\sum_{i<\omega} e_{i}$, an element of \hat{F}^{*}. Observe that $y \phi \in \hat{T}_{i}$. However $[y \phi]=\cup\left[e_{i} \phi\right]$, and so $y \phi$ has infinite support (calculated in J.) Thus we conclude $y \phi \in T_{i+1}$. However, $y \phi \in \hat{T}_{i+1}$, so it follows that $y \phi \in G_{i+1}$. But if $y \phi \in G$ then $y \phi \in \hat{T}_{i} \cap G \subseteq \bar{G}_{i}=G_{i}$ by the choice of G_{i}. This is clearly a contradiction since $G_{i} \subseteq G_{i+1}$ and so we conclude $y \phi \notin G$.

Define a divisibility chain $y_{n}(n<\omega)$ for y by $y_{0}=y, y_{n}=$ $\sum_{i \geq n} d_{i}\left(q_{k_{i}} / q_{k_{n}}\right)$ and set $B^{1}=\left\langle F^{*}, y_{n} A(n<\omega)\right\rangle \oplus F^{* *} \oplus T$. It is immediate that (ii) and (iv) hold. However by observing that $d_{n}=y_{n}-y_{n+1} q_{k_{n+1}}$ one easily obtains that $\left\langle F^{*}, y_{n} A(n<\omega)\right\rangle=$ $\oplus_{n<\omega} y_{n} A$. Moreover (iii) will follow if $\oplus_{i \leq n} d_{i} A$ is a summand of $\left\langle F^{*}\right.$, $\left.y_{n} A(n<\omega)\right\rangle$. However a direct calculation shows that $\left\langle F^{*}, y_{n} A(n<\omega)\right\rangle=\oplus_{i \leq n} d_{i} A \oplus \oplus_{k>n} y_{k} A$.
Case (ii). $F \phi$ is bounded. Since ϕ is unbounded we deduce that $T \phi$ is unbounded and so there exists an unbounded A-module B^{*}, a direct summand of T with $B^{*} \phi \subseteq T_{i}$ unbounded where T_{i} is the Σ-cyclic torsion part of some closed layer G_{i} of G. But now it follows that we can find $b \in \hat{B}^{*}$ with $b \phi \notin G$; if $\hat{B}^{*} \phi \subseteq G$ then we would have $\hat{B}^{*} \phi \subseteq \hat{T}_{i} \cap G=\bar{T}_{i}=T_{i}$, and this is impossible since T_{i} is Σ-cyclic torsion and $\hat{B}^{*} \phi$ contains torsion-free elements.
Write $b=\sum_{i<\omega} a_{i} q_{n_{i}}$ where $\left\{a_{i}\right\}$ is a basis of B^{*} and define a divisibility chain for b by $b=b_{0}, b_{k}=\sum_{n_{i} \geq k} a_{i}\left(q_{n_{i}} / q_{k}\right)$. Note that $\left[b_{k}-b_{k+1} s_{k+1}\right]=\left\{a_{i} \mid n_{i}=k\right\}$ and this is a finite set since the sequence $q_{n_{i}}$ is Cauchy. Let $N=\left\{k \in \omega \mid\left[b_{k}-b_{k+1} s_{k+1}\right] \neq \emptyset\right\}$ and note that this is an infinite subset of ω since the support of b is infinite. There will be no loss in generality in assuming $N=\omega$. Then, for $k<\omega$, write $e_{k}=\sum_{n_{i}=k} a_{i}$; observe that, by a suitable re-arrangement of the original basis of B^{*}, we can take e_{k} as a basis element of B^{*}. Set $E=\oplus_{k<\omega} e_{k} A$ and note that E is a summand of B^{*}, whence of $T ; T=E \oplus D$ say. Then $b=\Sigma e_{k} q_{k}$ has a "normal" form and we have $b_{m}-b_{m+1} s_{m+1}=e_{m}(m<\omega)$.

Consider now $y=\sum_{k<\omega} f_{k} q_{k} \in \hat{F}$ where f_{k} is a free generator of F. Let $F^{*}=\oplus_{k<\omega} f_{k} A$ and let $F=F^{*} \oplus F^{* *}$. Now define a divisibility chain y_{k} for y by $y_{o}=y, y_{n}=\sum_{k \geq n} f_{k}\left(q_{k} / q_{n}\right)$. If $y \phi \notin G$ set $B^{1}=\left\langle F^{*}, y_{n} A(n<\omega)\right\rangle \oplus F^{* *} \oplus T$, and a routine check shows (i) (iv) hold. If, however, $y \phi \in G$ then set $x=b+y$ and observe $x \phi \notin G$
since $x \phi=y \phi+b \phi$ and $b \phi \notin G$. Let $x_{m}=b_{m}+y_{m}$ and observe that the sum of the modules $x_{m} A$ is direct since the elements f_{m} are independent. Now set $B^{1}=\left\langle E \oplus F^{*}, x_{n} A(n<\omega)\right\rangle \oplus D \oplus F^{* *}$. Since $\left\langle E \oplus F^{*}, x_{n} A(n<\omega)\right\rangle=\oplus_{n<\omega} e_{n} A \oplus \oplus_{n<\omega} x_{n} A, B^{1}$ is a Σ-cyclic A module. Moreover B^{1} / B is S-divisible and S-torsion-free and ϕ does not extend to an R-homomorphism from B^{1} to G since $x \phi \notin G$. Thus it only remains to verify (iii). But observe from the above argument giving B^{1} to be Σ-cyclic that T is a direct summand of B^{1} (and $t B^{1}=T$.) Thus it suffices to verify that F_{n} is a summand of B^{1}. If $F_{n} \subseteq F^{* *}$ this is immediate so we can reduce the argument to showing that $\oplus_{i<n} f_{i} A$ is a summand of $\left\langle E \oplus F^{*}, x_{n} A(n<\omega)\right\rangle$. However a direct calculation gives $\left\langle E \oplus F^{*}, x_{n} A(n<\omega)\right\rangle=\oplus_{i<n} e_{i} A \oplus \oplus_{i<n} f_{i} A \oplus \oplus_{i>n} x_{i} A$. \square

Step-Lemma B. Let B be a Σ-cyclic mixed A-module of infinite rank having a strictly increasing chain of summands $\left\{B_{n}\right\}$ and let $B^{*}=B \oplus D$, where D is a free A-module of countable rank or 0 . Then, if ϕ is an endomorphism of B^{*} leaving B invariant and ϕ is not an element of $A \oplus B d B$, there exists an extension $B^{1} \supseteq B^{*}$ such that
(i) B^{1} is Σ-cyclic,
(ii) B^{1} / B^{*} is S-divnsible and S-torsion-free,
(iii) B_{n} is a direct summand of B^{1} for all n,
(iv) $\phi \notin E\left(B^{1}\right)$.

Proof. Suppose $\phi: B \rightarrow B$ is not an element of $A \oplus B d B$. Let $B=T \oplus F$. Denote by ϕ^{*} the homomorphism induced from ϕ by mapping modulo $T, \phi^{*}: F \rightarrow F$. If ϕ^{*} is not multiplication by $a \in A$ then, as in [3, Corollary 2.8.], there is an extension $F^{1} \supseteq F$ which satisfies (i)-(iii), and ϕ^{*} does not extend to an endomorphism of F^{1} since if it did extend to ϕ^{1} then $\left(\phi^{1}\right)^{*}$ would extend ϕ^{*}. Suppose then, that ϕ^{*} is multiplication by an element of A. Thus there exists a unique $a \in A$ such that $\phi-a: B \rightarrow T$. (The uniqueness is immediate, for if we have a, a^{1} then $a-a^{1}: B \rightarrow T$ which is clearly impossible unless $a-a^{1}=0$.) Set $\psi=\phi-a: B \rightarrow T$. Clearly ψ is unbounded. Then, for all $n<\omega$ and $b \in A$, we have $q_{n} \psi-b \notin B d B$. (This follows immediately from Lemma 3.1. below.) But from Step-Lemma A we deduce that, for each pair $\left(q_{k}, b\right)$, there exists an element $x^{k b} \in \hat{B}$ such
that $x^{k b}\left(q_{k} \psi-b\right) \notin B$. Moreover $x_{n}^{k b}$ is a divisibility chain of $x^{k b}$ and B_{n} is a direct summand of $\left\langle B, x_{n}^{k b} A(n<\omega)\right\rangle$.

Now pick a free A-module D of countable rank, say $D=\oplus e_{i} A$, and let $d=\sum_{n<\omega} e_{n} q_{n} \in \hat{D}$. Let $\left\{d_{n}\right\}$ be a divisibility chain for d. If $d \psi \notin\left\langle B \oplus D, d_{n} A(n<\omega)\right\rangle$ then setting $B^{*}=B \oplus D$ and $B^{1}=\left\langle B \oplus D, d_{n} A(n<\omega)\right\rangle$ will do since this B^{1} will clearly satisfy (i)-(iv).

If $d \psi \in\left\langle B \oplus D, d_{n} A(n<\omega)\right\rangle$ then there exists $a \in A, q_{k} \in S$ such that $d\left(q_{k} \psi-a\right) \in B \oplus D$. Set $w=d+x^{k a}$ and put $w_{n}=d_{n}+x_{n}^{k a}$. If $w \psi \in\left\langle B \oplus D, w_{n} A(n<\omega)\right\rangle$ then there is $m \in \omega, b \in A$ such that $w\left(q_{m} \psi-b\right) \in B \oplus D$. Without loss of generality we may take $q_{m}=q_{k}$ and so obtain $w\left(q_{k} \psi-b\right) \in B \oplus D$. But then we have $w\left(q_{k} \psi-b\right)=$ $\left(d+x^{k a}\right)\left(q_{k} \psi-b\right) \in B \oplus D$ implying that $d(a-b)+x^{k a}\left(q_{k} \psi-b\right) \in B \oplus D$. Since $d \in \hat{D}$ and $x^{k a}\left(q_{k} \psi-b\right) \in \hat{B}$ this forces $a=b$, and so $x^{k a}\left(q_{k} \psi-a\right) \in B$ - contradiction. Set $B^{1}=\left\langle B \oplus D, w_{n} A(n<\omega)\right\rangle ;$ (ii) and (iv) are then immediate. Moreover (i) follows exactly as in Step-Lemma A while (iii) follows as in Step-Lemma A once we observe that $\left\langle B \oplus D, w_{n} A(n<\omega)\right\rangle=\left\langle B, x_{n}^{k a} A(n>\omega)<\oplus<D, d_{n} A(n<\omega)\right\rangle$. This completes the proof of Step-Lemma B. ロ

If the implication of Step-Lemma B holds for $D=0$ we say that Option I holds; otherwise we will use Step-Lemma B as stated and we say that Option II holds.

Lemma 3.1. If $B=T \oplus F$ is a Σ-cyclic A-module and $F \neq 0$ then $A \oplus \mathrm{Bd} B$ is S-pure in $E(B)$.

Proof. Suppose $s \phi \in A \oplus \mathrm{Bd} \mathrm{B}$ where $\phi \in E(B)$. Letting * denote homomorphisms induced modulo $T=t B$ we have that there is an $a \in A$ such that $(s \phi-a)^{*}=0$. Thus $s \phi^{*}=a^{*}=a$ and if we consider any basis element f of F we get $f\left(s \phi^{*}\right)=f a$ implying $a=s b$ for some $b \in A$. Thus $s(\phi-b) \in \mathrm{Bd} \mathrm{B}$, and since this latter is clearly pure in $E(B)$ we conclude that $\phi-b \in \mathrm{Bd} \mathrm{B}$, whence $\phi \in A \oplus \mathrm{Bd} \mathrm{B}$. Thus $A \oplus \mathrm{Bd} \mathrm{B}$ is S-pure in $E(B)$.
4. Proof of the main theorem. In this section we construct A -
modules with the properties claimed in Theorem 1.1. The construction proceeds inductively with the underlying sets being prepared in a suitable fashion for the \diamond-machinery to yield the desired type of A module. The set-theoretic preliminaries are standard (see $\cdot[\mathbf{1 4}]$) and similar constructions have been used previously in $[\mathbf{3}],[5],[7]$ and $[\mathbf{1 1}]$. Let κ be the given regular not weakly compact cardinal $>|A|$. Choose any sparse stationary subset $E \subseteq\{\lambda<\kappa \mid c f(\lambda)=\omega\}$. Using Solovay's decomposition theorem we get a partition $E=E_{e} \cup E_{k} \cup \cup_{\alpha<\kappa} E_{\alpha}$ into pairwise disjoint stationary sets $E_{\alpha}(\alpha \in \Gamma=\kappa \cup\{e, k\})$. Let $H=\cup_{\alpha<\kappa} H_{\alpha}$ be any κ-filtration of some set H of cardinal κ and let \mathcal{X} denote a family of 2^{κ} incomparable subsets of κ. Since we are assuming $V=L$ holds we may assume $\diamond_{\kappa}\left(E_{\alpha}\right)$ for all $\alpha \in \Gamma$ and derive Jensen functions $\left\{\phi_{\alpha}: H_{\alpha} \rightarrow H_{\alpha}, \alpha \in E_{e}\right\}$ guessing endomorphisms of H and Jensen sets $\left\{U_{\alpha} \subseteq H_{\alpha}: \alpha \in E_{k}\right\}$ guessing kernels of homomorphisms into A-modules of cardinality $\kappa_{0}<\kappa$. In addition, we obtain, for each $\gamma<\kappa$, Jensen sets of the form $\left\{\left(\phi_{\alpha},+_{\alpha}, \cdot_{\alpha}\right) \subseteq H_{\alpha}^{7} \times A: \alpha \in E_{\gamma}\right\}$. These latter sets are supposed to guess the additive and scalar multiplicative structure on the H_{α} and homomorphisms of these modules. (Thus $+_{\alpha} \subseteq H_{\alpha}^{3},{ }_{\alpha} \subseteq H_{\alpha} \times A \times H_{\alpha}, \phi_{\alpha} \subseteq H_{\alpha}^{2}$.) Further details of Jensen sets and functions may be found in [14, p. 226.]. Suppose that the torsionmodule T has a filtration $T=\cup_{\alpha<\kappa} T_{\alpha}$ where T_{α} is Σ-cyclic. Such a filtration exists since T is assumed to be strongly κ-cyclic. For each $X \in \mathcal{X}$ and $\alpha<\kappa$ we define inductively an A-module H_{α}^{X} with domain H_{α}, and the desired A-modules will be obtained as $H^{X}=\cup_{\alpha<\kappa} H_{\alpha}^{X}$. The filtration of T may be so arranged that, for $\alpha<\beta<\kappa, T_{\alpha}$ is a direct summand of T_{β} if $\alpha \notin \cup\left\{E_{\tau}: \tau \in X \cup\{e, k\}\right\}$; let $T_{\beta \alpha}$ be some fixed complement of T_{α} in T_{β}. The induction depends on X and proceeds as follows:
(1) $H_{0}^{X}=T_{0}$ and each $H_{\alpha}^{X}(\alpha<\kappa)$ is a Σ-cyclic A-module.
(2) If α is a limit then $H_{\alpha}^{X}=\cup_{\beta<\alpha} H_{\beta}^{X}$.
(3) If $\alpha<\beta<\kappa$ and $\alpha \notin \cup\left\{E_{\tau}: \tau \in X \cup\left\{e^{\prime} k\right\}\right\}$ then H_{α}^{X} is a direct summand of H_{β}^{X}.
(4) If H_{α}^{X} has been defined let (4.0) $H_{\alpha+1}^{X}=H_{\alpha}^{X} \oplus A \oplus T_{\alpha+1, \alpha}$ except in the following cases:
(4.1) If $\alpha \in E_{e}$ and $\phi_{\alpha}: H_{\alpha}^{X} \rightarrow H_{\alpha}^{X}$ is a homomorphism not in $A \oplus \operatorname{Bd} H_{\alpha}^{X}$ and Option I holds then we choose a sequence α_{n} in $\alpha \backslash E$ strictly increasing to α. Since $\alpha_{n} \notin E$ we have by (3) that $\left\{H_{\alpha_{n}}^{X}\right\}$
forms a chain of direct summands of H_{α}^{X}. Now apply Step-Lemma B to obtain an R-module $B^{1}=H_{\alpha+1}^{X}$ extending H_{α}^{X} such that ϕ_{α} does not lift to an endomorphism of $H_{\alpha+1}^{X}$. Step-Lemma B (iii) ensures that (3) remains satisfied at this new stage, since if $\gamma<\alpha$ and $\gamma \notin \cup E_{\tau}$ then there exists α_{n} with $\gamma<\alpha_{n}$. But then H_{γ}^{X} is a summand of $H_{\alpha_{n}}^{X}$ which is, in turn, a summand of $H_{\alpha+1}^{X}$.
(4.2) If $\alpha \in E_{k}$ and $U_{\alpha} \subseteq H_{\alpha}^{X}$ is a submodule then let π : $H_{\alpha}^{X} \rightarrow H_{\alpha}^{X} / U_{\alpha}$ be the canonical projection. If π is an unbounded homomorphism into a strongly κ_{0}-cyclic A-module $H_{\alpha}^{X} / U_{\alpha}$ (where $\left.\kappa_{0}<\kappa\right)$ then we apply Step-Lemma A to obtain an extension $H_{\alpha+1}^{X} \supseteq$ H_{α}^{X}. Moreover if α_{n} is a strictly increasing sequence with limit α then $H_{\alpha_{n}}^{X}$ is a summand of $H_{\alpha+1}^{X}$ and π does not lift to $H_{\alpha+1}^{X}$. Step-Lemma A (iii) ensures, in a fashion similar to (4.1) above, that (3) remains satisfied at this stage.
(4.3) If $\alpha \in E_{\gamma}$ for some $\gamma \in X$ and $\left(H_{\alpha},+_{\alpha},{ }_{\alpha}\right)$ is a κ_{0}-cyclic A module with $\phi_{\alpha}: H_{\alpha}^{X} \rightarrow\left(H_{\alpha},+_{\alpha},{ }^{\circ}\right)$ an unbounded homomorphism, then we construct $H_{\alpha+1}^{X}$ via Step-Lemma A as in (4.2). Once again (3) is preserved.

As we noted at each stage this inductive construction is consistent, and so we obtain an A-module $H^{X}=\cup_{\alpha<\kappa} H_{\alpha}^{X}$. Since the filtration of T is smooth we also obtain $T=t H^{X}$. A routine check shows that since T is strongly κ-cyclic so also is H^{X}. Before establishing the main result we derive the following simple result which is clearly analogous to corresponding results in [5] and [11].

Lemma 4.1. Let $B=\cup_{\alpha<\kappa} B_{\alpha}$ be a κ-filtration of the mixed A module B and $\phi: B \rightarrow H$ a homomorphism into the A-module H. If $V=\left\{\nu \in \kappa|\phi| B_{\nu}\right.$ is bounded $\}$ is unbounded in κ and $c f(\kappa)>\omega$ then ϕ is bounded.

Proof. For each $\nu \in V$ let $q_{n(\nu)} \in S$ be such that $B_{\nu} \phi q_{n(\nu)}=0$. Clearly if $\{n(\nu) \mid \nu \in V\}$ is bounded then ϕ is bounded. Suppose $\{n(\nu) \mid \nu \in V\}$ is unbounded and choose a strictly increasing sequence $n\left(\nu_{1}\right)<\cdots<n\left(\nu_{r}\right) \cdots$. Since V is unbounded and $c f(\kappa)>\omega$, we can find a $\nu \in V$ with $\nu_{i}<\nu$ for all i. But $\nu \in V$ implies $\phi \upharpoonright B_{\nu}$ is bounded, and since $B_{\nu_{i}} \subseteq B_{\nu}$ we have $n\left(\nu_{i}\right) \leq n(\nu)$ contrary to the
unboundedness of the sequence $n\left(\nu_{i}\right)$. This establishes the lemma.
Since $\mathcal{X}=2^{\kappa}$ and $T=t H^{X}$ for each $X \in \mathcal{X}$, it suffices to derive the following four results to derive the main Theorem 1.1: For any $X \neq Y \in \mathcal{X}$ we have
(a) $E\left(H^{X}\right)=A \oplus \operatorname{Bd} H^{X}$.
(b) If $\phi: H^{X} \rightarrow H^{Y}$ is a homomorphism then ϕ is bounded.
(c) If $\phi: H^{X} \rightarrow G$ is a homomorphism into a strongly κ_{0}-cyclic A-module of cardinality $\kappa_{0}<\kappa$ then ϕ is bounded.
(d) If $\kappa<\kappa^{1}$ are regular not weakly compact cardinals $>|A|$ and Y^{1} is the indexing set associated with the construction at the cardinal κ^{1}, then any homomorphism $\phi: H^{X} \rightarrow H^{Y^{1}}$ is bounded.

Proof. (a). Clearly $A \oplus \operatorname{Bd} H^{X} \subseteq E\left(H^{X}\right)$. So suppose that there is a $\phi \in E\left(H^{X}\right) \backslash A \oplus \operatorname{Bd} H^{X}$. Let $C=\left\{\alpha<\kappa \mid H_{\alpha}^{X} \phi \subseteq H_{\alpha}^{X}\right\}$ and observe that C is a cub in κ. Denote by C_{0} and C_{1} respectively the sets $\left\{\alpha \in \kappa|\phi| H_{\alpha}^{X} \in A \oplus \operatorname{Bd} H_{\alpha}^{X}\right\}$ and $\left\{\alpha \in C|\phi| H_{\alpha}^{X} \notin A \oplus \operatorname{Bd} H_{\alpha}^{X}\right.$ and Option II holds \}. We claim C_{0} and C_{1} are bounded. C_{1} is bounded since the construction in 4.0. ensures that there exists a $\beta>\alpha$ with $\beta \leq|A|<\kappa$ at which Option I may be chosen. If C_{0} were unbounded in κ then, for all $\nu \in C_{0}$, there exists $a_{\nu} \in A$ such that $\left(\phi-a_{\nu}\right) \upharpoonright H_{\nu}^{X}$ is bounded. But then if $\nu<\mu \in C_{0}$ we would have that $\left(\phi-a_{\nu}\right) \mid H_{\nu}^{X}$ and $\left(\phi-a_{\mu}\right) \mid H_{\mu}^{X}$ are both bounded. However this implies that $a_{\nu}-a_{\mu}$ is bounded on H_{ν}^{X} which can only happen if $a_{\nu}=a_{\mu}$ ($=a$ say.) But then $(\phi-a) \mid H_{\nu}^{X}$ is bounded for all $\nu \in C_{0}$. It now follows from Lemma 4.1. that $\phi-a$ is bounded, a contradiction. Thus C_{0} is also bounded.

Let $C^{*}=C \backslash\left(C_{0} \cup C_{1}\right) ; C^{*}$ is still a cub in κ. From $\diamond_{\kappa}\left(E_{e}\right)$ we have that $D_{e}=\left\{\nu \in D_{e}\left|\phi_{\nu}=\phi\right| H_{\nu}^{X}\right\}$ is a stationary set so there exists $\alpha \in D_{e} \cap C^{*}$. Thus $\phi_{\alpha}=\phi \upharpoonright H_{\alpha}^{X}: H_{\alpha}^{X} \rightarrow H_{\alpha}^{X}$. By the construction 4.1, ϕ_{α} does not lift to a homomorphism $\phi^{1}: H_{\alpha+1}^{X} \rightarrow H_{\alpha+1}^{X}$. However StepLemma B (ii) gave that $H_{\alpha+1}^{X} \backslash H_{\alpha}^{X}$ is S-divisible, and since $H^{X} / H_{\alpha+1}^{X}$ is κ-cyclic we conclude that $H_{\alpha+1}^{X}$ is the completion of H_{α}^{X} in H^{X}. But this immediately tells us that ϕ extends to a homomorphism $H_{\alpha+1}^{X} \rightarrow$ $H_{\alpha+1}^{X}$, or, equivalently, $\phi \upharpoonright H_{\alpha}^{X}=\phi_{\alpha}$ extends, a contradiction. Thus no such ϕ exists and we have established that $E\left(H^{X}\right)=A \oplus \operatorname{Bd} H^{X}$.
(b). Suppose $\phi: H^{X} \rightarrow H^{Y}$ is unbounded. Then it follows, as in the proof of (a), from Lemma 4.1. that $C=\left\{\nu<\kappa\left|H_{\nu}^{X} \phi \subseteq H_{\nu}^{X}, \phi\right| H_{\nu}^{X}\right.$ unbounded $\}$ is a cub in κ. Note that $H_{\nu}^{X}=H_{\nu}^{Y}$ quâ sets. Let $\left(+_{y}, \cdot{ }_{y}\right)$ from $H^{Y} \times H^{Y} \rightarrow H^{Y}$ and $H^{Y} \times A \rightarrow H^{Y}$ denote the module structure on H^{Y}. From $\diamond_{\kappa}\left(E_{\gamma}\right)(\gamma \in \kappa \backslash Y)$ we see that $W_{\gamma}=\left\{\nu \in E_{\gamma}\left|+_{y} \upharpoonright\left(H_{\nu} \times H_{\nu}\right)=+_{\nu}, \cdot{ }_{y} \upharpoonright\left(H_{\nu} \times A\right)=\cdot_{\nu}, \phi\right| H_{\nu}=\phi_{\nu}\right\}$ is a stationary set in κ because of the choice of Jensen sets in the construction. Since C is a cub we can find $\alpha \in C \cap \boldsymbol{W}_{\gamma}$. Step-Lemma A (ii) ensures $H_{\alpha+1}^{X} \backslash H_{\alpha}^{X}$ is S-divisible and, as in the proof of (a) above, we conclude that $H_{\alpha+1}^{X}$ is the closure of H_{α}^{X}. Observe that the construction 4.3. implies $\phi \mid H_{\alpha}^{X}: H_{\alpha}^{X} \rightarrow H_{\alpha}^{X}$ does not lift to a homomorphism $H_{\alpha+1}^{X} \rightarrow H_{\alpha}^{Y}$. However since $\alpha \in E_{\gamma}$ and $\gamma \notin Y$ we have from the construction of H^{Y} that H_{α}^{Y} is closed. This immediately implies that $\phi \upharpoonright H_{\alpha}^{X}=\phi_{\alpha}$ does extend to a homomorphism $H_{\alpha+1}^{X} \rightarrow H_{\alpha}^{Y}$, a contradiction. This establishes (b).
(c). This is identical to the proof of (b) but using the construction 4.2. rather than 4.3 .
(d). If $\phi: H^{X} \rightarrow H^{Y^{1}}$ is a homomorphism then $\left|H^{X} \phi\right| \leq\left|H^{X}\right|=$ $\kappa<\kappa^{1}=\left|H^{Y^{1}}\right|$, we conclude that $H^{X} \phi$ is Σ-cyclic since $H^{Y^{1}}$ is κ cyclic. If $H^{X} \phi$ is not bounded then we can find a projection onto either a free module or an unbounded direct sum of cyclic modules. In either case these modules are strongly κ-cyclic which contradicts (c). Thus $H^{X} \phi$ is bounded.

REFERENCES

1. A.L.S. Corner and R. Göbel, Prescribing endomorphism algebras - A unified treatment, Proc. London Math. Soc. (3) 50 (1985) 447-479.
2. M. Dugas, On the existence of large mixed modules, in Abelian Group Theory, Proc. Honolulu (1982/83), Springer LNM 1006, Springer-Verlag, New York, 1983.
3. and R. Göbel, Every Cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), 319-336.
4. - Every cotorsion-free algebra is an endomorphism algebra, Math Z. 181 (1982), 451-470.
5. \quad Almost Σ-cyclic Abelian p-groups in L, in Proc. International Conference on Abelian Groups and Modules, CISM Udine, Italy 1984, Springer, 1984, 87-105.
6. and G. Herden, Arbitrary torsion classes of almost free Abelian groups, Israel J. Math. 44 (1983), 322-334.
7. P. Eklof and A. Mekler, On constructing indecomposable groups in L, J. Algebra 49 (1977), 96-103.
8. L. Fuchs, Infinite Abelian Groups, Vol I, (1970), Vol II (1973), Academic Press, New York.
9. R. Göbel, On stout and slender groups, J. Algebra 35 (1975), 39-55.
10. , The Baer problem for arbitrary torsion theories, to appear in Communs. in Algebra.
11. and B. Goldsmith, Essentially indecomposable modules which are almost free, Quart. J. Math. Oxford. (2) 39 (1988), 213-222.
12. and S. Shelah, On semi-rigid classes of torsionfree Abelian groups, J. Algebra 93 (1985), 136-150.
13. P.A. Griffith, A solution of the splitting mixed group problem of Baer, Trans. Amer. Math. Soc. 139 (1969), 261-269.
14. T. Jech, Set Theory, Academic Press, New York, 1978.

Fachbereich 6, Mathematik. Universität Essen GHS D 4300. Essen 1, W. Germany
Dublin Institute of Technology. Kevin Street. Dublin 8. Ireland
Dublin Institute of Advanced Studies. Dublin 4. Ireland.

[^0]: This paper was written under contract SC115/84 from the National Board for Science and Technology (Ireland).

 Received by the editors on May 28, 1986, and in revised form on February 9, 1987.

 AMS Subject classification: 20K30, 20K21.

