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ELLIPTIC DIVISIBILITY SEQUENCES
AND CERTAIN DIOPHANTINE EQUATIONS

MINORU YABUTA

ABSTRACT. Let E : y2 = 23 4+ ax + b be an elliptic curve
with a,b € Z. For a nontorsion rational point P on E, write
z(nP) = A,/B2 in lowest terms. We give a computable
constant N such that for all integers m > N the term B,m has
a divisor not dividing By for 0 <k <m — 2. Applying this
result to the family of elliptic curves Ey, : y2 = 23 4 bSm+7,
where Ey has rank one, we give a computable constant N’ such
that for all integers m > N’ the curve E,, has no primitive
integral points.

1. Introduction. Let E : 42 = 22 + ax + b be an elliptic curve with
a,b € Z. We denote by E(Q) the additive group of all rational points
on the curve E. Let P € F(Q) be a nontorsion point. Write

An(P)

(1.1) z(nP) = BZ(P)’

in lowest terms with A, (P) € Z and B,(P) € N. The sequence
{Bn(P)}n>1 is known as an elliptic divisibility sequence. It is well
known that By, (P)|B,(P) whenever m|n. Ward [18] first studied the
arithmetic properties of elliptic divisibility sequences.

For an integer sequence {uy, },>1 a prime p is called a primitive divisor
of u, if p divides u, but does not divide uy for any 0 < k < n.
Silverman [14] first showed that for all sufficiently large integers n the
term B, (P) has a primitive divisor. Everest, Mclaren and Ward [7]
obtained a uniform and quite small bound beyond which a primitive
divisor is guaranteed for congruent number curves y? = 23 — T2z with
T > 0 square-free. They showed that, if m > 5, then Bs,,(P) has a
primitive divisor and that, if z(P) is negative and m > 2 or if z(P) is a
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1340 MINORU YABUTA

square and m > 11, then Bs,,_1(P) has a primitive divisor. Improving
their work, Ingram [8] showed that if z(P) < 0 and n > 2, then B, (P)
has a primitive divisor. Everest and King [6] showed that only finitely
many terms B, (P) are prime powers in certain cases.

Now we denote by h the absolute logarithmic height on Q and by h
the canonical height on E(Q). In this paper we will give an elementary
proof of the following theorem.

Theorem 1.1. Let E : y?> = 2% + ax + b be an elliptic curve with
a,b € Z and ¢ = max{|al,|b|} > 2. Let P € E(Q) be a nontorsion
point, and let p be a prime. Let N be an integer satisfying

(1.2) 2(p~1)p*N~*h(P)— S h(j) - Lh(A)—4.086 > log (p*(15c)""/?).

Then, for all integers m > N the term Bypm(P) has a divisor not
dividing B,x(P) for 0 <k <m — 2.

Here A = —16(4a® + 27b%) and j = —1728(4a)®/A are the discrimi-
nant of E and the j-invariant of E, respectively. Our methods cannot
allow us to state a result like Theorem 1.1 if it has £ < m. What
this paper does is to obtain an explicit bound beyond which the term
Bym (P) has a divisor not dividing By« (P) for 0 < k < m — 2. The
case when p = 2 is already quite important because the duplication
map plays a very important role in the arithmetic of elliptic curves.
We anticipate that our results might find applications.

Next, by using Lang’s conjecture we obtain a uniform bound inde-
pendent of P € E(Q).

Corollary 1.2. Let E : y?> = 23 + ax + b be an elliptic curve with
a,b € Z and ¢ = max{|a|,|b]} > 2. Let P € E(Q) be a nontorsion
point, and let p be a prime. Assume that a or b is zero. If an integer
N satisfies

2%(p? — 1)p*N 4> 1/3+ (10g(p2(15c)p2/2) + 5.435)/10g Al

then for all integers m > N the term Bpm (P) has a divisor not dividing

Byr(P) for 0 < k < m — 2, where k is a uniform positive constant

independent of E and P.
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Now primitive divisors have been studied by several authors, and
there have been many results about primitive divisors. In 1892,
Zsigmondy [19] showed that for the sequence u,, = a™ — b™ the term
u, has a primitive divisor for all n > 6, where a and b are positive
coprime integers. Bang [1] earlier proved the special case b = 1. The
sequence U, = (a™ — ")/(a — ), where o + 8 and af are coprime
nonzero integers is called the Lucas sequence. In 1913, Carmichael [3]
showed that if o and B are real, then U, has a primitive divisor for
all n > 12. Ward [17] and Durst [5] extended Carmichael’s result to
Lehmer sequences. In 1974, Schinzel [10] proved that there exists an
effectively computable constant ng independent of o and 3 so that U,
has a primitive divisor for all n > ny, when a and S are complex and
their quotient is not a root of unity. In 1976, Stewart [15] showed that
if n > %2267 then U,, has a primitive divisor. In 1998, Voutier [16]
proved that if n > 30030 then the nth term of any Lucas or Lehmer
sequence has a primitive divisor. In 2001, Bilu, Hanrot and Voutier [2]
obtained a major result for Lucas and Lehmer sequences. They proved
that if n > 30, then the nth term of any Lucas or Lehmer sequence has
a primitive divisor.

We next consider the diophantine equation y? = *+b" in the integer
variables x, y and n, where b is an integer. We call an integral solution
(z,y) trivial if zy = 0, and primitive if ged(z,y) = 1. We can write
n = 6m + r with 0 < r < 6. Applying Theorem 1.1, we will prove the
following theorem.

Theorem 1.3. Let r be a fized integer with 0 < r < 6. Let
E, : y? = 22 + b5 be an elliptic curve with b € Z, and assume
that E : y?> = x> + b" has rank one. Let N be an integer satisfying

2(6* — 1)((INV — 1) log [b| — - log |A] — 0.973)
> log (b?[15b7|*"/2) + L log | A| + 4.086,
where A is the discriminant of E. If E, has a nontrivial primitive

integral point, then E,, has no nontrivial primitive integral points for
all integers m > v + N.

This theorem can be restated as saying that for all integers m > v+ N
the group F(Q) of rational points on the curve E has no points of the
form (s/b%™,t/b3™) with ged(s,t) = ged(s,b) = ged(t,b) = 1.
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Many authors have studied certain diophantine equations of the form
C :y* = 2% + D, where D is an integer. Many results are assembled
in Mordell’s book [9]. By Siegel’s theorem, the set of integral points
on the elliptic curve C : y? = 22 4+ D is finite. By Mordell’s theorem,
the group of rational points on the curve C is finitely generated. In
1950, Cassels [4] gave a complete basis for the group of rational points
on the elliptic curve C in the range |D| < 50. As a special case of
Silverman’s theorem [11], we have that the number of integral points
on the elliptic curve C' is bounded solely in terms of the rank of the
group of rational points. Theorem 1.3 is applied to a smaller class of
curves; however, it asserts that the number of primitive integral points
is not only bounded but zero.

2. Elliptic division polynomials. Let E : y?> = x> 4+ ax + b be
an elliptic curve with a,b € Z. We define division polynomials 1,, in
Zla,b, z,y| for the curve E inductively as follows:

Yv1=1, =2y,
3 = 3zt + 6az? + 12bx — a2,
Yy = 4y(x8 + Saz? + 20b2® — 5a’x? — dabx — 8b* — a®),
Vont1 = Ynio¥s — Yn 193y for n > 2,
2yPon = Yn(Yni2¥h | — Yn_2¥i,,) forn >3

We extend these to Z by defining ¢_,, = ¢, and write ¥,(Q) for
evaluated at the point ). The following proposition is well known, see
Silverman [13, page 105].

Proposition 2.1. Let E : y? = 23 4+ ax + b be an elliptic curve with
a,b € Z. Then, for each nontorsion point Q € E(Q),

- '(pn—l(Q) ) z/}n—l—l(Q)
¥n(Q)? '

(2.1) z(nQ) = z(Q)

For each nontorsion point @ = (z,y) € E(Q), we can write

[ Pu(x) for n odd
¥nl(Q) = { 2yP,(z) for n even
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where P, (z) € Z|a, b, z] satisfies the inductive relations:

(2.2)  Pons1 = Pny2P? — (2y)*P, 1P}, , for n odd
: 2n+1 (2y)*P,12P3 — P,_1P3., for n even,
(23) Pyn = P"(P"JrZPr%fl - P’YL*ZP’VzLJrl)-

Replacing y? by z2 + az + b gives that

Pri2P? —16(2® + ax + b)*P,_1 P2, for n odd

2.4) Pypis —
(24) P { 16(2® + az 4 b)* P2 P2 — P,_1 P2, for n even.

For n odd P,(z) is a polynomial of degree (n? — 1)/2 with leading
coefficient n, and for n even P, (z) is a polynomial of degree (n? —4)/2
with leading coefficient n /2.

Lemma 2.2. Let E : y?> = 23 + ax + b be an elliptic curve with
a,b € Z and ¢ = max{|a|, |b|} > 2. Then every coefficient of P, (x) is
bounded in absolute value by (14c)(=1)"/2,

Proof. We denote by M, the largest of the absolute values of the
coefficients of the polynomial P, (x), and by p,, the number of terms of
P, (z). Then, for all n > 4,

(2.5) pn < (P2 +1)/2 < (14¢)n=5)/4,

We will prove this. For n odd P,(z) is of degree (n? — 1)/2, and for
n even P,(z) is of degree (n? —4)/2, so the estimate p, < (n?+1)/2
holds.

Now, for 0 < k <, write

s t s+t
P(z) = Zaixz, P(z) = Z biz', Pi(z)P(z)= Zcix’.
i=0 i=0 =0

Then, for every coefficient ¢, of Py(z)P;(z),

lerl =1 D aibs| < Y aibj| < prMi My,
itj=r itj=r
0<i<s 0<i<s

0<j<t 0<j<t
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where M}, and M, are the largest of absolute values of coefficients of
the polynomials Py(z) and P;(x), respectively. Hence, from (2.3) and
(2.4) we observe that
Mom < Py M (Miny2 My, ) + M2 M, ).
Mami1 < poy M2 My, +16 - 32p), My, 1M, for m odd,
Maoy41 <16 - 32p§nc2Mm+2MT3n + p:’n_,_le_le’n_,_l for m even.

To prove our lemma we use strong induction on n. A direct check
gives that the result is true for n = 1,2,3,4. We have the estimates
M5 < 6¢? and My < 20c3. By using the estimates above, we can show
that the result is true for n =5,6,7,8.

Now suppose that the result is true for all 1 < n < 2k with k > 4.
Then, by using (2.5) and the estimate 1 + 144¢? < (14c¢)?, we obtain
that )

Moky1 < pj oy (1+ 144c?) (1dc)?F —2k+2

< (1)K D/ < (140) 20772,
and
Moo < 2p3,o(14c)?F 3 < 2(140) F H6R+9)/4 < (14¢)2R+1D?/2,

Hence, the result is true for n = 2k + 1,2k + 2. Thus, the result follows
by induction. O

Lemma 2.3. Let B : y? = 23 +ax+b be an ejliptic curve with a,b € Z
and ¢ = max{|al,|b|} > 2. If |z| > (15¢)®~V°/2  then P,(z) > 0.

Proof. For n > 3 we write

P, (z) = chmk’, Cm 7 0.
k=0
Put M = max{1, |co/cml|, |c1/Cmls - -5 |¢m—1/¢m|}. Then, by Lemma 2.2
we have that M < (14¢)(»=1*/2_ Let o be any root of the polynomial
P, (z). If o] <1, then obviously |o| <1+ M. If |o| > 1, then

m—1 m—1
M(|la™ -1 M|o|™
o™ = Zc_kak SZ Ck ‘a|k§ (e ) |otf :
k=0 m k=0 | “™ laf -1 lof =1
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therefore, |a| < 1+ M. Consequently,
o] <14 (14c)=D*/2 < (15¢)(=1/2,

Combining with the fact that P,(z) is of even degree yields our
lemma. O

3. Proof of Theorem 1.1. Let E : y> = 23 + ax + b be an
elliptic curve with a,b € Z. For a nontorsion point P € E(Q),
write z(nP) = A, (P)/B2(P) in lowest terms with A, (P) € Z and
B, (P) € N. Let p be a prime. Consider the sequence

Bi(P), B,(P), By2(P),... ,By(P),... .

Definition 3.1. For P € E(Q), we write 2(P) = A/B in lowest
terms. We define the height of P by H(P) = max{|A|,|B|}, the
logarithmic height of P by h(P) = log H(P), and the canonical height
of P by

. 2" P
A(P) = tim MEE)

n—o00 4qn

It is known that log By~ (P) is roughly as large as p>*h(P), at least
when p is odd. Applying the growth rate of Bp»(P), we find that
Byn(P) > pByn—1(P) for all sufficiently large n, and this leads to the
existence of a primitive divisor, see Silverman [14]. In this section, we
will give a computable constant N > 0 such that for all integers m > N
the term Bym (P) has a divisor not dividing By« (P) for 0 < k < m —2.

For a rational number r # 0, we write r = p®u/v, where p is a prime
and u, v are integers prime to p. We define ord,(r) by ord,(r) =e.

For every prime p and every integer n > 1, we define
E,n(Q) = {(=,y) € B(Q) : p* divides the denominator of z}.

The following propositions are well known, see [13].

Proposition 3.2. If p is a prime then E,n(Q) is a subgroup
of E(Q).
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Proposition 3.3. For any point P € E,(Q), write z(nP) = A,,/B2
in lowest terms. Then, for any prime p,

ord,B,, = ord, By + ord,n.

Lemma 3.4. Let E : y?> = 2% + axz + b be an elliptic curve with
a,b € Z and ¢ = max{|al,|b|} > 2. Let p be a prime, and let Q € E(Q)
be a nontorsion point. Assume that, forn = N —1, N,

(3.1) H(p"Q) > p*(15¢) 2H(p" "' Q).

Then the term Bpn (Q) has a divisor not dividing By (Q) for 0 <k <
N —2.

Proof. For all integers n > 0, put @, = p"Q, and write z(Q,) =
u,/v2 in lowest terms with v,, > 0. From Proposition 3.3 we observe
that )

v _ {tp'UN—Q ifplon_s
N-1= .
tvy o ifpfon_o,

where ¢t and t' are integers prime to vy_s. If vy_1 has a divisor not
dividing vy _o, then so does vy. So assume for a contradiction that
every prime divisor of vy _; divides vy _o, in other wordst = 1 ort’ = 1.
If H(Qn-1) = v%_;, then from (3.1) we have that vy_1 > pun_o,
which is a contradiction. Hence, H(Qn_1) = |un—1|. Then we have

lun—1] > p?(15)"" /203y > (15e)7 /20y,

SO
UN-—1

2

> (15¢)7"/2.
UN-1

lz(QN-1)| =

Lemma 2.3 implies that

Py (z(Qn-1)) >0 and Ppiq(z(Qn-1)) > 0.

If p =2, then

Yp-1(Qn-1)¥p11(Qn-1) = P1(z(Qn-1)) P3(x(Qn-1)) > 0.
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If p > 2, then p+ 1 and p — 1 are both even, so
Yp1(QN-1)Vp+1(QN-1)
= (2y(QN—1))2 Py (2(Qn=1))Pps1(z(Qn=-1)) >0

Using (2.1) gives that

Yp—1(@n=1)  Yp+1(QNn-1)
Yp(@n-1)2

z(Qn) = 2(Qn-1) — <z(Qn-1)-

Now for any root a of the polynomial 23 + ax + b, we have |a| < 1 +ec.
So
—(I+e¢) <z(Qn) < z(QNn-1).
Furthermore,
2
1+c< (15e)P /% < |z(Qn_1)|-

Hence, |2(Qn)| < |2(Qn—-1)|- On the other hand, from (3.1) we have
H(Qy) > p?H(Qn-1)- It follows that the term vy has a divisor not
dividing vy—1. Thus, we have completed the proof. O

The following proposition about the height is well known, so the proof
may be omitted, see Silverman [13, page 229].

Proposition 3.5. For all P € E(Q) and n € Z,

h(nP) = n*h(P).

Silverman [12] gave an explicit estimate for the difference of the
logarithmic height and the canonical height of points on elliptic curves
in terms of the j-invariant and the discriminant.

Theorem 3.6 [12]. Let E : y?> = 2% + az + b be an elliptic curve
with a,b € Z. Then, for every P € E(Q),

—1h(j) — Lh(A) - 0973

(3.2) E i
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where A = —16(4a® + 27b%) and j = —1728(4a)3/A are the discrimi-
nant of E and the j-invariant of E, respectively.

Now we are ready to prove Theorem 1.1. Set the notations as follows:

(3.3) Kja = £h(j) + 15h(A) 4 0.973,
(3.4) Ljn = 3h(j) + 5h(A) + 4.086

Proof of Theorem 1.1. From Theorem 3.6 we have that

h(p"t'P) — h(p"P) > 2h(p" "' P) — 2h(p"P) — L; A
=2(p* — 1)p**h(P) — Lja.
Now
o~ 2
2(p* — 1)p*N ~*h(P) — L;ja > log(p?(15c)? /?);

therefore, for all integers n > N — 2,
H(p""'P) = p*(15)" /H(p"P).

By Lemma 3.4, it follows that for all integers m > N the term B,m (P)
has a divisor not dividing B« (P) for 0 < k <m — 2. O

Now Lang’s conjecture says that if P € F(Q) is a nontorsion point
then there exists a uniform constant x > 0 independent of F and P, so
that

/h\/(P) > rklog A.

When a or b is zero, Lang’s conjecture is known to be true. If a = 0,
then j = 0 and if b = 0, then 7 = 1728. So if a or b is zero, then the
condition (1.2) in Theorem 1.1 can be replaced by

2(p? — 1)p*N klog A
> 5 10g 1728 + L log A + 4.086 + log (p*(15¢)7/2).

Canceling all the terms with log A, we have that
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2%(p? — Np? N4 > 1/3 + <log(p2(l5c)p2/ 2) 4 5.435) / log A.
We have thus completed the proof of Corollary 1.2. o

Corollary 3.7. Let E : y?> = 23 + ax + b be an elliptic curve with
a,b € Z and ¢ = max{|al,|b|} > 2. Let p be a prime, and assume that
B;(P) =0 mod p. Let N be an integer satisfying

(35)  2(p* — 1)((N —1)logp — K;a) — Ly > log(p*(15¢)P"/?).
Then, for all integers m > N, the term Bpm(P) has a divisor not

dividing Byx(P) for 0 <k <m —2.

Proof. From Proposition 3.3 we have that B, (P) =0 mod p™*! for
all n > 0, and therefore

h(p"P) > log B}.(P) > 2(n + 1) logp.

From Theorem 3.6 we have that, for all n > 0,

~

h(p"P) > 3h(p"P) — Kja > (n+1)logp — Kj a.
Hence,
p2N_4E(P) = TL(pN_QP) > (N —1)logp — KA.

Using Theorem 1.1 yields our corollary. ]

Example 3.8. Let E : y> = 23 + b be an elliptic curve with b € Z
and |b] > 2. Then j = 0 and A = —16 x 27b%. Let p be a prime
with p > max{5,|b|}. Then, after a little computation, we obtain that
N = 3 satisfies (3.5). It follows that if B;(P) =0 mod p then for all
integers m > 3 the term Bym (P) has a divisor not dividing By« (P) for
0<k<m-2.

Our method will guarantee a primitive divisor beyond a certain value,
and we can check all smaller values to find when primitive divisors really
start to occur.
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Example 3.9. The elliptic curve £ : y?> = z® + 3 has rank
one, and E(Q) ~ ((1,2)). Putting P = (1,2), we have that 2P =
(—23/2%,11/25). We substitute p = 2 and ¢ = 3 into (3.5) and find
that N = 11 after a little computation. A direct check gives that
Bym (P) has a primitive divisor for all 1 < m < 11. It follows that
for all m > 2 the term Baw(P) has a divisor not dividing By« (P) for
0<k<m-2.

4. Proof of Theorem 1.3. Consider the diophantine equation
y?> = 23 + b" in the integer variables x, y and n, where b is an
integer with |b| > 2. For the elliptic curve defined by the equation

E:y? =234+ b, we define

Ey(Q) = {(z,y) € E(Q) : b* divides the denominator of z}.

Lemma 4.1. If the curve E : y*> = 2% + b has rank one, then Ey(Q)
s an infinite cyclic group.

Proof. The set E(Q) is simply the intersection of E,.(Q) for all
prime powers p¢ dividing b. Each E,.(Q) is torsion free, so E(Q) is
torsion free. Since FEj,(Q) sits inside Z x F for a finite group F, it
follows that E,(Q) itself is cyclic. O

We can write n = 6m + r with 0 < r < 6. For a given integer r with
0 < r < 6, assume that the curve defined by the equation y* = 3 + b"
has rank one. Applying Corollary 3.7, we will prove Theorem 1.3.

Proof of Theorem 1.3. If E,, : y> = 23 4+ b5"%" has a nontrivial
primitive integral point (s,¢), then E : y?> = 2® + b" has the rational
point of the form (s/b?™,t/b>™) in lowest terms. This theorem can be
restated as saying that for all integers m > v + N the group E(Q) of
rational points on the curve E has no points of the form (s/b%™,¢/b3™)
in lowest terms.

The curve E has rank one, so F(Q) is an infinite cyclic group. Let
Py be a generator for E,(Q). Write z(nPy) = A, /B2 in lowest terms.
Let kg be the least positive value of integers k such that By, = b”. Then,
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from Corollary 3.7, we obtain that Byny, has a divisor not dividing b
for all integers n > N. Hence, for any nontorsion point P € E(Q) if
the denominator of z(P) is divided by »***™) | then it has a divisor
not dividing b. It follows that E,, has no nontrivial primitive integral
points for all integers m > v + N. o

Example 4.2. Let r and b be fixed integers with 0 < r < 6 and
|b| > 12. Consider the diophantine equation E,, : y? = z3 + b5"*" in
the integer variables x,y and m. Assume that the elliptic curve defined
by the equation E : y? = 2% + b" has rank one. If |b| > 12, then N = 4
satisfies that

2(6* — 1)((NV — 1) log |b] — < log |A] — 0.98)
> log (b?[156"|”"/2) + L log |A| 4 4.09,

where A is the discriminant of E. It follows that if the diophantine
equation F, has a primitive integral solution, then the equation FE,,
has no primitive integral solutions for all integers m > v + 4.

Acknowledgments. The author would like to express his gratitude
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due to the referee. Moreover, the referee’s suggestion that the author
should add the more background about primitive divisors strengthened
this paper.

REFERENCES

1. A.S. Bang, Taltheoretiske Undersgelser, Tidsskrift for Math. 5 (1886), 70-80,
130-137.

2. Yu. Bilu, G. Hanrot and P. Voutier (with an appendix by M. Mignotte),
Ezistence of primitive divisors of Lucas and Lehmer numbers, J. reine Angew.
Math. 539 (2001), 75-122.

3. R.D. Carmichael, On the numerical factors of the arithmetic forms o™ + B,
Annals Math. 15 (1913), 30-70.

4. J.W. Cassels, The rational solutions of the Diophantine equation y?> = 3 — D,
Acta. Math. 82 (1950), 243-273.

5. L. K. Durst, Ezceptional real Lehmer sequences, Pacific J. Math. 9 (1959),
437-441.



1352 MINORU YABUTA

6. G. Everest and H. King, Prime powers in elliptic divisibility sequences, Math.
Comp. 74 (2005), 2061-2071.

7. G. Everest, G. Mclaren and T. Ward, Prime divisors of elliptic divisibility
sequences, J. Number Theory 118 (2006), 71-89.

8. P. Ingram, Elliptic divisibility sequences over certain curves, J. Number Theory
123 (2007), 473-486.

9. L.J. Mordell, Diophantine equations, Academic Press, London, 1969.

10. A. Schinzel, Primitive divisors of the expression A™ — B™ in algebraic number
fields, J. reine Angew. Math. 268/269 (1974), 27-33.

11. J.H. Silverman, A quantitative version of Siegel’s theorem: Integral points on
elliptic curves and Catalan curves, J. reine Angew. Math. 378 (1987), 60-100.

12. , The difference between the Weil height and the canonical height on
elliptic curves, Math. Comp. 192 (1990), 723-743.

13. , The arithmetic of elliptic curves, Graduate Texts Math. 106,
Springer-Verlag, New York, 1986.

14. , Wieferich’s criterion and the abc-conjecture, J. Number Theory 30
(1988), 226-237.

15. C.L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Academic
Press, London, 1977.

16. P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Proc.
Cambridge Philos. Soc. 123 (1998), 407—419.

17. M. Ward, The intrinsic divisors of Lehmer numbers, Annals Math. 62 (1955),
230-236.

18.
31-74.

19. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892),
265—284.

, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948),

SENRI HiGH SchHooOL, 17-1, 2 CcHOME, TAKANODAI, SuIlTA, OSAKA, 565-0861,
JAPAN
Email address: yabutam@senri.osaka-c.ed.jp




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


