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THE CONVERGENCE OF
¢-BERNSTEIN POLYNOMIALS (0 <¢<1)
AND LIMIT ¢-BERNSTEIN OPERATORS

IN COMPLEX DOMAINS

SOFIYA OSTROVSKA AND HEPING WANG

ABSTRACT. Due to the fact that the convergence prop-
erties of g-Bernstein polynomials are not similar to those in
the classical case ¢ = 1, their study has become an area of
intensive research with a wide scope of open problems and
unexpected results. The present paper is focused on the con-
vergence of g-Bernstein polynomials, 0 < ¢ < 1, and related
linear operators in complex domains. An analogue of the clas-
sical result on the simultaneous approximation is presented.
The approximation of analytic functions with the help of the
limit g-Bernstein operator is studied.

1. Introduction. After g-Bernstein polynomials were introduced
by Phillips [11] in 1997, these polynomials have been brought to the
spotlight and studied by a number of authors from different perspec-
tives. While, for ¢ = 1, the g-Bernstein polynomials coincide with
classical Bernstein polynomials, for ¢ # 1 we obtain a new class of
polynomials with rather unexpected properties. Reviews of the re-
sults on g-Bernstein polynomials along with arrays of references on
this matter are given in [12, Chapter 7] (results obtained before 2000)
and in [7] (results obtained in 2000-2004). The subject remains under
intensive study, and there are new papers constantly emerging, see,
for example, papers [8, 9, 10, 17, 18] appeared after [7]. A two-
parametric generalization of g-Bernstein polynomials and a version of
the Bernstein-Durrmeyer operator related to ¢g-Bernstein polynomials
have been considered in [2, 4], respectively.
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For the sequel we need the following definitions, see [12, Chapter 8,
subsection 8.1].

Let ¢ > 0. For any nonnegative integer k, the g-integer [k], is defined
by
klg:=1+qg+---+¢" 1 (k=1,2,...), [0],:=0;

and the g-factorial [k],! by

by

We use the following standard notation, cf., e.g., [1, Chapter 10,
subsection 10.2]:

k—1 [e'S)
(z@0:=1 (z0k:=][[0-2¢); (50):=]]1 - 2¢)
7=0 7=0

Definition 1.1 ([11]). Let f : [0,1] — C. The g-Bernstein
polynomials of f are:

n

(L) Bug(fi2)=3 f(%

>pnk(q’z)’ n:1727'-'7
k=0 q

where

12 pules)= [f] FEdesn k=01
q

When g = 1, we recover the classical Bernstein polynomials:

Baa(fi2) = Balfi2) = ;f(g) (F)a-ar-
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It has been shown by Phillips et al. that the ¢-Bernstein polynomials
take after some of the properties of the classical Bernstein polynomials,
cf. [12, Chapter 7]. Among those properties taken after are the end-
point interpolation property, the shape-preserving properties in the case
0 < g < 1, and the representation via g-differences. Like the classical
Bernstein polynomials, the g-Bernstein polynomials reproduce linear
functions and are degree reducing on the set of polynomials, that is,
if T' is a polynomial of degree m, then B, 4(T’;z) is a polynomial of
degree at most min{m, n}.

On the other hand, the examination of the convergence properties of
the g-Bernstein polynomials reveals that these properties are essentially
different from those of the classical ones. What is more, the cases
0 < g <1and g>1 are not similar to each other. The approximation
by ¢-Bernstein polynomials was first considered in [11] and later on
in [3, 5, 8 14, 16, 17, 19]. Mostly, these papers deal with the
case 0 < g < 1, when g¢-Bernstein polynomials are positive linear
operators on C[0,1]. It should be emphasized that, although in the
case 0 < ¢ < 1, g-Bernstein polynomials are positive linear operators,
they do not satisfy the conditions of Korovkin’s theorem, because

z(1—z)

il — 2%+ (1 — q)z(1 — z) # 22,

Bn’q(tQ; z) = 22+
n — 0o.

However, they satisfy the conditions of Wang’s Korovkin type theorem
([16, Theorem 2]) and may be regarded as an exemplary model for
this theorem. Wang’s theorem guarantees the existence of the limit
operator By, 4 for the sequence {B,, 4}, which, contrary to the situation
in the classical case, is not the identity operator. An explicit form of
By o(f;z) for x € [0,1] has been found in [3], see Theorem A below.
The approximation by means of B 4 and various properties of this
operator have been studied in [3, 6, 9, 14, 15, 17, 19]. In [18], Wang
observed that the same operator arises as the limit for a sequence of
g-Meyer-Konig and Zeller operators.

This paper focuses on some problems of the approximation with g¢-
Bernstein polynomials and the limit g-Bernstein operator in complex
domains. From here on, we assume that ¢ € (0,1) is fixed. The
following theorem on the convergence of g-Bernstein polynomials in
this case has been proved in [3].
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Theorem A ([3]). Given 0 < ¢ < 1, f € C[0,1]. The se-
quence {By, o(f;x)} converges uniformly on [0,1] to the limit function
Boo o(f; ), where

13 Buglfio):={
and

(1.4) Pook(q; 2) 1=

Sreo (1= ¢")pock(g;z) ifz €[0,1),

Zk:
(#:¢)00s k=0,1,2,....
(' )k

’

We note that
(1.5) Pook(g32) = lim prr(g; 2),

with ppir(z) given by (1.2), and the convergence being uniform on any
compact set in C. Clearly, each poor(2) is an entire function.

Definition 1.2. Let 0 < ¢ < 1. The linear operator on C|0, 1] given
by
Boo g f > Boog(f3-)

is called the limit q-Bernstein operator.

Theorem A shows that this operator comes out naturally as we
consider the limit of the g-Bernstein polynomials in the case 0 < ¢ < 1.

Since, for f € C[0,1], the sequence {f(1 — ¢*)/(q;q)x} is bounded,
it follows that By, 4(f;*) admits an analytic continuation from [0, 1]
into the open unit disc {z : |z| < 1}. In general, Bo ¢(f; %) may not
admit an analytic continuation into a disc {z : [2| < r} with » > 1. The
possibility of an analytic continuation for Be, 4(f; ) has been studied
in [6, 9]. Whenever By, 4(f; ) admits an analytic continuation into a
domain Q C C, we denote a continued function by Bo, ¢(f;2), 2z € Q.
It should be pointed out that representation (1.3) may not be true for
a continued function if z ¢ [0, 1].

It has been proved in [3] that, for any f € C][0,1], we have:
By o(f;2) — f(z) uniformly on [0,1] as ¢ — 17. The generaliza-
tions of this assertion have been obtained by Videnskii in [14, 15]. His
results imply, in particular, that for f € C2[0,1],

(1.6) |Boo q(f32) = f(@)] < C(1 —gq) forz €0,1].
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In this paper, we consider extensions of both Theorem A and estimate
(1.6) to complex domains. As our main results, we obtain an analogue
of the classical result on the simultaneous approximation for the Bern-
stein polynomials and study the approximation of analytic functions
with the help of By, (f; 2).

2. Statement of results. In the sequel, for » > 0, we denote
D(r) :=={z: |z| < r} and D(r) := {2z : |z| < r}. By [z]* we denote
the greatest integer strictly less than xz. For K C C, the expression
gn(2) 2 g(2), n = 00, z € K means uniform convergence as n — oo
for z € K, and similarly, By 4(f;2) = f(2), ¢ = 17, z € K means
uniform convergence as ¢ — 1~ for z € K.

For m € Z;, a € [0,1], 8 > 0 and f € C[0,1], we write f €
Lip (m; o; B) if f possesses m derivatives in a left neighborhood of 1
and, in addition, f(™) satisfies the condition:

F () = fr (1) < M(1—2)*(n(1/(1 - 2))) 7

for some M > 0.

(2.1)

We take C]0,1] = Lip (0;0;0). Clearly, Lip (m;«;0) denotes the set
of continuous functions whose mth derivative satisfies the Lipschitz
condition of order a at 1:

(2.2) Fm () — ™M) < M1 —2)®  for some M > 0.

Obviously, Lip (m; a; 8) C Lip (m; a;0) for all 3 > 0 and C™*1[0,1] C
Lip (m;1;0) C Lip (m; a;0) for all o € [0,1].

It has been proved in [6] that if f € Lip(m;a;0), then By 4(f; )
admits an analytic continuation from [0, 1] into the disc D(g~(m*®)),
This result is sharp, that is, in general, By 4(f;z) does not admit
an analytic continuation into a wider disc. Apart from that, if f €
Lip (m;a; 8) and 8 > 1, then By, 4(f; 2) possesses [ — 1]* continuous
derivatives in D(q—(m+)). These results have been developed in [10],
where it has been shown that f € Lip (m; «; 0) implies

Bng(f;2) 3 B g(f;2), n—oo, z€K

for any compact set K C D(q~(m+2),
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Our first theorem provides an analogue of the well-known result on
simultaneous approximation by the Bernstein polynomials.

Theorem 2.1. Given 0 < q <
0

1, «a € 0,1, 8 >1and f €
Lip (m; o; 8), we have for each j = 0,1

B 1)

BY)(f;2)3BY),(f;2), n— o0, z€ D(g-(mta).

)

Corollary 2.2. Let g € (0,1). If a continuous function f on [0,1]
is infinitely differentiable (from the left) at 1, then for any compact set
K c C, we have

Bg{?l(f;z):;Bg?q(f;z), n—oo, ze€K, j=0,1,....

The theorems below are related to the approximation of analytic
functions with the help of B 4(f;2).

Theorem 2.3. Let f € C[0,1] admit an analytic continuation from
[0,1] into {z: |z — 1| <1+e}. Then, for any compact set K C D(g),

Beo(f;2) 3 f(2), ¢—17, z2€K.

Corollary 2.4. If f is an entire function, then, for any compact set
K CC,
Boog(f;2)3f(2), ¢—17, z€K.

Finally, we provide an estimate for the rate of approximation for
functions analytic in D(r), r > 1.

Theorem 2.5. Let f(z) be analytic in a closed disk D(r) with r > 1.
Then, for z € D(r), we have:

[Boo,q(f52) = f(2)] < Cpr(1— q).
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Remark 2.1. Clearly, Corollary 2.4 can be derived from Theorem 2.5
as well. Moreover, we obtain that the order of approximation for
analytic functions equals (1 — ¢). Using the growth estimates for f,
we can estimate Cy, for 7 > 1, see Remark 3.2.

3. Proofs of the theorems. We start with the following assertion.

Lemma 3.1. For any R > 0 and each j = 0,1,..., there exists a
constant C; 4(R) independent of n and k such that, for |z| < R, the
following estimates hold:

(3.1)

p(a52) < Cra(MRH,  [p9)(a:2)| < Cia(R)RMI.

oo

Proof. We set

Un(q;2) == (2@)n,  ¥(2) = (2;¢)o0-

Clearly, 1¥,,(g; z) converges to 1(g; z) uniformly and absolutely on any
compact set K C C and consequently (see, e.g., [13, Chapter II,
subsection 2.8.1]):

(3.2) v (q;2) 399 (g;2), n— o0, zeK foreachj=0,1,....

It follows from (3.2) that, for each j = 0,1, ..., the functions ¢7(lj)(q; 2),
n=12,... and 9U )(q; z) are uniformly bounded on any compact set
K C C. Hence, for any R > 0 and each j = 0,1,..., there exists a
constant ¢; 4(R) independent of n so that for |z| < R,

U(@:2)] S cu(B) [99(:2)] < esalR).

Then, for |z| < R,
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J .
p2aa)| < [ 1] 3 (9 )10 1)
q
< 1/ 4 q ch,q ( >Rk ]+lk] l
k1.j j .
< R k ch,q ( >Rl 7= Cj4(R)RFII.

Similarly, we can prove the second inequality in (3.1). O

Remark 3.1. For j = 0, we may take

(—R; @)oo

Coq(R) == (¢;0)o0

Proof of Theorem 2.1. Suppose that f € Lip (m;a;8). Then we have
by Taylor’s formula

@) 1)
>

=0

:c—l) + rm(2) = T () + rin(2),

where T,,,(z) is a polynomial of degree at most m, and the remainder
rm(x) is estimated by:

3.3)  |rm(z) <M1 —2)" (n(1/(1-2)"", zel0,1].

Obviously, Bu ¢(f;2) = Boo,q(Tim; 2) + Boo,g(Tm;2). Since B, , are
degree-reducing and T, is a polynomial of degree at most m, Theo-
rem A implies that Bo ¢(Tm;) is a polynomial of degree at most m
and By, ¢(Tm; 2) = Boo,q(Tm; 2), n — oo on any compact set K C C.
It suffices, therefore, to prove that

Br(z 21(7'm; z) :ch(aZ)),q("'m; z), n— oo,
D(g=(mte)) 5 =0,1,...,[8 —1]*.
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First, we note that

2 T 1 — q
BOO,q(Tma Z q o0 Z k
(3.4) N =0
jg: (1 = ¢")pock(g; 2) for 2 € D(g—(m+a)),
k=0

This is because, by virtue of estimate (3.3), the series on the right-

hand side of (3.4) converges absolutely and uniformly in D(g—(m+e)),
Moreover, estimate (3.1) implies that the series may be differentiated
[B — 1]* times term by term.

Now, given ¢ > 0, we choose Ny so that

M (In(1/q)) "’ C; i k=P <e/3 forj=0,1,...,[8 -1,

k=No

where M is as in (3.3) and C; := Cj ,(¢~(™*+)) are given by Lemma 3.1.
For n > Ny and z € D(q—(m*2)) we have

Aj:=|BY 31(7“m‘ 2) = B, (rm; 2)|

n

Zrm n]o)p (a2 Zrm (1 - ¢")p) (g 2)
k=0
7“m )P (a3 2) = rn (1 — 4F)pL (a5 )‘
+ Z o ([Kla/[la) | 1P (a: 2)
k=Np+1
+ Y = )| ()
k=Nop+1
= I1+Ig+]3.

Using (1.5) and the fact that r,,([k]4/[n]q) = rm(1 — ¢*) as n — oo,
we conclude that I; < £/3 for n sufficiently large.
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To estimate I, we notice that by (3.3),

\”m (%)SW —%)"”“(m%)ﬁ

< M (In(1/q)) " gFmro g7,

Applying Lemma 3.1 with R = ¢~ (") we obtain for z € D(g—(m+e)):

n

L= Y |r(kla/Inl)| 195 (g 2)

k=Np+1

<M(n(1/g)~7C; D WP <e/s.
k=No+1

Similarly, (3.3) implies that
|rm(1— ") < M (In(1/g)) ™7 g*mHe) k¢

and

I <M(n(l/9) PC; Y WP <e/s.
k=Nop+1

Thus, A <e. u]

Proof of Theorem 2.3. From Theorem 5 of [6] we know that Bu 4(f; 2)
is an entire function represented by

[e'S) (k) k—1

#Zf’ Z k' Hl_qz

k=0 §j=0

Then, for any compact set K C D(e), we choose p, v in such a way

that 0 < p < v < e, K C D(p). Using the Cauchy estimates for the
derivatives f(¥)(1), we get

k) _Mk! ~ mex
PRI G M= e (£
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If z € K, q € (0,1), then |2| < p <y and [[}Z |1 — ¢/z| < (1+p)*, so

=1 Mk! 1+ _
Boog(f;2)| <> ———(1+ M
BoealFi2) <3 Gy e 42 —, <

Hence, Boo 4(f; #) is uniformly bounded for g € (0, 1) in the disk D(p).
Besides
BOO:‘Z(f’m):;f(x)ﬂ CEE[O,].], q_>17-

The statement now follows from the Vitali theorem, cf. e.g., [13,
Chapter 5, subsection 5.2]. O

Proof of Theorem 2.5. Let

f2)=) ez, |zl <7
k=0
Then
(3.5) Boo,q(f; z) = chBoo,q(tk; z), |z <
k=0

Indeed, by Lemma 3 of [5],
k .
th:2) = Zajz’,
j=1

where 0 < o; <1, E?:I aj=1and o = qk(k—l)/2_

Therefore,
|Boo,q(tk§z)| < \Z|k for |z| > 1.

The latter estimate implies that the series in (3.5) converges absolutely
and uniformly in D(r) and therefore represents By, (f;2).

Now, consider for z € D(r), the difference:

o0
|Boo,q(f;2) Z|Ck| ooqtL z)_zk|
k=0
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For |z| > 1, we have:

k—1
| Boo,q(t552) = 28| < (1= an)l2l* + ) ajlo < 2(1 = ap)2*
j=1

=2(1- " V2) |2 < (1— )k — D)J2I"

Hence, for z € D(r), we obtain:

|Boog(£i2) = f(2)| < (1 =)D lewlk(k — 1)r* := Cy,(1—q). O

k=2

Remark 3.2. We can find an estimate for C, using M(R; f), R > r,

where f is analytic in D(R) and M (R; f) := max|,—g |f(z)|. Indeed,
by the Cauchy estimates,

lex| <

and we obtain:

Oy < M(RD)S K(E - 1) (%)k = M(R; f)(%)z : %

k=2

If f is entire, then we obtain the following estimate: for any r > 1,
we have

|Boo,g(f52) — f(2)] < 4M(2r; f)(1 —q), |2] <7
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