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K-HOMOLOGY CLASSES OF DIRAC OPERATORS
ON SMOOTH SUBSETS OF SINGULAR SPACES

PETER HASKELL AND CHARLOTTE WAHL

ABSTRACT. We identify conditions under which Dirac
operators, constructed using different metrics on a smooth
dense submanifold M of a compact singular space X, represent
the same class in the K-homology of X. This result clarifies
the sense in which the invariants defined by Dirac operators
can be regarded as intrinsic to X.

1. Introduction. Elliptic differential operators on smooth closed
manifolds represent many of the geometric and topological invariants of
those manifolds. Analytic manifestations of topological and geometric
invariants of a singular space can sometimes be found among elliptic
differential operators on a smooth dense submanifold of the singular
space. The isomorphism, which holds in many interesting cases [5,
8], between the L? de Rham cohomology of the dense submanifold and
the intersection cohomology of the singular space, is one important and
interesting example of this relationship between analysis and topology.
This isomorphism suggests an approach to Hodge theory on singular
algebraic varieties, in part through its relation to the associated L2
Dolbeault cohomology, see e.g., [19]. The references in [13] list selected
papers by many of the researchers who have worked on these aspects
of de Rham and Dolbeault cohomology.

In situations where there is no known topological analogue, such as
intersection cohomology, it is less obvious which analytically defined in-
variants should be regarded as intrinsic to the singular spaces on whose
dense submanifolds they are represented. For example, spin Dirac op-
erators often define invariants without previously known singular-space
counterparts. The operators most likely to provide intrinsic invariants
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are those that represent classes in the K-homology of the singular space.
Because the dense submanifold is noncompact, it is not always the case
that an elliptic differential operator on the submanifold represents a
class in the K-homology of the space. When an operator does repre-
sent such a class, the class may depend on the metric used to define
the operator. In this paper, after recalling many examples of operators
that represent classes in the K-homology of singular spaces, we identify
conditions under which the classes represented by spin Dirac operators
are independent of the metrics used to define the operators.

2. Analytic cycles for K-homology. Throughout this paper we
let X denote a metrizable compact singular space with open dense
submanifold M. Let Y denote X \ M. In this section we discuss a
representative sample of the ways in which a Dirac operator (in the
sense of [17]) D on M can represent or fail to represent a class in
the K-homology of X. In discussing K-homology, we rely on the
KK theory for algebras of continuous functions both because Dirac
operators naturally define KK cycles and because KK, (Cy(M),C),
the KK theory of the algebra of continuous functions, vanishing at
infinity, on M is probably the clearest, most efficient notation for the
groups we associate to the noncompact manifold M. Because there is
only one notion of the K-homology for a compact metrizable space, we
will often use the short notation K, (X), respectively K,(Y), for the
groups KK, (C(X), C), respectively KK, (C(Y), C).

Definition 2.1. (See [16], the original source, or [4].) For A, a
C*-algebra of continuous functions, a KK (A, C) cycle consists of a
Hilbert space H, a C*-representation f — my of A in the C*-algebra
of bounded operators on H and a bounded operator T on H satisfying
the following conditions for every f € A.

(1) [T, my] is compact.
(2) (T% — 1) omy is compact.
(3) (T — T*) omy is compact.

When H is ungraded, the cycle is a KK; cycle. When H is Z/2-
graded, T must be of degree one, and the cycle is a KK cycle. The
KK groups can be defined in much more generality, but we do not
need that generality. In particular, we have chosen the notation my for
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the representation to emphasize that our Hilbert spaces will always be
spaces of L? sections of vector bundles and our algebras of continuous
functions will always act by pointwise multiplication on these sections.
When this representation is clear from the context, we use the notation
(H,T) for the KK cycle.

The passage from a Dirac operator D to a KK cycle often follows
the path described in more generality in [2].

Definition 2.2 [2]. A closed, densely defined operator D on H is
called regular if it satisfies the following two conditions.

(1) The domain of D* is dense in H.
(2) The operator 1 + D*D has image dense in H.

Theorem 2.3. (See [2], the original source, or [4].) Suppose that
the algebra A of continuous functions acts on the Hilbert space H as
described above and that the regular operator D on H satisfies the
following three conditions.

(1) D = D*.
(2) For each f € A, ms o (1+ D?)~! is compact.

(3) A contains a dense subset of elements f for which [D,my] extends
to define a bounded operator on H.

Then (H,D o (1 + D?)~1/2) defines a KK,(A, C) cycle, which we will
usually denote (H, D).

The short exact sequence of C*-algebras
0— Co(M)— C(X)—C(Y)—0

induces a six-term exact sequence in K-homology. (K-homology is
periodic with period two.) Of particular interest to us are the pieces

fori =0and i =1. The map KK;(C(X),C) —» KK;(Co(M), C) is in-
duced by the inclusion of Cyp(M) in C'(X). The map KK;(Co(M),C) —
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KK; 1(C(Y),C) is the connecting morphism (or boundary map) 0 in
K-homology.

Let D be a Dirac operator on M. D acts on sections of a vector
bundle E. (In the graded case E decomposes as Fy @ Eq, and D
maps sections of each summand to sections of the other summand.)
At the least D is defined on smooth compactly supported sections.
In choosing a Riemannian metric on M and a Hermitian structure on
E, we define Hilbert spaces of sections L?(E) on which Cy(M) acts
by pointwise multiplication. Let D denote a closed extension of D’s
restriction to smooth compactly supported sections. As proven in [3],
(L?(E), D(14+D*D)~'/?) represents a class, which we will denote [D]yz,
in KK,(Cy(M),C).

Theorem 2.4. (See [3, 15].) The class [D]nr is independent of the
metric and Hermitian structure used in its definition. If the restriction
of D to smooth compactly supported sections has more than one closed
extension, [D]ys is independent of the extension chosen.

In asking whether D represents a class in the K-homology of X, we
are asking whether constructions like those above, but with f € C(X)
acting by pointwise multiplication by its restriction to M, define a cycle
for KK,(C(X), C). Because C'(X) is unital, the Baaj-Julg [2] approach
to using D to define a cycle for KK,(C(X), C) requires that D be self-
adjoint with compact (1+ D?)~1. Also, when Y is bigger than a union
of isolated points, the requirement that [D,my] be compact may be
satisfied for f in a dense subset of Co(M) without necessarily being
satisfied for f in a dense subset of C(X).

The combination of Theorem 2.4 and the K-homology exact sequence
can be used to identify pairs M C X for which there is no hope that
a Dirac operator on M will define a class in K, (X). We will call this
observation a proposition merely to draw attention to it.

Proposition 2.5. Let D be a Dirac operator acting on sections of
the vector bundle E over M. Suppose that there is a metric on M and
Hermitian structure on E for which the construction of [D]as yields
a class whose image O([D]p) is nonzero in KK;_1(C(Y),C). Then
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there is mo choice of metric and Hermitian structure in which D
represents a cycle for KK;(C(X),C).

Proof. The class [D]y is independent of the metric and Hermitian
structure used in its construction. If [D]y; were the image of a class in
K;(X), it would be in the kernel of 9. O

One consequence of the preceding proposition is that if the topological
space X can be given the structure of a smooth compact manifold with
boundary, and if M is the interior of X, then a spin Dirac, spin® Dirac,
or signature operator D on M fails to define a class in K, (X) because
the image of [D]y in K._1(0X) is the nonzero class represented by
the analogous operator on X [3]. Another consequence is due to [18].
Let X admit the structure of an odd-dimensional spin manifold M
with isolated conical singularities Y = {y1,... ,yn}. Let D be the spin
Dirac operator on M. Ky(Y) is a direct sum of copies of Z, with one
summand for each point in Y, d([D]pr) = (k1,... ,kn) € Ko(Y'), where
k; is the index of the spin Dirac operator on the cross-section of the cone
associated with y;. Hence, if any of these indices is nonzero, D does not
define a class in K(X). As is emphasized in [18], this phenomenon is
directly related to the absence of a locally defined self-adjoint extension
of D.

Not all of the results associated with incomplete metrics on M are
negative. Let X be a complex projective algebraic variety with singular
locus Y, and let 7: X — X be a desingularization of X. The Dolbeault
operator (or any Dirac operator on X) defines a class in Ky(X) whose
image under 7,: Ko(X) — Ko(X) maps to the class of the analogous
operator on M. If X has isolated conical singularities and M is even-
dimensional, then choices of closed signature, de Rham and, in the case
of spin M, spin Dirac operators, define classes in Ky(X). The anal-
ysis underlying this assertion appears in [6, 7, 10]. Functions that
are smooth on M and constant on some neighborhood of each singular
point of X provide a dense subset of C'(X) whose commutators with the
geometric differential operators are bounded. Similarly, [6, 7, 11] show
that if X is a piecewise linear even-dimensional pseudomanifold with
M, the complement of its codimension-two skeleton, assigned a piece-
wise flat metric, then geometric differential operators as above define
classes in Ko(X). The dense subset of C'(X) with which the opera-
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tors have bounded commutators is the collection of functions that are
locally constant in directions normal to skeleta. Under conditions iden-
tified by [6, 7, 10, 11] that guarantee self-adjointness of the geometric
differential operators, the same results hold for odd-dimensional M.

The preceding paragraph fails to give sufficient emphasis to one
subtlety. For a given incomplete metric of the type described above,
there can be more than one closed extension of a Dirac operator’s
restriction to smooth vector-bundle sections compactly supported on
M. The different extensions can have different indices and so they can
define different classes in Ko(X). For details see, e.g., [10, 11].

The above subtlety is not an issue when the metric on M is com-
plete. On complete M a Dirac operator is essentially self-adjoint [9].
Henceforth, we focus on spin Dirac operators D and on complete spin
manifolds M. A natural condition implying that a spin Dirac operator
D is a KK cycle is the condition that M have properly positive scalar
curvature.

Definition 2.6. The manifold M with scalar curvature « is said to
have properly positive scalar curvature if, for every real K, there is a
compact subset of M off of which k > K.

Proposition 2.7. If the complete spin manifold M has properly
positive scalar curvature, then, for the spin Dirac operator D, (1 +
D?)~! is compact.

Proof. As noted, e.g., in [17], the Bochner-Lichnerowicz formula
states that D? = V*V + k/4. The proof of the proposition appears
many places, including in [20] and, in a slightly different context, in
[12]. o

Manifolds with ends that are warped products or multiply warped
products provide a variety of examples of complete manifolds with
properly positive scalar curvature. Let P be a closed manifold with
Riemannian metric gp and positive scalar curvature xKp, and let M be
formed by using the identity on P to attach to a compact manifold
with boundary P a cylinder [0,00) x P. Letting r denote the variable
parametrizing [0, 00), assign M to be a Riemannian metric that, for
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r greater than some large enough R, takes the form dr @ dr + r**gp,
where k£ < 0. This metric makes the end [R,00) x P what is called a
warped product. By a calculation that can be found in [10], if P is m-
dimensional, a warped product [R, o) x P with metric dr@dr+f2(r)-gp
has scalar curvature

k= —m(m—=1)-(f'(r)/f(r)* = 2m- f"(r)/ f(r) + f2(r) - kP

k 2k

In our case, with f(r) =7%, k ~ r~%* - kp. Under our assumptions, M
has a properly positive scalar curvature.

Ends that are multiply warped products arise from a similar con-
struction. Let N also be a closed manifold, assign the product P x N a
Riemannian metric gp + gy, and assign the product [0,00) X P x N the
Riemannian metric dr ® dr +72*gp +r2¢gy. Again, by the calculations
n [10], if P has positive scalar curvature and if k¥ < 0, P contributes
to the scalar curvature of M a term asymptotic to r—?*kp. If ¢ > k,
this term dominates the scalar curvature of M as r — co.

Among the compactifications X of manifolds M with ends as dis-
cussed above are the one point compactification and the compactifica-
tion as a manifold with boundary. In the multiply warped case, the
latter compactification makes X a manifold M with boundary P x N.
If we apply the projection P x N — N, respectively P x N — P, to the
boundary, the resulting quotient is a compactification X, respectively
Xp, in which Xy \ M = N, respectively Xp \ M = P.

In all of these examples, if X is the one-point compactification of
M, then C(X) admits a dense subset of functions f, each of which is
smooth on M and constant off some compact subset of M, and each of
which has bounded df. Similarly, even if £ < 0, if ¢ > 0, then C(Xy)
admits a dense subset of functions whose restrictions to M are smooth
with bounded df. These functions take values that, eventually in r, are
independent of the [0, 00) and P coordinates.

Theorem 2.8. Let the spin manifold M be an open dense subset
of a metrizable compact singular space X. Assume that M has a
complete metric with properly positive scalar curvature. Assume that
C(X) contains a dense subset of functions f satisfying: each function
f’s restriction to M 1is smooth with bounded df. Let D be the spin
Dirac operator acting on sections of the spinor bundle S over M. Then
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(L2%(S), D) defines a cycle representing a class in K;(X), where i is (the
parity of) the dimension of M.

Proof. This result is a consequence of Proposition 2.7 and Theo-
rem 2.3. O

Although a complete Riemannian metric on M does not extend to
give X the structure of a metric space, the use of complete metrics
in this context is common. A complete metric has the advantage
that Dirac operators are essentially self-adjoint. Also, although it
is not our focus here, it is worth noting that invariant metrics on
symmetric spaces define complete metrics on locally symmetric spaces.
The various compactifications of locally symmetric spaces provide,
by analogy, some motivation for looking at compactifications whose
algebras of continuous functions do not admit dense subsets of functions
with bounded exterior derivatives on M.

Theorem 2.9. Let the spin manifold M be an open dense subset of a
metrizable compact singular space X. Assume that M has a complete
metric with properly positive scalar curvature k. Assume that C(X)
contains a dense subset of functions f satisfying: each function f’s
restriction to M is smooth with the pointwise norm of df bounded above,
off some compact subset of M, by some constant multiple of k'/*. Let
D be the spin Dirac operator acting on sections of the spinor bundle
S over M. Then (L*(S),D) defines a cycle representing a class in
K;(X), where i is (the parity of) the dimension of M.

Proof. Because we are not assuming condition (3) of Theorem 2.3,
we need a slightly different proof of condition (1) of Definition 2.1. The
reasoning underlying the proof appears, in a slightly different context,
in [12]. We will recall details in the next section when we prove that the
next section’s construction defines a homotopy in the sense appropriate
for KK theory. ]

Manifolds with ends that are multiply warped products provide
examples to which this theorem applies. In our previous notation,
C(Xn) contains a dense subset of functions f for which the pointwise
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norm of df has behavior ~ r=¢. If k < 0 and ¢ > k/2, the hypotheses
of the theorem are satisfied. On the other hand, note that if the Dirac
operator on N has nonzero index, the Dirac operator on M cannot
represent a class in K,(Xp) because 9([D]yr) is a nonzero multiple
of the nonzero class in K,_1(P) represented by the Dirac operator on
P. The negative results notwithstanding, we have seen that there are
often many metrics on M for which Dirac operators on M represent
classes in K,(X). The next section identifies conditions under which
the K, (X) class represented in this way is independent of the metric
used in the construction of its representative.

3. The homotopy. If X is a compact metrizable singular space with
an open dense submanifold M, we have seen that a Dirac operator on
M can represent a K-homology class for X. The construction of the
K-homology cycle depends on the choice of a Riemannian metric on
M. The significance of the construction as a source of invariants for
X depends in part on having the K-homology class be independent
of the metric used in the construction of the cycle. In this section
we identify, for spin Dirac operators and for complete Riemannian
metrics with properly positive scalar curvature, some conditions that
imply such independence. Our approach is based on using the Baaj-
Julg [2] (or unbounded Kasparov bimodule) approach to constructing a
K K-theoretic homotopy between the representatives constructed using
different metrics.

Throughout this section M is a spin submanifold of the singular
space X, and the Dirac operators are spin Dirac operators. On M,
let go and g; be complete Riemannian metrics with properly positive
scalar curvatures, ko and 1, and assume that the associated spin Dirac
operators Dy and D1, acting on sections of the spinor bundle S, define
cycles for K, (X) for the reasons given in Theorems 2.8 or 2.9.

Suppose that {(a¢, 5 =1 —a;):t € (0,1]} and {(¢¢, e =1 — )t €
(0,1]} are smooth families of C'°° partitions of unity on M, with
[Dy, o] (and hence [Dy,S;]) bounded, independent of ¢, as operators
on L3(S), the Hilbert space of spinors that are L? with respect to the
metric go, and with [Dy, [Dy, o¢]] (and hence [Dy, [Dy, ¢]]) bounded,
independent of ¢, as operators from the domain of Dy to L3(S). (Here
we use the notation for a function to denote the operator of pointwise
multiplication by the function.) Suppose further that {vy : ¢ € (0,1]}
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is a smooth family of C'"*° functions on M satisfying: for all z € M
and for all ¢, 0 < v (x) < 1; for each ¢, 7 is identically 1 on some
neighborhood of the support of ay; for each ¢ the support of +; has
empty intersection with the support of ¢;; and the commutators of
~v¢ and Dy satisfy uniform bounds of the type described above for «;.
Suppose that associated with {(o4,8:)} and {(¢¢,¢1)} is a family of
triples of compact subsets of M, {(B, Ct, E;)}, for which:

(1) for each ¢, B; is contained in the interior of C; and C is contained
in the interior of Ey;

(2) as t — 0, By exhausts M,

(3) the exhaustion is monotone in the sense that, for t > s, B, C B,
and the analogous monotonicity holds for the sets C; and the sets Ej;
and

(4) for each t, the support of «; is contained in the interior of C;, the
support of §; is contained in the complement of B;, the support of ¢,
is contained in the interior of E; and the support of ¥, is contained in
the complement of C;.

Finally suppose that {I'; : t € (0,1]} is a smooth family of C'*°
functions on M satisfying: for all x € M and for all ¢, 0 < I';(z) < 1;
for each ¢, I'; is identically 1 on some neighborhood of the support of
By; for each t the support of I'; has empty intersection with By; and the
commutators of I'y and Dy satisfy uniform bounds of the type described
above for ;.

For t € (0,1], we let g: = ¢¢ - go + ¥1 - g1 define a family of metrics
on M. (At this point it is convenient for the notation to assume that
go = g1 on Ey. This possible compactly supported change of metric has
no effect on later reasoning.) We assume that, off some compact set,
the scalar curvature x; associated with g; is uniformly bounded below
by some positive constant multiple of the minimum of kg and ;. We
assume that the L? norms, with respect to the metrics g; of sections w
of the spinor bundle S are uniformly bounded below by some positive
constant multiple of the L? norm of w with respect to the metric go.
(Here and throughout this section we assume that the Hermitian metric
on the spinor bundles is independent of ¢.)
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Remark 3.1. We express our assumptions in terms of the hypotheses
that are essential to our reasoning, but manifolds with ends that are
warped or multiply warped products provide examples in which all of
these hypotheses follow from a few natural choices. In manifolds with
such ends, By, Cy, Ey, ag, B, V¢, L't, ¢¢ and ¥ can be chosen to depend
only on r, with B; corresponding to r < 1/t, C; corresponding to
r < (1/t) + 1, and E; corresponding to r < (1/t) + 2, for example.

To use the preceding choices to show that (L2(S), Do) and (L%(S), Dy),
the cycles defined using the metrics go and g1, represent the same class
in K.(X), we construct a homotopy between the cycles, i.e., we con-
struct a cycle for KK, (C(X),C(]0,1])) whose “evaluations” at end-
points 0 and 1 give (LZ(S), Do) and (L3(S), D1). The definition of such
cycles is analogous to the definition of the cycles for KK, (C(X),C)
except that the Hilbert space is replaced by a Hilbert C*-module whose
inner product takes values in the C*-algebra C([0,1]). For details see,

e.g., [4].

The construction of the homotopy proceeds as follows. Let S denote
m*(S), where 7 is the projection M x (0,1] — M. Begin with the
collection &€ of smooth sections w of S that satisfy:

(1) for each ¢ € (0, 1], the restriction w; of w to M x {t} is compactly
supported;

(2) for each w there is a positive ¢y such that, for ¢ < tg, the support
of wy is contained in Cy; and

(3) as t — 0, w; converges in L2(S). (Note that, by condition 2, the
L3(S) and LZ(S) norms of w; agree eventually as ¢ — 0.)

The L?(S) inner products associated with the metrics g; on M define
a C((0,1])-valued inner product. Conditions 2 and 3 above permit us
to use limits as ¢ — 0 to extend the sections to ¢ = 0. The inner
product extends also to take values in C([0,1]). Let H denote the
completion of £ to a Hilbert C*-module over C([0,1]). Note that a
straightforward calculation shows that we get the same result if we
start with a collection & for which condition (2) is replaced by the
statement: for each w there is a positive ty such that, for ¢ < to, wy is
independent of ¢.
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The concept of homotopy in K K-theory depends on the notion of
evaluation of a Hilbert C([0,1])-module H at each of its endpoints.
For example, evaluation at 0 is defined by letting C([0,1]) act on C
by the formula f- A = f(0)\ and then forming the tensor product
H ®c¢(0,1) C. For details, see [4]. Intuitively this process forms what
could be called a quotient in a sense appropriate to Hilbert C*-modules
of H by the elements of H whose inner products with themselves take
the value zero at 0.

Lemma 3.2. Each 7 € (0,1] has a neighborhood N, over which the
identity map defines a quasi-isometry (with respect to sup norms on
bounded continuous functions on N;) between the restriction of H to
N, and the Hilbert C*-module of bounded continuous functions on N,
with values in L2(S). The evaluation of H at T = 0, respectively T = 1,
gives L2(S), respectively L3(S).

Proof. The assertion about 7 € (0,1] follows from estimates based
on the continuity of g; and the observation that each 7 € (0,1] has a
neighborhood over which the g;’s agree off some compact subset of M.
The assertions about evaluation follow directly from the construction
of H. In particular, the assertion for 7 = 0 is a consequence of our
assumption about the relationship between the L?(S) norms and the
L3(S) norm, our definition of £, and our construction of H from £. O

Let D denote the operator on & defined by D(w) = Dy(w;). D is
defined only on those sections w for which, as t — 0, D;(w;) converges
in LZ(S). Let D denote the operator-norm closure of D as an operator
on the Hilbert C*-module H. Because the smooth compactly supported
sections of S are dense in L3(S), D is densely defined. In fact, the dense
subspace & is a core for both D and D?.

Lemma 3.3. D is self-adjoint (and so D* is densely defined).

Proof. By the essential self-adjointness of the restriction of each D
to smooth compactly supported sections, D is symmetric. For any
w € H, our characterization of H allows us to rely on sections w that
are smooth, supported locally in ¢t and have w; compactly supported in
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M to show that (Dw,w) = (w, D*w) can be satisfied only if, for each
t, wy is in the domain of D; and (D*w); = Dy(wy). o

Lemma 3.4. 1+ D? has dense image, and (1 + D?)~! is compact.

Proof. Our characterization of H permits the reduction of the proof
that 1+D? has dense image to calculations that are local in ¢. It suffices
to observe that, for each ¢, the set of smooth compactly supported
sections forms a core for D? and that the spectrum of D? is discrete,
with each value having finite multiplicity and with infinity as the only
accumulation point. This observation implies that the image under
1 + D? of the set of smooth compactly supported sections is dense in
L2(9).

To show that (1 + D?)~! is compact, it suffices to proceed locally
in ¢ to approximate this operator in norm by compact operators.
The local results can be patched together by a partition of unity
in ¢. Local approximation in some neighborhood of 7 € (0,1] and
local approximation in some neighborhood of 7 = 0 require different
arguments.

Suppose that 7 € (0,1]. For N, as in Lemma 3.2, let U denote the
quasi-isometry mapping the space of bounded continuous H,-valued
functions on N, to the restriction of H to N,. (U leaves sections
unchanged, but its inclusion in the notation helps keep track of the
Hilbert spaces involved.) By undoing the conjugation, it suffices to
show that, over N,, U (1 + D?)"U is a compact operator on the
Hilbert C*-module of bounded continuous H,-valued functions on N;.
We proceed by comparing U~1(1 + D?)~'U to the constant compact
operator-valued function on N, with value (1 + D2?)~!. The difference

1+D3)'-U~'1+D*"'U
is equal to
(1+ D3 YU 1+ D?U - (1+D2))U 1+ D*)"'U.
We can make the norm of this operator as small as we wish by choosing

N small enough to keep the coefficients in the middle factor, which is
a differential operator, as small as necessary.
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Suppose that 7 = 0. Let C' > 0 be a constant. Let n = (*( be
an arbitrary nonnegative vector-bundle map on S with pointwise norm

bounded above by C. For any s € [0, 1] and any ws in the domain of
D2

C - (Dsws, Dsws) = C - (Dgws,ws> > <C’- %ws,ws>

Rs Rs
= <77 : Zwsaws> + <(C - 7]) ' Zwsaws>-

It follows that, for L at least the greater of zero and the negative of the
minimum value of k,/4,

C - (Dsws, Dsws) + CL - {ws, ws) > <77- %ws,ws>.

By our assumptions we may choose such an L that is independent of s.
By our assumption of properly positive scalar curvature, for a given C,
the above inequality implies that for any choices of (large) A > 0 and
(small) € > 0, we may choose a positive ¢, such that if the support of 7
is outside By,, and if (D2ws, ws) < A-|jws]|?, then (nws, ws) < e-[|ws]|?.
We will call this result the curvature estimate.

Let t be an arbitrary element of (0,1]. Again we will use the
notation for a function to denote also the operator defined by pointwise
multiplication by that function. (1+ D?)~! = (1+ D?)"! o (o + 3¢),
which equals

(1+D*»'(1+D*oaso(1+D*?
plus

(1+D*) " o (([[D, au], D] + 2[e, DID) o (1 + D*) ™' + By) .

For s < t, D? = D2 in C,, which contains the support of a;. It
follows that

(1+D*) 1+ D*oaso(1+D*)?
=(1+D3) 1+ D*oaso(1+D?*)1L.
0
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Let & be a function with values in [0, 1] that is identically one on the
support of a; and that has compact support in C;.

(1+D3) 1+ D*oaso(1+D?) !
=ao(1+D3) todo(l+D*oazo(1+D*)

By the nature of the spectrum of D2, over [0,t] we may regard
ai o (1+ D2) ! oa; as a constant compact-operator-valued function
acting on functions with values in L3(S). Over [0,¢] this compact
operator has its composition with (1 + D?) o o o (1 + D?)~1, which is
bounded over [0,t], a compact operator.

To complete our proof, we need to show that, for any 6§ > 0, if t € (0, 1]
is small enough, the norm of

1+D*)to (([[Da ], D] + 2[ay, D]D) o (1 4+ D*)~* + ﬁt)

is no greater than 4. This estimate holds if we can show that for each
w € & of norm one, the norm of the image of w under this operator
has norm no greater than §. We can reach this conclusion by two
applications of the curvature estimate.

First note that [[Ds, oy], Ds] + 2[at, Ds]Ds is a first-order differential
operator with smooth coefficients compactly supported in the inter-
section of the supports of a; and (;, where D, = Dy for all s < ¢.
It follows that, for any s < t, ([[Ds, o], Ds| + 2[as, Ds]Ds) equals
([[Do, et]; Do) + 2[ew, Do) Do), and so, for all s < ¢, ([[Ds, o], Ds] +
2[a¢, D] Ds) o (1 + Df)_l/2 equals ([[Do, o], Do) + 2[at, Do) Do) © ¢ ©
(1 + D?)~Y/2. Our assumptions on 7; imply that multiplication by -,
satisfies a bound, uniform in ¢ € (0,1] and in s < ¢, as a map from
the domain of D, to the domain of Dy. Hence, using our assumptions
on q;, we may choose a b > 1 that, for all ¢ and for all s < ¢, bounds
([Ds ], Ds] + 2[a, Ds] D) o (1 + D?)_l/z'

For w € &y of norm one, and for any s < ¢, decompose ws = us + vs,
where u lies in the direct sum of the eigenspaces of 1+ D? for which the
eigenvalues are no greater than (5b/4)? and v is similarly associated
with the eigenvalues greater than (5b/6)2. Due to the presence of
(1+ D3~ (vs),

(1 + Dg)_l °© ([[Dsaat]vDs] + 2[at7Ds]Ds) o (1 + Dg)_l(vs)
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has norm less than §/5. Because of the supports of coefficients of the
differential operator in the composition,

(L+ D)~ o ([[Dss atls D] + 2law, Ds]Ds) o (14 D)™
equals
(1+D2)™" o ([[Ds, ], Ds] + 2[vs, D]Dy) 0y 0 Ty o (14 D)7
By the curvature estimate, for small enough ¢ and for all s < ¢,
(14 D2)~ o ([[Ds, ], Ds] + 2[es, D] D) 0y 0 Ty o (14 D2) ™ (us)

has norm less than §/5.

To get analogous norm bounds on (1+ D?)~! o 3;(w,), again consider
separately (1+D?)"1o8;(u,) and (1+D?) 1o (vs). (1+D?) 1o (vs)
equals

Bro (1+D3) " (vs)

plus
(1+ Dg)il o ([[Ds, Be], Ds| + 2[Bt, Ds|Ds) o (1 + Dz)il(US)'

Each of the terms has norm less than §/5. The curvature estimate
applies immediately to (14 D?)~1 o 3;(u,) to guarantee that, for small
enough t and for all s < ¢, the norm of this term is no greater than

0/5. o
Lemma 3.5. (14 D2?)~/2 is compact.
Proof. As in [2], this result follows from norm approximation by

Riemann sums of proper integrals approximating the integral in

1 o)
—/ A2+ D2+ N tdA=(1+D*)"YV2 o
0

™

Theorem 3.6. Suppose that (L3(S), Do) and (L3(S), D1) are cycles
representing classes in the K -homology of X by virtue of their satisfying
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the hypotheses of Theorem 2.8. Suppose also that the metrics used in
the construction of these cycles permit the construction of an (H,D)
as in the discussion at the beginning of this section. Then these cycles
represent the same class in the K-homology of X.

Proof. The cycles are homotopic because the preceding lemmas
show that (H, D) satisfies the hypotheses of the KK, (C(X), C([0,1]))
analogue of Theorem 2.3. o

We now turn our attention to the case when (L3(S),Dy) and
(L3(S), D) satisfy the hypotheses of Theorem 2.9 but at least one
of them does not satisfy the hypotheses of Theorem 2.8. Again we as-
sume that the metrics used in the construction of these cycles permit
the construction of an (H, D) as in the discussion at the beginning of
this section.

Lemma 3.7. For nonnegative \, and for f as in Theorem 2.9,
[D,ms)(1+D?*+X)~1/2 is a bounded operator on the Hilbert C*-module
H. As a function of A, the norm of this operator is uniformly bounded
relative to some negative power of 1 + A.

Proof. [D,my] is defined on &, with ||[D, m¢](w)||* no greater than
some constant multiple (independent of w) of the square root of ||wl|? +
|Dw||®. As a vector-bundle map, [D, m] has a densely defined adjoint,
and so [D,my](1 + D? + X\)~*/2 has an adjoint. The same argument
shows that [D, m¢]*[D, my](1+D?+X)~1/2 is a bounded operator. The
assertion about the norm bound of [D, m](1+ D? + X)~%/2 relative to
1+ A follows from the observations that

(1D, mg)(1+ D+ 2)772) " (1D, mygl(1+ D2+ 0)71/2)
= (14D + N)72[D,my]*[D,my](1 + D* + A) /2

and that [D,m]*[D,ms](1+ D? + X)~*/2 is bounded. o

Lemma 3.8. For nonnegative \, and for f as in Theorem 2.9,
[D,ms)(1+D?*+X)~2 is a compact operator on the Hilbert C*-module
H.
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Proof.
[D,my](1+D*+\)~/?

:[Damf]o1/005_1/2(1+D2+)\+§)_1d§

™ Jo

- l/oog—l/z[D,mf](lJrD?+)\+g)—1/2(1+D2+)\+§)—1/2d§.
™ Jo

The Riemann sums of approximating proper integrals provide a norm
approximation by compact operators. O

Theorem 3.9. Suppose that (L%(S), Do) and (L3(S), D1) are cycles
representing classes in the K -homology of X by virtue of their satisfying
the hypotheses of Theorem 2.9. Suppose also that the metrics used in
the construction of these cycles permit the construction of an (H,D)
as in the discussion at the beginning of this section. Then these cycles
represent the same class in the K-homology of X.

Proof. In a proof that (H, D) defines a homotopy, the only issue that
we have not addressed is the compactness of [D(1+ D?)~%/2 m/]. This
operator equals

D[(1+D*) 2, my] + [D,my](1+ D?) /2,

By Lemma 3.8 the second term is compact. The first term can be
written

]_ o0
Do—/ AV2[(1 4 D2 4 N my) d).
™ Jo

This expression equals

1 oo
—/ A"Y2D(1 + D% + M)~ Ymy, D)
0

™

(14+D%*+X)"Y2D(1 4 D? + \)~1/2d)

plus

1 o0
—/ AY2D%(1 4 D? + \)"Ymy, D]
™Jo

(L+ D%+ 2)"Y2(1+ D* + \)"V2d.
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Again the Riemann sum argument shows that the operator is com-
pact. O

Remark 3.10. It is not the purpose of this paper to address the issues
associated with incomplete metrics on M. However, one case, that of
isolated conical singularities, fits easily within our framework. Let X
be a compact singular space with isolated singular point z, a deleted
neighborhood of which is homeomorphic to a cylinder with cross-section
P. Assume that M = X \ {z¢} has a spin structure. Assume that P,
with dimension m > 2, can be given a metric gp with scalar curvature
everywhere greater than m(m—1). (We use this assumption because of
its simplicity, but our argument requires only that the scalar curvature
of P be everywhere positive and that every eigenvalue of the spin Dirac
operator on P have absolute value at least one-half.) We may give M
a metric in which a deleted neighborhood of zy has the incomplete
conical metric dr ® dr + r?gp on (0,1] x P (with the singular point at
r = 0) or a metric in which the deleted neighborhood has the complete
warped-product metric dr @dr+7r~2gp on [1,00) x P (with the singular
point at r = c0).

The spin Dirac operators constructed using these metrics on M
represent the same class in the K-homology of X. Because the
singularity is isolated, the K-homology exact sequence reduces the
proof of this assertion to an index calculation, which can be done using
the relative index theorem of [14]. If M is odd-dimensional, each Dirac
operator represents a class in K (X). Because K1 ({zo}) = 0, classes in
K1(X) are determined by their images in KK;(Co(M),C). As noted
in Section 2, the images of the classes represented by our two Dirac
operators are equal. If M is even-dimensional, the Dirac operators’
classes in K((X) have equal images in K K¢(Co(M), C) but may differ
by elements in the image of Ko({zo}). The maps {z¢} — X — {zo}
define maps Ko({zo}) — Ko(X) — Ko({zo}) whose composition is
the identity and whose second factor is the index map. Hence, to show
that the Dirac operators represent the same class in Ky(X), it suffices
to show that their indices are equal. Introduce a third metric on M,
a metric in which the deleted neighborhood of the singular point is a
complete cylinder [1,00) x P with metric dr ® dr + gp. The index
formulas of [1, 10] (with sign correction required by the different
orientation conventions) show that the Dirac operator constructed
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using the conical end has index equal to the index of the Dirac operator
constructed using the cylindrical end. The relative index theorem of
[14] shows that the index of the Dirac operator constructed using the
cylindrical end equals the index of the Dirac operator constructed using
the warped-product end, an observation that finishes our proof. In more
detail, in the relative index argument one starts with the Dirac operator
on one version of M and the Dirac operator on the other version of M
with reversed orientation. The sum of the indices of these operators
equals the difference of the indices of the operators constructed without
an orientation reversal. The relative index theorem says that this index
sum remains unchanged if we cut off the ends of the copies of M, glue
the remaining interiors together along their boundaries, and glue the
ends together along their boundaries. The gluing leaves us with a Dirac
operator on a compact double and a Dirac operator on a manifold with
uniformly positive scalar curvature. Both of these Dirac operators have
indices equal to zero.
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