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ON THE SIZE OF SETS
IN WHICH zy + 4 IS ALWAYS A SQUARE

ALAN FILIPIN

ABSTRACT. In this paper, we prove that there does not
exist a set of 7 positive integers such that the product of any
two of its distinct elements increased by 4 is a perfect square.

1. Introduction. Let n be an integer. A set of m positive integers is
called a Diophantine m-tuple with the property D(n) or simply D(n)-
m-tuple, if the product of any two of them increased by n is a perfect
square.

The problem of finding such sets was first studied by Diophantus in
the case n = 1. He found a set of four positive rationals with the above

property:
133 17 105
16°16° 4’ 16 [

However, the first D(1)-quadruple, the set {1,3,8,120}, was found
by Fermat. Later Euler was able to add the fifth positive rational,
777480/8288641, to Fermat’s set, see [5], [6, pages 103-104, 232].
Recently, Gibbs [17] found examples of sets of six positive rationals
with the property of Diophantus. The conjecture is that there does
not exist a D(1)-quintuple. In 1969, Baker and Davenport [1] proved
that Fermat’s set cannot be extended to a D(1)-quintuple. Recently,
Dujella, see [11], proved that there does not exist a D(1)-sextuple and
there are only finitely many D(1)-quintuples. This implies that there
does not exist a D(4)-8-tuple and that there are only finitely many
D(4)-septuples, see [15]. In this paper we will improve this result.

In the case n = 4 the conjecture is that there does not exist a D(4)-
quintuple. Actually there is a stronger version of that conjecture, see
[15, Conjecture 1].
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Conjecture 1. There does not exist a D(4)-quintuple. Moreover, if
{a,b,c,d} is a D(4)-quadruple such that a < b < ¢ < d, then

1
d=a+b+c+ §(abc+rst),

where r, s, t are positive integers defined by

ab+4=r% ac+4=35% be+4=1t%

It is easy to check that if d = a+b+c+ (abc+rst)/2 then {a,b,c,d}
is a D(4)-quadruple. From now on we will denote this d.. We will also
define d_ =a+ b+ c+ (abc — rst)/2. If d_ # 0, the set {a,b,c,d_} is
also D(4)-quadruple, but d_ < c.

Definition 1. A D(4)-quadruple {a, b, ¢, d} such that d >max{a, b, c}
is called regular if d = d.

We have checked, using a computer program, that all D(4)-quadruples
{a,b,c,d} such that max{a,b,c,d} < 4-107 are regular, and we will
use this result in our paper.

The first result of nonextendibility of D(4)-m-tuples was proven
by Mohanty and Ramasamy in [20]. There they proved that D(4)-
quadruple {1,5,12,96} cannot be extended to a D(4)-quintuple. Later
Kedlaya, see [18], proved that if {1,5,12,d} is a D(4)-quadruple, then
d = 96.

One generalization of this result was given by Dujella and Ramasamy
in [15] where they proved Conjecture 1 for a parametric family of D(4)-
quadruples. Precisely, they proved that if £ and d are positive integers
and

{Fak, 5F5k, 4F ok 42,d}

is a D(4)-quadruple, then d = 4Ly Fyy12, where Fj, and Ly are the
Fibonacci and Lucas numbers. The second generalization was given
by Fujita in [16]. There he proved that if & > 3 is an integer and
{k—2,k+2,4k,d} is a D(4)-quadruple, then d = 4k® — 4k. Both these
results support Conjecture 1.
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Our main result is the following theorem.
Theorem 1. There does not exist a D(4)-septuple.

In the proof of nonexistence of the D(4)-septuple we will mostly
use the strategy and methods from [11]. First, we will transform
the problem of extending the D(4)-triple {a,b,c} to a quadruple, to
solving a system of simultaneous Pellian equations. And this reduces
to finding the intersection of binary recurrence sequences. By analysis
of elements of the sequences with small indices, we will get some
useful gap principles. Using congruence relations, we will get a lower
bound for the solutions. In obtaining this bound we will assume that
our triple satisfies some gap principles, precisely ¢ > max{b'?,10%°}.
Comparing this with the upper bound obtained from Bennett’s theorem
on simultaneous approximations of algebraic numbers, we will prove our
main theorem.

2. System of Pellian equations. Let us fix some notation at the
beginning. Let {a,b,c} be a D(4)-triple such that a < b < ¢, and let
r, s,t be positive integers defined by

ab+4=12 ac+4=s2 bec+4=1>
If we want to extend {a, b, c} to a D(4)-quadruple {a, b, ¢, d}, then we
have to solve
ad+4=2% bd+4=y> cd+4=22

with positive integers x, y, z. Eliminating d we get the following system
of simultaneous Pellian equations

(1) az? —ca® =
(2) bz? — cy® = 4(b - c).

From the theory of Pellian equations we can describe the sets of
solutions of equations (1) and (2) in the following lemma.

Lemma 1. There exist positive integers ig, jo and zéi), ac(()i), z:(lj), y:(lj),

1=1,... 49, =1,...,jo, with the following properties:
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(i) (zéi),wgi)) and (zij),ygj)) are solutions of (1) and (2).

(ii) zéi),:cé) Z§J),y§ 2 satisfy the following inequalities:

(3) 1<z{? < “(50:2“)<\/s+ 2 < 1.236 /ac,
(4) \z0)|<\/5_2)a(c_“ 1/6\/—<04680
(5) 1<y < ( 2b)<\/t+ < 1.122Vbe,

(6) 0] </ E=De=b) 1/6\/_<036OC

(iii) If (z,2) and (z,y) are integer solutions of (1) and (2), then there
existi € {1,... ,i0}, j € {1,...,j0}, and integers m,n > 0 such that

0 sareve (dVasafve) ()
(8) Z\/B—}—y\/E:( Vo +y J)\[> <t+\/_>

In obtaining estimates (3)—(6) we have used the assumptions ac > 21
and bc > 60 because we know that the triple {1, 5,12} can be extended
to the quadruple in the unique way, so we will not consider that triple.
The rest follows from [15, Lemma 2].

Let (z,y, z) be a solution of the system of equations (1) and (2). Then

from (7) we get z = v¥) for some index i and integer m > 0, where

(9) v((f) = z((]i), vgl) =3 (sz((f) + cxé”) , v,(,?_‘_Q = 3”5,?4-1 — v,(,?.

From (8) we conclude that z = w for some index Jj and integer n > 0,
where

n

. . . 1 . )
10 uf =, wf = Lel? ), iy = s — )



ON THE SIZE OF SETS 1199

By induction, using (9) and (10), the following lemma is easy to prove.

Lemma 2. For the sequences (vy,) and (wy,) we have

vé’% = v(()i) (mod ¢),

o =9 (mod ),
wéil) =’ (mod ¢),

wé{l)+1 = gj) (mod c¢).

For simplicity, from now on, we will omit indices 7 and j. Because we
are looking for the solution of our system of equations (1) and (2) such
that d = (22 — 4)/c is an integer, from z = v,, = w,, using Lemma 2,
we get

2=2=4 (mod c).

Now we need one result that will give us information on the possible
cs in the case ¢ < 4b.

Lemma 3 If {a,b,c} is a D(4)-triple such that a < b < ¢, then
c>4borc=a+b+ 2r.

Proof. By [10, Lemma 3], there exist integers e, z’,y’, 2’ such that

ae +16 = (z')?, be+16 = (v')?, ce+16 = (2')?,

and 1
c=a+b+ Z + g(abe—i— rz'y’).
We can take =’ and gy’ to be positive integers. If e = 0, we get

c=a+b+2r. If e >0, then ae > 9 so we can conclude
1 1
c>b+§(9b+x/£-5-x/%) > b+ 2 (9 + 15b) = 4b.

If e < 0, then ¢ < 16, but such a triple does not exist, so we proved our
lemma. ]
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From the proof of the last lemma it follows that ¢ > 4a.

Lemma 4. (i) If the equation ve,, = ws, has a solution, then
20 — Z%1-

(ii) If the equation vomi+1 = wa, has a solution, then zp-z1 < 0 and
|21] = (ezo — s|20])/2.

(iii) If the equation va,, = want1 has a solution, then zp-z; < 0 and
|z0] = (cyr — t[z1])/2.

(iv) If the equation vo,11 = Want1 has a solution, then zp - z4 > 0
and cxg — 8|z9| = cy1 — t|z1].

Proof. Equation vg,,, = wa,, together with Lemmas 1 and 2, implies
that zo = 21 (mod ¢) and |zp — z1| < ¢. This implies zg = z; which
proves (i).

We now consider equation vs,,4+1 = wa,. It is easy to see that
((s20 4 cxo) (520 — cxp)| = 4c® — dac — 425 < 4c?

and
4c® — dac — 423 > 4c* — 2 —4-0.219¢* > 0,
which implies that
1
0< E(c:vo — slz0]) < e

Now from z; = (szg + czg)/2 (mod ¢) we can conclude that if zg > 0,
z1 = (820 —cxo)/2, and if zp < 0, then 21 = (szp+cxo)/2, which proves

(ii).
In the case vg,,, = wap,11, first it is easy to see
|(tz1 + cyr)(tz1 — cy1)| = 4c* — dbe — 422 < 4c2.
Now if ¢ > 4b, as in case (ii) we get 4c? — 4bc — 422 > 0. And if ¢ < 4b,
then ¢ = a + b+ 2vab + 4 and we get ¢ > b+ 2vVb+1 = (Vb +1)?,
which implies b < ¢ — 2y/c + 1. Then we have

4c® — dbe — 427 > 4c® —4(c — 2y/c+ 1)c — 4 - 2¢ = 8cy/c — 12¢ > 0.
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Actually, we have proved
1
0< E(cyl —tlz]) < e

Now from zp = (tz1 + cy1)/2 (mod ¢) we conclude that if z; > 0,
z0 = (tz1 —cy1)/2, and if z; < 0, then 2o = (tz1 + cy1)/2, which proves
(i)

Case (iv) can be proved on the same way as cases (ii) and (iii). o

3. The relationship between m and n. In this section we will
prove an unconditional relationship between m and n. Later we will
improve that result slightly by assuming some additional conditions.

Lemma 5. Ifv,, =w,, thenn—1<m < 2n+ 1.
Proof. 1t is easy to get the following estimates for v;:

1 1 1 4¢% — dac— 422
vy = —(szp + cxg) > §(cac0 —slz) =2 ———— 0

2 2 czo + 5|20
4e* —4-(c?/4) — 428 262 c c
> > > — > ———,
2 - 2cxg 4dexg 2 2.472/ac

1 1
v = §(szo + cxo) < 5 " 2cwo = cxo < 1.236¢v/ ac.

Then we conclude

C me1l -
sdmagas s D" < vm < L286edacs™

for m > 1.

Now if ¢ > 4b, similarly as above we get

L (tz1 + cy1) > ¢
w1 = —\lZ2 C e —
LT AT 2 ot e

If ¢ < 4b, then we conclude from (6) that 21| < 1/(cv/c)/Vb < V2,

and |z1|? < 2c. Now from |21]?> =4 (mod c) we conclude that the only
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possibilities for 27 are given by 22 = 4 and 2? = c + 4. If 22 = c + 4,
then from (2) we get y?> = b+ 4. But 2; and y; are integers and it
is possible only if the set {1,b,c} is a D(4)-triple. Then the relation
¢ < 4b and Lemma 3 imply a = 1 and ¢ = 14+ b+ 2Vb+4. It is
obviously a contradiction, because now condition (5) is not satisfied,
actually the inequality y1 < 1/(b(c — b))/(t — 2) is not satisfied. So, we
proved that, in the case ¢ < 4b, we have z; = +2, y; = 2. Then we
conclude

1
wy = =(tz1 + cy1) > =(cy1 — tlz1]) = c—t > Vac >

2

N | =

2. 224\/_

On the other side, we have
wy < 1.112¢V/be;

hence,

C _ 4 —
——(t-1)"! <w, < 1.112¢Vbet" 1,
2.224\4/bc( )

for n > 1.
Now v,, = w, for m,n > 1 implies

(s — )™ < 2,749V abe2t" L.
Since s —1 = vac+ 4—1 > 0.781,/ac and t = vbc + 4 < 1.033+/bc, we

get (s — 1)2 > 0.6lac > t, if a > 1 or ¢ > 4b. But it is easy to see that
(s —1)® >t also holds for a = 1 and ¢ =1 + b + 2v/b + 4. Now we get

(s — )™= < 2.749t™ < 71027 < (5 — 1)2nF0-54,
and m < 2n + 1. v,,, = w, also implies
(t—1)""1 < 2.749Vabc?s™ * < 2.749Vabc2 (t —1)™ 1 < (t—1)™+0-27,
and n—1<m.

To finish the proof of our lemma, we have to check inequalities
wg > vy and vy > wy. Now we have

ct ev/e S < Vbe 1
a4 jeve . _
2.224v/be Vb 2224 V/be

cs M Vac 1
2ar2vac \ va  “\24m2 ~ Vae

wo = tw; —wgy >

> >0.892¢> vy,

Vg = SU] —Vp > >>0.3980>w0. O
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4. Gap principles. In this section we will get gap principles for
the elements of D(4)-quadruples by considering equation v, = w,, for
small values of m and n.

Lemma 6. Let v, = w, and define d = (vZ, —4)/c. If {0,1,2} N
{m,n} # @, thend < c ord=dy.

Proof. From the proof of Lemma 5 we conclude

vy < wWg, Wo < Vg, V1 < W3, wy < V4, Vg < Wy, Wy < Vg.

Then condition {0,1,2} N {m,n} # @, implies (m,n) € S, where

5 =1(0,0), (0,1), (1,0), (1, 1), (1,2), (2,1), (2,2), (3,1),
(2,3), (3,2), (4,2), (5,2)}.

If 0 € {m,n}, then from Lemma 1 we get d < c.
Assume that (m,n) = (1,1). If zp < 0, then

1 1
z:vlzg(sz0+c:c0)<§-2020,

and d < ¢. If zp > 0, then from Lemma 4 we get szg — cxg = tz1 — cyz.-
But from z = v; = wy; we conclude szg + crg = tz; + cy1, and xg = y;
and szp = tz;. Hence,

azi —cxl=4(a—c), bzd —cyl =4(b—c),

implies
4(b —a)s® = (b2} —azd)s* = (bzf -a- ﬁ) 2
52
= (b(ac +4) — a(bc +4))2? = 4(b — a)23.
Then we conclude 23 = s, 29 = t, 9 = y1 = r, which implies

z =wv1 = (st + cr)/2 and therefore d = d,..
Assume now that (m,n) = (1,2). Then

1 1
v = §(sz0 +cxg), we =2z + ic(bzl + ty1).
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From Lemma 4, if z; > 0, then 2y < 0 and 2z; = (czop + $20)/2,
wg > vy = wp. If 27 <0, then zp > 0 and

1
(11) —z; = 5(0330 — 52p).
If we insert this in equation v; = wq, we get
1
(12) g = 5([)21 + tyl).
Now from (11) and (12) and the system of equations (1) and (2) we

conclude 4(b—a)t?> = 422(b—a). Then 29 = t, xp =7, 21 = (st —cr)/2,
y1 = (rt — bs)/2, which implies that

1
z:1)1:§(st+cr), d= =dy.
The case (m,n) = (2,1) is completely analogous to the case (m,n) =

(1,2).
Let (m,n) = (2,2). Then

1 1
vy = 2o + §c(azo +szp), wy =21+ §C(b21 + typ).

Hence vy = wy implies zg = z; and azg + sxro = bzg + ty;. Moreover,
we get

(b—a)(cy; — cxg +4(b—a)) = (b—a)’z3 = (szo — ty1)?,
which implies 4(b — a)? = (sy1 — tzo)?. Since sy; < txo, we have
b—a = (tzg — sy1)/2. Furthermore, we have

(ac+ 4)(bx2 + 4(a — b)) = a(tzo — 2(b — a))?

and 1
4(b — a)(x3 + atxg + Za2t2 = (b—a)r?s’.

Then z¢ + (at)/2 = (rs)/2, 9 = (rs — at)/2, y1 = (rt — bs)/2 and
29 = (st — cr)/2. This implies

1 1 1 1 1
vy = i(St —cr)+ §c<a(st —cr) + 57"32 - 5ast> = §(St +cr).
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Finally we get

1
z:1)2:§(st+cr), d= =dy.

Assume now (m,n) = (3,1). In the proof of Lemma 5 we showed
(13) (s — 1) < 2.749V abc2.
From s — 1 > 0.781+/ac, using ¢ > 4a we conclude

(14) 0.609ac < 1.943+/[4]bc® < 1.943c.

Now, if a > 3 we get a contradiction. If a = 3, from (14) we
get ¢ < 15, but such a D(4)-triple does not exist. If a = 2, (14)
implies ¢ < 51, so the only possible triples are {2,6,16}, {2,16,30}
and {2,30,48}. But then from v3 > ¢/(2.472ac)(s — 1) and w; <
cy < ¢4/ (b(c —b))/(t — 2), we get in all three cases, v3 > wy, which is
a contradiction. If a = 1 and ¢ > 4b, relation (13) implies ¢ < 26, but
it is easy to see that such a triple does not exist. If ¢ < 4b, Lemma 3
implies ¢ = 1 + b+ 24/b + 4, which together with (13) gives us b < 77.
So we have to check what is happening for the remaining values of b.
But again, in all cases we get vg > ws.

Let (m,n) = (3,2). Assume that 29 > 0. Then z; < 0 and
vy > 1/2- 2529 = szp. From that we conclude

v > (5 — 1)%s29 > 0.609(ac)® 2.
On the other hand,
< 1 4c? c?
w —_— =
Y2 2t ta
and
2
wy < tw; < —.
|21

Since —z; = (czg — s20)/2 we conclude |21]| > ¢/(2zy). Now we have

(15) we < 2cxg < 2-1.236¢v/ac < 1.75¢y/c.
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We want to prove wy < vs, which will give us the contradiction. It is
obviously valid if 1.75¢%/2 < 0.609(ac)?/22;. Since 22 = 4 (mod c) we
can conclude zp > 2, and the inequality will always be true if a > 1.
If @ = 1, when we insert this in (15), wy < vz will be valid when
2.472¢5/4 < 1.218¢3/2. But it is true for ¢ > 17, and ¢ cannot be smaller
because such a D(4)-triple does not exist. So we proved ws < vs for
zp > 0.

Let zp < 0. Then z; > 0 and z; = (s2z9 + cx9)/2. Now, vz = ws
implies that

2z + 2az1 = bz1 + ty; > 2bzq,

which gives us

2xg < 421 <4-L,
21170

and z3 > ¢, which is a contradiction to (3).

Assume that (m,n) = (2,3). If zp > 0, then z; < 0 and vy
imply

w3

2
2y1 + 2bzg = azg + szg < 2azp + —c.
20

We conclude that z2 < ¢/2. On the other hand, 2 =4 (mod c), so we
get zg = 2. If ¢ > 4b we have zp > ¢/(2y1) > 2, which is a contradiction.
If ¢ < 4b, we have proven z; = —2 and y; = 2. Now, from Lemma 4,
part (iii), we conclude that 2 = (2¢ — 2t)/2 and 2 = ¢ — v/bc + 4. Then
we get ¢ = b + 4, which contradicts ¢ = a + b + 2v/ab + 4.

If o < 0, then 23 > 0. As in case (m,n) = (3,2), we get
wy > (1/2) - 2tz; = tz;. Then we conclude

wy > (t — 1)tz > 0.86(bc)*/ 221,
if bc > 60. On the other hand, we have

< 1 4c? c?
v —_ e =
Y2 2s)z0] sz
and v < sv1 < c?/|zo|. If ¢ > 4b, since y1 < \/c, we get |20 > ¢/2y1.
Then

ve < 2¢cy; < 2.224¢v/be < 1.58¢%/2.
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We also know that ws > 1.72¢%/2. So we proved that for ¢ > 4b and
bc > 60 we have ws > vy, which is a contradiction. If bc = 60 and
t = 8, it is easy to see that ve < ws. If ¢ < 4b, then
w3 > 0.215¢% > ¢ > V2,
which shows that we cannot have vy = ws.
If (m,n) = (4,2), we have
L s
vy = 2 + ¢(2az + szo) + 5ac (azp + szo),
1
Wy = 21 + §c(b21 + ty1).
Then vy = wy implies zp = z; and
(16) bzo + ty; = 4azo + 2sxo + ac(azo + sxp).
Furthermore, we have ty; — blzg| < (2¢)/|z0|- Then, if zo > 0, the
lefthand side of (16) is less than or equal to 2bzg + (2¢)/zg, when the
righthand side is greater than 2a®czy. So if @ > 1 or ¢ > 4b we get a
contradiction right away. So let a =1 and ¢ =1+ b+ 24/b+ 4. Then
bzg +tyr < 2bzp + ¢
and
dazop + 25z + ac(azp + sxo) > 2¢z9 = ¢+ (2¢ — 1)z > ¢ + 2bzp,
so we cannot have equality. If zyp < 0, we have that the lefthand side of
(16) is less than or equal to (2¢)/|zo| < ¢. To estimate the righthand

side, we have to show szy — alzy| > 3. We get that from

2,2 _ 2,2 2 _ 2,2
s*xg —a?zf  (acH+4)z5 — a®2]

520 — alz0] = sxo + azg 2sx
_a-4(c—a)+4x] S 45?2 — 4a? S 4s? — 4a?
25z 2sx0 2.475sac
452 — 52 s
>

3.
54T5s¢/ac ~ dac
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Now we have the estimate
dazy + 25z + ac(azy + szo) > 3ac — 4alzg| > ac > ¢,

which gets us a contradiction again.

Assume (m,n) = (5,2). From the proof of Lemma 5, we get

(17) 0.37a%c* < 2.749Vabc? - t < 2.840bc.

Now if a > 3, we get a contradiction in (17). If a = 2 and ¢ > 4b, we see
again that (17) cannot hold. If a = 2 and ¢ = 2+b+2+v/2b + 4, relation
(17) implies b < ¢ < 2.714b%4 and b < 54. But for all remaining values
of b it is easy to see that ¢ < 2.714b%/4 is false. In the case a = 1 and
¢ > 4b from (17) we get ¢ < 58 and b < 14, but such a D(4)-triple does
not exist. Finally, if a =1 and ¢ =1+ b+ 2v/b+ 4 from (17) we get
b < 3731. But for all the remaining values of b, it is easy to see that
Vs > W2. O

Lemma 7. If {a,b,c,d} is a D(4)-quadruple such that a < b < ¢ <
d, then d = dy or d > 0.116c25b%>.

Proof. From Lemma 6, if d # d4, then z = v, = w, for some
m,n > 3 and d = (22 — 4)/c. We have

c 0.758 . 4
z>ws > (t—1)%- > Vb33 ¢ > 0.341v b33 - ¢,
Zws > ) e 292

and
> 0.116¢25p1 5. o

q> 0.1163b%5¢3-5 — 4
- c

Using the gap principle from Lemma 7 we can prove the following
lemma.

Lemma 8. In the notation as above, we have vz # ws.

Proof. Assume that vs = ws. Define

1
2= i(cxo — 8z0) = §(cy1 —tz1),
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if zp, 21 > 0, and

1 1
7 = i(cxo + 829) = §(cy1 +tz1),

if 29, 21 < 0. Also define dy = (2" — 4)/c. Then dj is an integer and

1 2
cdo+4=2"%ady+4 = <§(sx0 + azo)> ,bdy + 4 = (ty; £bz1))2.

Now from the proof of Lemma 5, we get

4c? — dac — 422

C
>
cxo + 8|20 2.472,/[4]ac

1
N —= .

and |2'| < ¢. Then we conclude

dy > 0.163(0\/?\/5) —4 0.

Hence, the set {a,b,c,dp} is a D(4)-quadruple. Since dy < ¢, we have
two possibilities, depending upon whether the quadruple is regular or
not. If {a,b,¢,dg} is a regular D(4)-quadruple, then dy = d_. This
implies that 2z’ = (er — st)/2. Now we have c¢(zg — r) = s(|zo| — ). If

¢ is odd, we have (¢,s) = 1 so |z9| =t (mod ¢). From the relations
|z0] < ¢, t < ¢, we conclude |zg| = ¢, g = r. In exactly the same way,
we get |z1| = s, y1 = r. Considering the case when c is even, we can

get one more possibility: |zo| =t — (¢/2), g = r — (s/2).
The relation v3 = ws implies

1 3 1 1 3 1
(18) 55%0 + 2¢%0 + iac(cmo +5209) = §tz1 + 3¢ + Ebc(cyl +tz1).

Now if |z9| = ¢, g = r, from (18) we get a = b, which is a contradiction.
If |z0] =t —(¢/2), xzo = 7 — (s/2), using (18) we get a contradiction
because the lefthand side is always less than the righthand side.

So the D(4)-quadruple {a,b,c,dy} is not regular. Then ¢ > 4 - 107
(see the remark after Definition 1) and Lemma 7 implies

19 ¢ > 0.116d%°p'5.
( 0
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‘We have

1 4¢? — dac — 422 2.987
TN €S 0.746——
2 cxo + 3|z 4z Yac

. —4
dy > O 5565(0\/5/ ve) -4 0.556\/5

If we insert this in (19) we get

|2'0] =

and

¢ > 0.0267¢"%5a7125p15 > 0.0267¢! 250025,

and ac < 1967683, which contradicts ¢ > 4 - 107. u]

We are now ready to prove the stronger gap principle, that we will
use in the proof of Theorem 1.

Proposition 1. If {a,b,c,d} is a D(4)-quadruple such that a < b <
c<d, then d=d; ord > 0.036¢35a".

Proof. From Lemmas 5 and 7 we conclude that d = d; or z = vy, =
Wy, such that m > 4 or n > 4. In the case m > 4, we have that

C 3 4
Z:U4Z WW(S*].) >0.192VG505'C

and
S 0.0369a%5¢%+% — 4

C

d > 0.036¢3°%a25.

If n > 4, we have

C 4
=wy > —————(t—1)% > 0.207Vb55 - ¢
‘= 2.224\4/bc( )

and

0.0882b%5¢*5 — 4
>
c

d > 0.087¢3%525 > 0.0036¢3 5%, o
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Corollary 1. If {a,b,c,d,e} is a D(4)-quintuple such that a < b <
c <d<e, then e > 0.036d>°b5.

Proof. 1f {b,c,d, e} is a regular D(4)-quadruple, then
1 1,
e <d(be+4) <d( 7dd—1)+4) < 7d.

Thus, the D(4)-quadruple {a,c,d, e} is not regular, so Proposition 1
implies

e > 0.036d%°a?® > id3,

which is a contradiction. Now the statement of the corollary follows
from Proposition 1, because the quadruple {b, ¢, d, e} is not regular. O

Now, using gap principles we will refine Lemma 4 and get more
detailed information about initial values of (v,,) and (wy,).

Lemma 9. (i) If the equation ve,, = wa, has a solution, then
20 = z1. DMoreover, |z9] = 2 or |zo] = (cr — st)/2 or |z] <
1.608a (5/14)£(9/14),

(ii) If the equation voy, 11 = wa, has a solution, then |zy| = t,
|z1] = (er — st)/2, zp21 < 0.

(iil) If the equation voy, = wany1 has a solution, then |z1| = s,
|20] = (er — st)/2, 2021 < 0.

(iv) If the equation vomy1 = Want1 has a solution, then |zg| = t,
|z1] = s, z0z1 > 0.

Proof. (i) From Lemma 4 we get 29 = 21. Define dy = (22 —4)/c.
Then dy is an integer and

cd0+4:zg, ad0+4:wg, bd0—|—4:yf.
Now we have three possibilities for dy. First, if dy = 0, we conclude

|z0| = 2. If dy # 0, then {a,b,c,do} is a D(4)-quadruple. If it is regular,
then dyp = d_ and |z9| = (cr — st)/2. Note, we showed that dy < c.
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If {a,b,c,dp} is not a regular D(4)-quadruple, then we conclude from
Proposition 1 that
(20) ¢ >0.036d5°a*".

Since |zo| # 2, we have 22 > ¢+ 4 and from ¢ > 4 - 107, we get

2 4 2 4 2

dog=20""> Z—°<1 - —) > 0.999°C.
c c c+4 c

If we insert this in (20), we have ¢*5 > 0.035|z|"a®® and |zo|

1.608a~(3/14)c(9/14),

A

(ii) Define 2z’ = 21 = (cxo + $20)/2 if 21 > 0, and 2/ = —2z; =
(cxg — s20)/2 if z; < 0. Moreover, define dy = (2'? — 4)/c. Then dj is
an integer and

1 2
cdo+4 =27 adg+4= (g(sxgzlzazo)> , bdy+4 =1yl

In the proof of Lemma 8 we showed 0 < dy < ¢ and D(4)-quadruple
{a,b,c,dp} is regular. Then dy = d_ and |z1| = (cr — st)/2. This
implies |zg| = ¢, |z1| = (cr — st)/2. It is easy to check that if ¢ is even,
relation |zg| = ¢t — ¢/2, zg = r — s/2 cannot be valid, because if we
insert this in (1), we get

and
1=rs—at,
which is impossible because s and t are even.

The last two statements can be proved in a similar manner. a

We will now get the inequality with linear form in logarithms of
algebraic numbers, which will be used to refine Lemma 5 in the special
case.
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Lemma 10. If v, = w,, m,n # 0, then

0<mlog<

—\ —2m
< 2ac<5+2 ac> .

s+ +/ac t + v/be Vb(zo\/c + 201/a)
2 >—nlog< 2 >+log\/5(y1\/5+21\/5)

Proof. From recurrence relations we have

m = oz | (sva+ ) (255)

2/a )
o) (55

and

un = 5[ (vmrun) (H0) b (aviomve) () .

2v/b 2 2
If we define
e i ) (5L
Q= %(ll\/g+y1\/g) <t+2\/%>n,
then v,, = w,, implies

Furthermore, it is easy to see that P > 1, Q > 1 and P > ). Moreover,
(P-Q)/P < (4(c—a)/a)P™2 < 1/2, since P > 34/c/a. Now the
inequality from [22, Lemma B.2] implies
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0< logg = —log(1 — P;Q) < —log(ll/—2(1/2)) ] 4(0; a) p2
S(C—a) _2_8(6—0,). a 8+\/% —2m
< TP - a (ZO\/E+CE0\/E)2( 2 >
_ (20va — w0v/0)” <s+\/ﬁ>_2m
2(c—a) 2
< (zlva+ /) <s+\/ﬁ>2m
- c—a 2
dzc s+ Jac) 2" s+ ac) ™
< 3/4c< 5 > < 2ac< 5 > ) 0

Lemma 11. If ¢ > max{b'?, 10%°}, then v, = wy,, n > 2, implies
m < 3/2n.

Proof. From Lemma 10 we get

mo_ log(t + Vbc/2) 3 log 2ac(s + /ac/2) 2™
n  log(s++/ac/2) nlog(s+ /ac/2) nlog(s + v/ac/2) ’

where v = (Vb(zov/c+ 20v/a))/(vVa(yiv/ec+ z1vb)). We will now

estimate all three summands. We have

log((t + vbe)/2) _ | log((t + v'be) /(s + v/ac))

log((s + vac)/2) ~  log((s + vao)2)

log\/% 1
S g+ vaop) <
v Vo(zo/e — |20lVa) _ Vb -4(c—b)
~ Valyive+ |zalvb)  Valzove+lz0lva) (yive + |z1l)
\/5'4(‘3_ a) —0.5437

>c y

>

~ Va-2zoy/c 2y1y/c
where we used ¢ > b'? and estimates for zy and y;. From that we
conclude
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logy —0.5437

—0.3625
nlog((s + \/_)/2) 0.5n ’
since we know that n > 3. Finally,
2 —2m
ac((s + v/ac)/2) - 2ac < 0.00L
nlog((s + v/ac)/2) ~ 3(ac)? log(v/ac)
When we sum all estimates we get the statement. O

5. There does not exist a D(4)-septuple. In this section we
will finish the proof of Theorem 1. The following lemma can be easily
proven by induction.

Lemma 12. If c is odd, then

1
Vom = 20 + §c(azom2 + szom) (mod c?),

1 1 /1
Vzm+1 = 5820 + ic(gaszom(m +1)+zo(2m + 1)) (mod c?),

1
Woy, = 21 + §c(bz1n2 +tyin) (mod c?),

1 1 /1
Want1 = §tz1 + §c<§btz1n(n +1)+y1(2n+ 1)) (mod ¢?).

If c is even, then
¢)

1 1 /1
Vama1l = 55%0 + ¢ <2a520m(m + 1) +zo(2m+1) ) (mod c )

[\DI»—!

1
Vom = 20 + §c(az0m2 + sxom (mod

c2

N | =

1
Wy = 21 + §c(bz1n2 + tyin) (mod )
1 1
Wopt1 = §tzl + = ( btzln(n +1)4+y1(2n+1) (

5 mod — c)

Now we will get the lower bound of n, depending on ¢. We will prove
the cases from Lemma 9.
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Lemma 13. Let {a,b,c} be a D(4)-triple such that c >max{b'%,10%%}.
Then vy, = wy, n > 2, implies n > %96,

Proof. Assume the opposite, that v, = w,, n > 2 and n < %%,

Case 1.1. v, = way, |20| = 2. Lemma 12 implies
+am? 4+ sm = £bn® +tn  (mod c).

We also have the following estimates

1

1/12)+0.12 %c, sm < (7/12)+0.06 56'

am2 < C(

In the same manner, we get bn?, tn < 1/2c. Then our congruence
becomes the equality

+am? + sm = +bn’ + tn.
If we square it twice we get
((am® — bn?)? — 4m? — 4n?)? = 64m*n? (mod c).
But again the absolute value of both sides is less than ¢. We have
64m2n? < L1+012 _

and
((am2 _ bn2)2 —4m? — 4n2)2 < 0344048 _

Then we have equality again so we get m(s = 2) = n(t £ 2) and

+la(t+2)2 —b(s+2)?]  +(+4at+ 8a + 4bs —8b)’

_ (s2)[t(s£2) — (t£2)s] (s 2)(£tFs)

Finally, from the estimates

(s£)(ELF )| > (s —2)(t—s) = %

S 2¢(s — 2) Va

>
whe  C avb
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and
| £ 4at + 8a & 4bs — 8b| < 8bs + 16b < 16bv/ac,

we get

\/E 0.279
n>——> """
32v/b

a contradiction.

Case 1.2. vy, = Way, |20| = (cr — st)/2. We have

4c2f4acf4b0716>ﬁ> 3c
cr + st 2rc ~ 2.309vab

20| = |21| =

Then |z1| < 1/ (cv/€)/V/b implies
¢ < 0.352a%b < 0.352b < b'?,

a contradiction.

Case 1.3. vy, = wap, |20| # 2, (cr — st)/2. Then from Lemma 12
we get
azom? + szom = bzon® +ty1n  (mod c).

We have the following estimates

cy/c 1
lazom?| < a- Ve 012 075 0.7540.12 56

Ja

0.55+0.28+0.06 _ ,0.89 lc
5C:

In exactly the same way we conclude that the absolute value of both

summands on the righthand side is less 1/2c. Then we have equality

again,

|szom| < ¢

azom? + szom = bzon® + tyin.

If b > 4a, then 22 > max{c+ 4, (5c/a)}. Now we have

4z3 + dac — 4a* 4.1.001
0< STo | _ xg + 4ac — 4a < 002a0<0‘401
alz| alzo|(szo + alzo]) 20228
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and ) )
0§£,1:M<0_101_
b|zol blzol(ty1 + bl20l)

If zp > 2, we conclude
azom(m + 1.401) > bzon(n + 1),

and m, n > 2, a - 1.701lm? > bn? which implies (m/n) > 1.533, which
contradicts Lemma 11. If zg < —2, we have

alzglm(m — 1) > b|zg|n(n — 1.101),

and 4n(n — 1.101) < (3/2)n((3/2)n — 1), which implies n < 1, a
contradiction. If b > 4a, similar to Case 1.1, we get the congruence
relation

((am? — n?)? — dxim? — 4y?n?)? = 64zlyim®n®  (mod c).

Now from Lemma 9 we have

4a

b
Y < Ezg A< —- a7 2,586 + 4 < 10.343(ac)? T + 4 < .

Then the lefthand side of the congruence is less than or equal to

01/3+0'48, Cl/3+0'48, 00.022+0.7+0.24} <

max { c,

and for the righthand side we have

64:L'(2)y%m2n2 < 60'065+0'694+0'24 <¢

therefore, again, equality holds. We get zo(am?—bn?) = £2xom=+2yn,
and therefore together with azom? + szom = bzon? + tyin we conclude
zom(s £2) = y1in(t £2). Now n = A/B, where A and B are defined
by

A= 23y, (s £ 2) (£t F ),

B = z (abe(y; — x§) + 16(a — b) + daty; F 4bszj) .

Furthermore, we have the following estimates

Al < 22y1(s + 2)(t + s) < 2.01adyicVab



ON THE SIZE OF SETS 1219

and

b
|B| > |zo] (abc(2y1 1)+ 16<Z - b> — daty? — 16s(b — a))

1 12 4t 12
> |zoy1abc<2 - - et A e

> > 1.49|zp|y1 abe.

Y1 acy; be acyy
Then
2.01z2y,cvVab 2 2
M < 1.349 Zo < 1‘34g$
1.49|zo|y1 abe |z0|v/ab 0.9]20|cVab
< 1‘5@ < 00740781 _ ,—0.213 _ 1,
c

which is impossible.
Case 2. V9,11 = Way,. It can be proven in the same way as Case 1.2.

Case 3. vg,, = wa,+1. It can also be proven in the same way as
Case 1.2.

Case 4. Vgyy1 = Wapt1. Lemma 12 with the relations |z9| = ¢,
|z1] = s and zpz; > 0 implies

1 1
:tgastm(m +1)+zo(2m+1) = igbstn(n +1)4+y1(2n+1) (mod c),
and since zg = y; =7 (mod ¢),
1 1
:I:iastm(m +1)+2rm = :|:§bstn(n +1)4+2rn (mod c).
If we multiply this congruence by s, respectively ¢, we get
+2atm(m + 1) + 2rsm = £2btn(n + 1) + 2rsn  (mod c)

and

+2asm(m + 1) + 2rtm = +2bsn(n + 1) + 2rtn  (mod ¢).
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From the estimates

|2btn(n+1)| < 60'011+(1/12)+0'55+0'12 < c0.765 < %C

and 1
0.01140.7+0.06 _ 0.771 _

2 )

we see that we have equalities again, which implies

2rtnc

rm=rn, am(m+1)=bn(n+1),

and m = n = 0, a contradiction. u]

Let us define 6, = s/a\/a/c, 62 =t/b\/b/c.

Lemma 14. If z, y, z are positive solutions of the system of equa-
tions (1) and (2), then
2c
} < =272,
a

max {

Proof. The statement can be shown in exactly the same way as [15,
Lemma 6]. mi

sbx
9, — ——
L7 abz

tay

7

abz

Now we will use Bennett’s theorem about simultaneous rational
approximations of the square roots of the numbers that are close to 1.

Theorem 2 [3, Theorem 3.2]. Let a;,pi,q and N be integers for
0 <7< 2 such that ap < a1 < az, aj =0, for some 0 < j<2,g#0
and N > M?® where M = max{|a;| : 0 < i < 2}. Then

a; Di
/1 = =
max{ + q

A=1+

10<i< 2} > (130N7) 'q=?,

where
log (33N~7)

log (1.7N2 H0§i<j§2 (a; — aj)72>
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y= { ((a2 — ap)?(az — ag)?*/2a2 — ap — a1) if az — a1 > a1 — ag,
((az — ag)?(a; — ap)?/ay + az — 2ag) if az —ay < a; — ag-

Proposition 2. Let {a, b, ¢, d} be a D(4)-quadruple such that
a<b<c<dand c>max{b'?, 102°}. Then d < c*39.

Proof. Let
ad+4=2% db+4=y> cd+4=2°

Now we will apply Bennett’s theorem (Theorem 2) to the following
numbers:

ap=0, a3 =4a, ay=4b, N =abc, M = 4b,
q = abz, p1 = sbx, p2 = tay.

It is easy to check that N > M? = 490°. If b > 43 we have M?® = 4%b° <
b2 < ¢ < N. And if b < 43, we get m? < 10%® < ¢ < N. Moreover,
v = (16b%(b —a)?/2b—a), if b > 2a, and v = (16a%b?)/(a +b), if
a < b < 2a. We conclude that (86%/3) < v < 8b>. Furthermore,

log(33abcy)

A=1
t log(L7a2022 - (1/16%a282 (b — a)?))

:2_)\17

where
_ log(1.7¢/33 - 16%(b — a)?aby)

A= log(1.7¢2/163(b — a)?)

Now Lemma 14 implies

2c -1 A1—2
Py (130abey) ™ (abz)™ =,

2™ < 260a%b3c?y, and finally

log(260a2b3c?y) log(1.7¢2/163(b — a)?)
log (1.7¢/33 - 163(b — a)2aby) '

log z <
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We also have the following estimates

260a2b®c?y < 2080a%b5¢? < 2080682 < ¢* 768,

1.7¢2 <2
163(b — a)? ’
1.7¢ 1.7¢
1.5-107%ch™" > 0203,
33-163(b — a)2aby = 33.16302 - ab - 8b° > c >c
Then ,
2.2.7861og" c
1 o < 27.45]
8% < 0.2031logc < 2745 logc,
and z < ¢4 which implies d < (22 —4)/c < 39, o

Lemma 15. Let {a, b, ¢, d} be a D(4)-quadruple such that a < b <
¢ < d and ¢ > max{b'?, 10?}. Then d =d.

Proof. If we define
ad+4=2% bd+4=y> cd+4=2°
then there exist m, n > 0 such that z = v,,, = w,. But, if n > 2, we
get
c

(&
=wp > —————— > —
v 2.224\/[4]bc( 2.224+v/bc

Then Proposition 2 implies n < 54. If we apply Lemma 13, we get
¢ < 6.47 - 10%%, a contradiction. Therefore, n < 2, and by Lemma 6 it
follows that d = d.. O

ot (0.999vVbe)™ L > /2,

Now we are ready to prove our main result.

Proof of Theorem 1. Assume that {a,b,c,d, e, f, g} is a D(4)-septuple
such that a < b < c < d < e < f <g. Then Proposition 1 implies

f > 0.036@3'502'5 > 0.0364'5(d3'5b2'2)3'5b2'5 > 134 . 107141)37.75 > b12‘

Also, since e > 4 - 107, (see the remark after Definition 1) we get
f > 10%°. So the quadruple {a,b, f,g} satisfies the condition of
Lemma 15. Then g = g, < f(ab+4) < f3, while on the other hand we
have g > 0.036f3°d?® > 3, which gives us the contradiction. o
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