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ON THE EXTENSION OF SCHWARTZ DISTRIBUTIONS
TO THE SPACE OF DISCONTINUOUS
TEST FUNCTIONS OF SEVERAL VARIABLES

V. DERR AND D. KINZEBULATOV

ABSTRACT. The present paper is devoted to the inves-
tigation of the properties of the space of distributions with
discontinuous test functions of several variables. The consid-
eration of discontinuous test functions allows us to define the
operations of integration of distributions and multiplication
of distributions by discontinuous functions which are continu-
ous, defined everywhere and coinciding with the ordinary ones
for regular distributions. These operations are undefined in
the classical space D’ of distributions with continuous test
functions, yet necessary in many applications of distribution
theory: in what follows, we consider a class of zero-sum games
with discontinuous payoff functions; these games may have no
solution in the set of pure strategies or in the set of classical
mixed strategies, but may possess the solution in the set of
R'-mixed strategies which are the elements of the new space
of distributions.

1. Introduction. For the past decades the progress of distribution
theory was highly motivated by efforts to overcome well-known insuf-
ficiencies of the classical space D’ of distributions with continuous test
functions [16]: the impossibility to define in the space D’ the correct
operation of integration of distributions, as well as the correct operation
of multiplication of distributions by discontinuous functions [2, 12, 13,
14, 15] (the operation is said to be correct if it is defined everywhere,
continuous and coincides with the ordinary one for regular distribu-
tions [16]). Numerous applications of distribution theory to ordinary
and partial differential equations [2, 5, 14, 15], where the necessity to
integrate distributions and to multiply distributions by discontinuous
functions arise, demonstrate the importance of the definition of these
operations.
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In the present paper we study the space R’ of distributions with dis-
continuous test functions of several variables, where the correct opera-
tion of integration of distributions, as well as the correct, commutative
and associative operation of multiplication of distributions by discontin-
uous functions, is defined. In the space R/, the family of delta-functions
05 € R' is defined. The parameter « is called the characteristics of the
shape: if n = 1 (the number of variables), then a : {-1,1} — R,
a(l)+ a(-1) =1, and

(1) 05" = a(1)6",

where 0 is the Heaviside function and §T € R/ is the right delta-function
(the notation 6 stands for 6% with a(1) = 1, a(—1) = 0). Due to
continuity of the operation of multiplication in R’, the equality (1) can
also be obtained if the delta-functions are replaced by terms of the
corresponding delta-sequences in R'. The equality (1) resembles the
empiric definitions of the product in the space D’ of the form

(2) 05 =55, PER,

where § € D' (8 = 1/2 in [5]; other values of 8 € R are considered in [5,
12, 13, 14, 15], see further references therein). Despite resemblance
with (1), the operation of multiplication (2) is neither continuous nor
associative (if 8 # 0, 8 # 1). Consideration of the discontinuous test
functions allows us to overcome these and other insufficiencies of the
classical space of distributions D’.

The space of distributions with discontinuous test functions of one
variable was constructed in [8, 9], where the test functions are infinitely
differentiable on R \ {0} and possess a discontinuity of the first kind
(together with all their derivatives) at the point z = 0. In the present
paper we consider the case of several variables and, in contrast to [8,
9], do not pose any restrictions on the set of points of discontinuity of
the test functions (equivalently, on the set of points of discontinuity of
an ordinary multiple). We show that every distribution in D’ admits
a linear continuous extension from the classical space of continuous
test functions D to the space of discontinuous test functions R. Let us
note that the definition of the derivative of a locally-summable function
f € LL_(R) given in [8, 9] by the formula

loc

(' p) = /R f(@)¢! () dz,



DISCONTINUOUS TEST FUNCTIONS 1175

where ¢’ is defined on R\ {0}, gives rise to the operator of differentiation
which is neither continuous nor linear, e.g., 8/ # —(1 — 6)'.

In what follows, we propose another definition of the derivative, which
agrees with the topology in R'. Since the distributions in R’ arise as
the continuations of the distributions in D’, the elements of the space
R’ do not allow unlimited differentiation and, similarly to the elements
of the space D', may be viewed as measures.

Let us mention that every Schwartz distribution can also be inte-
grated, multiplied by a discontinuous function and, furthermore, mul-
tiplied by another distribution, in the algebra of Colombeau generalized
functions [1, 2]. However, in contrast to our approach, in the general
case the value of the integral of a distribution is not an ordinary real
or complex number, the value of the product is not a distribution, but
the Colombeau generalized function [1].

As one of the applications of the results obtained, in the last section
we consider the family of zero-sum games with discontinuous payoff
functions (for more details on noncooperative games with discontinuous
payoff functions, see [4, 11] and further references therein), which in
the general case do not possess the solutions in the set of the pure
strategies or in the set of the classical mixed strategies [7], yet possess
solutions in the set of the so-called R’-mized strategies, which have an
obvious probabilistic interpretation.

2. Regulated functions. In what follows, the algebra of regulated
functions is used to define the space of discontinuous test functions.

Let Q C R"™ be an open set. Let F be the family of finite unions and
differences of convex subsets of 2. We call F the appropriate family.
Following [3], we call a bounded function g : @ — R the regulated
function if, for every z € Q (where Q stands for the closure of Q) and
any € > 0 there exist a neighborhood U, = U,(¢) € F and {S;}I"; C F
such that U, = U™, S;, and |g(y1) — g(y2)| < € for every y1,y2 € S,
1 <% < m. The algebra of regulated functions is denoted by G(Q) and
endowed with the supremum-norm [3]. A regulated function g € G(€2)
is called piecewise-constant if, for every bounded open subset I' C €,
the restriction g|r is a linear combination of the characteristic functions
Xs, where S € {ANT : A € F} [3]. We denote the algebra of piecewise-

constant functions by ISE(Q)
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Lemma 1 [3]. A function g: Q2 — R is in é(ﬂ) if and only if there
exists a sequence {gr}7>; C PC(Q) such that

(3) 19 = 9kllg o) = igg(g(:v) = gk(z)) = 0.

If n = 1, then a(Q) is the algebra of bounded functions possessing
the one-sided limits g(xz+), g(z—) for each z € Q (at the boundary
points of  the existence of one of the one-sided limits is assumed) [3].

Let us define the notion of the surrounding value of a regulated
function g € G(Q) at the point zo € Q. Let S*~! be the unit sphere
in R™ centered at 0. For each s € S~ we define

(4) Yg(20)(8) == lim g(zo +1s).

Let us show that the function v, (zo)(-) is defined everywhere on S™ 1.
Let s € S" ! be given. We denote L = {zg +ts: 0 <t < 1}. Let
Fr:={ANL:AecF}. Then, as follows from the definition of F, Fr,
is an appropriate family for the interval L. By virtue of the remark
above on the algebra G(2) for n = 1, the limit (4) exists.

We denote g(z)(-) = v4(x)(-). We call g(z)(-) : S ! — R the
surrounding value of g at x. If g is continuous at z, then g(z)(-) = g(z),
i.e., the surrounding value is identically equal to the ordinary value.

Example 1. If n =1, then S° = {1, 1}, and the surrounding value
can be identified with the ordered pair of one-sided limits. If n = 2,
then we identify S' and the interval [0,27), so the surrounding value
is the mapping [0,27) — R. For n = 3, the surrounding value is the
mapping of the unit sphere S — R.

Remark 1. Consideration of the surrounding value of a regulated
function at a point of discontinuity allows us (roughly speaking) to
estimate the values of the function in a sufficiently small neighborhood,
which is important for further construction of the space of distributions
with discontinuous test functions.

Lemma 2. For every z € Q, the surrounding value g(x)(-) €
Lee(Sn—1).
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Proof. Suppose that « € Q is given. Clearly, g(z)(-) is bounded. Let
{9k}72; € PC() be the sequence in the formulation of Lemma 1.
Then gx(z)(:) is Lebesgue measurable on S"~!. Due to the uniform
convergence (3) we may change the order of limits in (3) and (4), so

5) sup (9(x)(5) — 9(x) (s)) — 0.

Consequently, g(z)(-) is Lebesgue measurable on S™ ! as the limit of a
uniformly convergent sequence of the Lebesgue measurable functions.
As a result, g(z)(-) € L®(S"71). O

Let J = {g € G(Q) : g(z)(-) = 0 (z € Q)}. Then J is a closed
ideal in G(£2). We define the factor-algebra G(Q) = G(Q)/J, so, every
element of the algebra G(£2) is uniquely determined by its surrounding
values on 2. The algebra G(2) is endowed with the norm

lllac@) = sup{llg(@)() e (s}

Lemma 3. The mapping G(Q2) — L®(S" 1) : g — g(z)(-) is the
continuous algebra homomorphism.

Proof. As follows from the arithmetic properties of the limit, this
mapping is a homomorphism. The continuity follows from (5), see the
proof of Lemma 2. o

Let us define the set of points of discontinuity of g € G(Q2) by
T(g9) = {z € Q: g(z)(-) # const in L>*(S"1)}. In what follows,
by the use of notation g(z) we assume that € Q\ T'(g).

Let us define the support supp(9) = cl{z € Q : g(z)(-) #
0 in Le°(S™~1H}.

Lemma 4. G(Q) is the Banach algebra.

Proof. Since G(Q) = G()/J, where J is a closed ideal, and G(2) is
Banach [3], according to a known statement we have that the factor-
algebra G() is also Banach. O
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Let us denote by PC(2) — G(2) the image of the algebra of
piecewise-constant functions under the canonical mapping G(Q) —
G(R2), where the notation — stands for the embedding, i.e., the
injective map preserving the linear and the topological structure.

Let C(Q) — G() be the algebra of continuous elements of G(f2).
Lemma 5. The closure of PC(Q2) coincides with G({2).

Proof. Let g € G(Q) be given. Let g € G(Q2) be the corresponding
equivalence class of § in G(Q). Then [|g[|g) < ||g||a(ﬂ) by the
definition of the norm in the factor-algebra G(). It suffices to apply
Lemma 1 to complete the proof. ]

Lemma 6. Suppose that g € G(Q2). Then T(g) C U ,0Sy for
certain S, € F.

Proof. Let us denote by f(g) the set of points of discontinuity of a
representative § € G(Q). Clearly, T'(g) C T(g§). According to [3] there
exist S, € F, k € N, such that T'(§) = U3 ,0Sk, so T(g) C U ,0Sk. O

Lemma 6 implies that, if n = 1, then the set T'(g) of points of
discontinuity of g € G(2) is at most countable.

3. Distributions. Let D(f) be the space of functions ¢ € C(Q)
having compact support supp (¢) C © and endowed with the standard
locally-convex topology [16] (the space of continuous test functions).

Let R(2) be the space of functions ¢ € G() having compact
support supp () C Q (the space of discontinuous test functions). The
basis of neighborhoods of zero in R(2) consists of the neighborhoods
Uy ={p € R(Q) : p(2) ()| <~(z) (z € Q)}, where y € C(®), v(z) >0
for all x € Q. Here ¢(z)(:) is the surrounding value of ¢ € R(Q2) at
the point x € Q; we put |o(z)(-)| < v(z) if |o(z)(s)] < y(z) for every
s € S"71. As follows from the definition of the topology in D(2) [16],
we have D(Q2) — R(Q).
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Theorem 1. The space R(QY) is a locally-convex topological vector
space.

Proof. Let us show that, for any two neighborhoods U,,, U,,, there
exists a neighborhood U, such that U,, C U,, NU,,. Clearly, U,, NU,,
consists of the test functions ¢ € R(Q) such that |p(z)(-)] < 71 (),
lo(x)())] < 72(x) for every z € Q. So, it suffices to put ys3(z) =
min{y; (), v2(z)}, z € Q, where v3 € C(Q2), y3(x) > 0 for every x € Q

and U,, =U,, NU,,.

Further, given A € R, |A| < 1, and a neighborhood U, we have AU, C
U, since, for each ¢ € Uy, [Ap()(-)| = [Mle(z) ()] < le(z) ()] < ~(z)
for every z € €.

Suppose that C' C Q is compact. Let ¢ € R(Q2), supp (¢) C C, and
v € C(), v > 0, be given. Since mingcc{|y(x)|} > 0, we may define
A = maxpec{ll9(2) (llgeesn—ty H minec{[7(z)[} > 0. Then, clearly,
¢ € pU, for every p € R, |u| > A

Also, for every neighborhood U, there exists a neighborhood U,/ such
that U, + U, C U,. Indeed, we may put 7' = v/2. According to [7]
the space R(2) is a topological vector space.

Further, consider a sequence of neighborhoods {U,, }7° ;, where v,
1/k on Q. Then N2, U,, = {0}, so according to [7] the space R(Q) is
Hausdorff.

Given a neighborhood U, and the test functions ¢,y € U,, we
have e(@)() + (1 - Ni(n)()] < @) + (1 - V(o)) <
AMy(z) + (1= A)y(z) = y(z), z € Q, for every 0 < A < 1, so Uy is
convex. Since R(?) is Hausdorff, R(Q) is locally-convex. O

The same argument as for the space D’ [16] allows us to show that
vr — @ in R() if and only if there exists a compact subset C' C §
such that supp (¢x) C C, k € N, and @i — ¢ in G(Q).

Let D'(Q2) and R'(Q2) be the spaces topologically adjoint to D(f)
and R(2) (over R), respectively. By definition, the elements of D’'(2)
and R'(2) are the linear continuous functionals defined on D(Q2) and
R(Q), respectively. The elements of D'(2) and R'(Q) are called the
distributions.
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Theorem 2. Every distribution in D'(2) admits a linear continuous
extension from D(Q) to R(Q).

Proof. We have the embedding D(Q) — R(€). According to The-
orem 1 the space R(2) is locally-convex, so the linear and continuous
extension exists by the Hanh-Banach theorem [7]. O

The space R'(2) is endowed with linear operations and weak* topol-
ogy, so fr — f in R'(Q) if and only if (fi,¢) — (f,¢) for every
v € R(Q).

Example 2. Let f € L. _(Q). Let us define the reqular distribution

loc

f € R'(Q) by the formula

(6) (f.¢) = /Q f(@)p(e)de, € R(Q).

Since D(Q) — R() and the canonical mapping L () — D'(Q) is

injective [16], we may identify the elements of L (£2) and the regular
distributions in R’(Q2).

Example 3. Suppose that p € Q. Let o € L*(S™71), [¢. 1 a(s)ds =
1 be given. We define

7 630 = [ aloel)s) ds

where ¢(p)(+) is the surrounding value of the test function p € R(Q)
at p € Q. The linearity and continuity of the functional §¢ follows
from Lemma 3, so §; € R'(Q2). We call 55 € R'(2) the delta-function
possessing the characteristics of the shape a. For any ¢ € D(Q) we
have that the surrounding value ¢(p)(-) = ¢(p), so

630 = [ alodelo)ds = (o),

Thus, J; € R'(Q) is an extension of §, € D'(2) from D(Q) to R(L).

Example 4. Let n = 1, 8 = «a(l) (see Example 1). Then
(05, 9) = Bo(p+) + (1 — B)e(p—). We define the right delta-function
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+.¢) = p(p+), and we define the left delta-function by (6, ,9) =

¢(p—), so
5% = B5S + (1 - PB)s, .

Example 5. Let n = 1, 8 € R. As follows from the properties of
the integral, the sequence {wy}$2 |,

wy, = k(,@x(p,p+(1/k)) +(1- ﬂ)X(p—(l/k),p)>»

converges to a delta-function, i.e., wy — d, where 3 = (1) (see
Example 4); (this explains the use of the term “characteristics of the
shape of the delta-function”).

The derivative of f € R'(Q) is a distribution f' € R'(Q) such that
!
I'lo@) = (flo@)” € D'(Q)-

Example 6. Let n = 1. Since d,|p(q) = 6, € D'(2), and ), = J, in
D'(£2), we have that d; = 6}, for any characteristics of the shape « (so,
the operation of differentiation in R’(2) is multi-valued). Analogously,

o + =) —
oy +c(o) —6;) =19,
for every g € 2, ¢ € R. Note that for any g € €2, ¢ € R, there exists a

sequence {fx}7>, of continuously differentiable functions f : @ — R
such that f, — 6, and f; — 05 + (6] —6,) =0,

We call the support supp (f) C Q of f € R'(Q2) the minimal closed
set such that for every test function ¢ € R(f2) possessing the property
supp (f) Nsupp (¢) = & we have the equality (f,¢) =0.

The distribution f € R'(Q) is called nonnegative (f > 0),if (f,») =0
for any ¢ > 0, ¢ € R(Q). The regular distribution f € R'(Q) is
nonnegative if and only if f(-) > 0 in L{ _(Q). The latter follows

from the embedding D(2) — R(£2) and the fact that the analogous
statement is true for D’(Q2) [16].

The proof of the next lemma is similar to the proof of the analogous
statement for the space D'(Q2) [16].
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Lemma 7. If {fi}32, converges in R'(2), ¢r — 0 in R(QQ), then
(fi, o) = 0.

Proof. Suppose the contrary. Then we may assume that (let us
consider a subsequence, if necessary) there exists a ¢ > 0 such that
[(fi, k)] = ¢ > 0, k € N. Since ¢, — 0 in R(f), then we
may suppose (also, if necessary, let us consider a subsequence) that
okl < 1/(4%). We define ¢ = 28¢), € R(€2). Then we have

1
(8) IClla@) < ok

so x — 0 in R(Q), though

|(Frs Ce)| = 2% (frer 08)| = 2F¢ — 0.

Let us choose fi,, Ck, so that |(fk,,Ck,)| > 1. Suppose that fi;, Cx;
are chosen, 1 < j < 1 —1. Then, for k > K, |(fr,, )| < 1/(2"79),
1 < j <1 — 1. There exists k; > k' such that

-1
(9) |(fkl7§kl)‘>Z|(fkl7§kj)|+l

=1

since |(fx, k)| = 00, (fx,Ck;) = 0, k — co. Suppose that the sequence
{Ck 32, is constructed. Let us define ( = 3777, (k;, where the series
converges due to (8), so ¢ € R(€2). Consequently,

-1

(Frr ) =D (Fris Coy) + (Fros Got) + D (Fras CGiy)-

j=1 I+1
Since (9) holds and
S (Ferln)) < > YR
j=I+1 J=l+1

we obtain that |(fx,,¢)] > { — 1. This contradicts limg_,c0(f%,¢) =
(f: C): where f = limg fk- 0
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Let us define the product of f € R'(Q2) and g € G(f2) by the equality

(10) (9f,¢) = (f,9¢)

where ¢ € R(Q2) and, clearly, gp € R(f2). The operation of multiplica-
tion defined by (10) is commutative and associative in the sense that
(gh)f = g(hf) for any g, h € G(), f € R'(2).

Example 7. Let f € R'(Q) be a regular distribution and let
g € G(Q). Then

(9F,9) = (f9¢) = / f(@)9(2)p(z) de,

i.e., for the regular distributions the operation of multiplication in
R'(Q) coincides with the ordinary operation of multiplication.

Theorem 3. Suppose that g, — g in G(Q), fr, = f in R' (). Then
gefe — gf in R'(2).

Proof. Let us note that grp — g in R(2) for every ¢ € R(Q).
Consequently,

(98 fr, ©) = (9f, 0)| = |(£i, grp) — (£, 9¢9)]
|(fi grp) — (i, 99)| + |(Frs 90) — (f, 99)|
|

<
< |(frs gre — 990)| + |(fr 99) — (f,99)] = 0,
by virtue of Lemma 7 and convergence fr — f in R'(Q). O

Example 8. Let n =1, p € Q. Let us define the Heaviside function
0, € G(2) by the equalities 0,(x) =1, z > p, 0,(z) =0, x < p. Then

(0p05 5 ) == (05, Opp) = BOp(p+)p(p+) + (1—B)0p(p—)p(p—) =B (p+),

ie., 0,00 = 36}, where 8 = a(1), see Example 1, Example 4 and the
Introduction.
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Example 9. Let n = 2, p € Q. Let us find the product of the
function g € G(),

pooxt>ptoa? > p?
glx) =q v o' <p', z® <p?
0 otherwise,

where z = (2!, 22), p = (p*, p?) € Q, and the delta-function 5y € R'(Q)
(a:]0,27) — R, f027r a(s)ds =1). We have
(11)

3m/2

w/2
(962,9) = (62, 9¢) = / a(s)p(p)(s) ds + / a(s)p(p)(5) ds.

Let us denote

w/2 3m/2
p= / a(s) ds+/ a(s)ds € R.
0 T

If p # 0, then the equality (11) can be rewritten as
96, = pdy,

where v : [0,27) — R, fOZTr v(s)ds = 1 are the characteristics of the
shape of the delta-function ¢ given by

(ca(s))/p 0<s<m/2,
v(s) = { (na(s))/p m<s<(31)/2,
0 otherwise.

Let us define the integral of f € R'(Q) over S€ F.:={Se€F:SC
Q} by the formula

(12) /S fde = (f,Xs),

where, clearly, Xg € R(Q2). The integral (12) exists for every distribu-
tion, is linear with respect to the distribution and coincides with the
Lebesgue integral for regular distributions in R’(€).
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Theorem 4. Suppose that S € F., fr — [ in R'(Q). Then
[s frdx — [ f da.

Proof. We have [ frdz = (fr,Xs) = (f,Xs) = [ f d. u]

Example 10. Let n =1, p, 29 € Q, 9 < p. Then
z 0
0 1—a(l) z=p.

Example 11. Let n =2, p € Q, Bg C 2 is a disk centered at p, and
Sp(r) C B} is a sector possessing the central angle r € [0, 27). Then

27 T
/ 0p dx = (65, Xs,(r)) = / a(s)Xs, () (p)(s)ds = / a(s)ds,
Sp(r) 0 0
where 7 € [0,27), and Xg,(r)(p)(-) is the surrounding value of the
characteristic functions Xg () at p € Q.

Remark 2. As is well known, the definition of the correct operation
of multiplication of distributions by the elements of the algebra G(2),
as well as the correct operation of integration of distributions, is
impossible in the space D'(£2) [16], see the Introduction. Along with
that, as follows from Example 7, Theorem 3 and Theorem 4, the
operations of multiplication and integration in the space R'(Q2) are
correct (let us note that the definition of the incorrect operation of
integration in the space D'(f2) can be found in [6]).

4. The family of zero-sum games with discontinuous payoff
functions. Let Q = Qq x Qs C R2, where Q1, Q5 are the open interval.
Let us consider the following zero-sum game

(13) G= (X17X27p)7
where X1, X, are the open intervals, X; C Q1, X2 C Q2, p € G(Q).

4.1. Pure and mixed strategies. The elements z; € X; and
x2 € X3 such that (z1,22) ¢ T(p) are called the pure strategies of the
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first and the second player, respectively, the function p is called the
payoff function of the first player.

Also, we consider game G in the set of the mized strategies, i.e., we
consider the game G = (X{, XE, pT), where

XlL = {u1 € L(Xl) TUu = 0,/ ul(xl)dacl = 1},
X1

XZL = {’LLQ S L(XQ) T Uy = 0,/ UZ(ZL'Q) dry = 1}
X2

are the sets of the mixed strategies of the first and the second player,
respectively, the mapping

pL(ul, ug) 1= / p(z1, x2)uy (z1)us(ze) doy das.
X1 ><X2

is the payoff function of the first player.

As the following example shows, G may have no solution in the set
of the pure strategies or in the set of the mixed strategies.

Example 12. Let X; = X5 = (—1,1),

1 z,29 >0,z +22 <1lor
p(zy,22) = z1,22 <0, x1 + 22 > —1,
0 otherwise.

The game G = (X1, X3, p) does not have a solution in the set of pure
strategies. Indeed, for any z; € X \ {0}, we have sup, p(z1,22) = 1,
i.e., inf,, sup, p(z1,22) = 1. Similarly, for any z; € X; \ {0} we have
inf,, p(x1,22) = 0, so sup,, inf,, p(x1,22) = 0. According to [7] the
solution of G does not exist.

Let us show that the game G does not have a solution in the set of
mixed strategies. Let us define

Gy (2) = / pler, 22 (1) dary,
X1

where u; € X{'. Clearly, the function o, is nonnegative, monotonically
increasing on the interval (—1,0) C X5, monotonically decreasing on
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the interval (0,1) C X2 and is such that oy, (1-) = o,,(—1) = 0. So,
for any € > 0 there exists the strategy u§ € X¥ possessing the support
supp (u3) C (1 —&,1) such that

phus,u8) = [ o, (aa)us(az) doa < e
X2

Consequently, inf,, p”(u1,us) = 0 for any u; € X{. Then

(14) supinf p% (ug,us) = 0.
ug

uy

Analogously, given uz € XZ, we define

Tu (T1) = /X2 p(1, z2)uz(z2) dzs.

Clearly, the function 7,, is nonnegative, monotonically increasing on
the interval (—1,0) C X;, monotonically decreasing on the interval
(0,1) C Xy, and is such that the equality 7,,(0+) + 7, (0—) = 1 holds.
Consequently, for any £ > 0 the strategy u§ € X{ exists possessing the
support supp (uf) C (—¢,¢) such that

ot (us, ug) :/ Tug (@1)ui(z1) dxr > 1 —¢.
X1

Consequently, sup,,, p”(u1,uz) = 1 for any uy € X3'. Then

(15) inf sup p% (ug, up) = 1.

u2 w1

Comparison of (14) and (15) shows that the game G does not a have
solution [7].

4.2. R’-mixed strategies. In order to provide the existence of a
solution, let us consider the game (13) in the set of R'-mized strategies,
i.e., let us consider the game G® = (X{, XE, pF), where

sz = {vl eER' () :v1 = 0,/ vy dry = 1},
X1

XZR = {1)2 € R/(Qz) U 2 0,/ V2 d.’l?z = ].}
X2
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are sets of the R'-mixed strategies of the first and the second player,
respectively, the mapping

(16) P01, 09) = /X (/X p(21,72)0s dac2>v1 day

:/ </ p(xl,xg)vldacl)vgdxg
X, \JXx;

is the payoff function of the first player (the definitions of nonnegative
distribution and the integral of a distribution in the distribution space
R’ were given above).

Definition 1. The elements vy € X{¥, vy € XI such that
x; — p(z1, x2)ve dzg € G(Q4),

X2

Ty —> p(x1, z2)v1 dzy € G(Q3)
X1

and the equality in (16) hold are called R’-mized strategies.
We call the mapping p the payoff function of the first player. Let us

note that X{ c X, X} c X[, see Example 2, and pR|X1L><X2L = pk.
We denote

plzit,22) == lm p(z1,22),  p(z1,25+) = lm  p(z1,22).

11—zl To—rT)

Theorem 5. Suppose that p > 0. If there exists (x7,z3) € X1 X Xo
such that

(17) a?t = hm* p(mlam;i) > p(mlam;i)a x> LET,
w1—>:vl+

(18)  abi= lm plon,adt) > plan,@id), o <,
T1—T)—

(19) L= lim p(xit,z2) < p(ai+, z2), x2 > z3,
T2 —Ty+

(20) b= lim p(eikan) < plai,es), @ < b,

*_
T2 —)Iz
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(21) b, =a’, b=d, b =d, b, =ad",
(22) a’. >a”

and a’, — al+ £ a” —al , then the pair of delta-functions (5;‘1I € XE,

o
552 € X8, where
2

l l l T
a_ —a;y a_ —a_

aj(l) = — as(l) = -
(1) at, —al, —a” +ad.’ 2(1) a, —al, —a” +a’

is the solution of the game G in the set of the R'-mized strategies.

Since the function p is bounded on 2, the case p 2 0 can be reduced
to the case above by consideration of the payoff function p + C for
certain C' > 0.

Proof. 1) Let us show that 6:%, 5322 are the R’-mixed strategies,

i.e., the value p(§3§,5:§) is correctly defined. Let us denote A =
a, —a', —a” +a" #0. Observe that

a —a”

/ P($1a$2)5:§ dzy = ———p(@1,23+)
X2
al —a”
+ (1 - T),)(ml,x;—) € G(Qy).

Consequently, we have the following equality:

/ </ p(wl,x2)5:§ dm)&iﬁ dzq

X, X, 2 1
_al_faﬁ_ at —a” , 1 at —a” -
=72 R G R e

al_—aﬂ_ al_—aT_l at —a” .
+ 11— 1 1 a, + 1_T a’_

l r 1l
* —a’al

A

r
:a+a
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Analogously,

ot a’_ —a .
/X p(mlaxZ)(Szf dzy = ———F p(z}+, z2)
1

According to (21), we have

/ </ p(ml,wz)éﬁ dw1>(5:§ dxo
X, X, 1 2

a —a" [d —al+ at —al
_ = — — T 1— = + T
(e ()

at —a” aﬁ—aﬂrl alf—a{F !
+(1_ . )( . b++(1—7A )b>

l l

- —alaly
A

Then by Definition 1, 62‘3 , 5;‘22 are the R'-mixed strategies for G.

2) Observe that, see [7],

T
:a+a

(23) inf sup p®(v1,ve) > supinf p(vy, vo).
V2 vy U2

Let X2 = (p1,p2) C R. Then we have the equality
(24)

P(5:;17”2) :/X </X p(fvl,xz)5§f dﬂcl) vy dz2
2 1

Ll I
Z/X2 <%P($f+,$2)+(1 - %) P(xf—a$2)>02 dz

Further, according to the definitions of the product and the integral in
the space R/,

(25)
z3 5 z3
/ p(xi+, z2)ve dzg = / bﬂ_vg d:v2+/ (p(zi+,z2) — bl_ir)vg dxs
p1 P1 pP1

T2
= [ v doat (o a4, 2) = X))
P
@3
Z bl+’U2 dCEQ
p1
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since v > 0in R/(Q2), p(x},2) > by, x < @}, according to (20). Since
p =0, A # 0and (22) holds, we obtain that A > 0. Then (19)—(21), the
equality (24) and the argument similar to (25) gives us the inequality

p(6%,03) > / (T+bl+ ; (1 - T+>bl> des
- (%m +(1- %)Q dzs

L (e () Yo
+/:; (—al_ ;al—ka:- + (1 - 7al_ Zlal"'>al+>v2 dxs

a:_ at — aﬂ_ar_

A
for any R'-mixed strategy vs. Consequently,

* a’al —adla" aal —da”
inpr(§:} JUg) > —————F = e, supinfpR(v,vp) > F— —F—
V2 1 A v v2 A
Analogously, due to inequalities (17), (18) and the equalities (21), we

have
l l

. ata_ —aia”
inf sup PR(Ul,Uz) e
V2 gy A

Then (23) implies that

(26) max inf p®(vy,vy) = minsup p®(vy, vy),
V1 V2 v2 v

i.e., the solution of G¥ exists, the maximum and the minimum in (26)
are attained at

* aj * al
(27) v = 5zf and vy = 635;2,

respectively. According to [7] the pair (27) is the solution of the game
G o
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Example 13. Let us consider the game G = (X1, X2, p) of Exam-
ple 12. Let us put (z},2%) = (0,0). Then the conditions of Theorem 5
are satisfied, where

a’, =1, al+:O, a” =0, a_ =1
T l T 1
=1, b, =0, b =0, b =1,

so the pair
(28) 561 e xR 502 e XE,

where the characteristics of the shapes aj, aj of the delta-functions are
given by

0i(1) = a3(1) = 5,
is the solution of game G in the set of the R’-mixed strategies.

Let us note that the solution (28) admits approximation by the mixed
strategies, see Example 5, and thus, possesses an obvious probabilistic
interpretation.
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