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FOCK SPACE TECHNIQUES IN TENSOR ALGEBRAS
OF DIRECTED GRAPHS

ALVARO ARIAS

ABSTRACT. In [16], Muhly and Solel developed a theory
of tensor algebras over C*-correspondences that extends the
model theory of contractions in B(H). The main examples are
generated by Fock spaces, directed graphs and analytic cross
products. In this paper we show that many results of tensor
algebras of directed graphs, including dilations and commu-
tant lifting theorems for C o completely contractive represen-
tations, can be deduced from results on Fock spaces. One of
the main tools we use is that of Poisson kernels, which we
define for arbitrary C*-correspondences. The Fock space ap-
proach allows us to consider “weighted” graphs, where the di-
lation and commutant lifting theorems hold. Additionally, we
prove a rigidity result for submodules of induced representa-
tions of directed graphs, and we obtain projective resolutions
of graph deformations.

1. Introduction. In the last 30 years there have been many at-
tempts to generalize model theory for contractions in B(H), partic-
ularly the Nagy-Foias dilation theory and the commutant lifting the-
orem. For example, Douglas and Paulsen [7] proposed Hilbert mod-
ule language to extend these results to multivariate function theory.
Popescu [21, 22] extended them to a noncommutative multivariate
setting. And Muhly and Solel [16, 17] extended them to tensor al-
gebras over C*-correspondences (Hilbert bimodules over a C*-algebra
A). The language of Muhly and Solel is very general and it includes as
special cases all of the previous examples. Additionally, it includes the
tensor algebras generated by directed graphs, analytic cross products,
and others.

Many aspects of the Nagy-Foias theory are reduced to study of the
unilateral shift in the Hardy space H?, which has orthonormal basis
{z™ : n > 0}. Likewise, many aspects of Popescu’s noncommutative
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theory are reduced to the study of left creation operators on the full
Fock space, which are isometries with orthogonal ranges. The full Fock
space of 13 is

F)=ctely o @)”e )" e @) e,

but we identify it with lo(F} ), the Hilbert space with orthonormal
basis {6, : @ € F{} indexed by the free semi-group on N-generators
91,92, --- ,gn. The left creation operators L; : l5(FL) — l2(F}) are
defined by L;(6) = dg;a, for i < N.

One interesting feature of Popescu’s approach is that many results,
including dilation and commutant lifting theorems, pass from I»(F3)
with Li,...,Lx, to subspaces M that are invariant under adjoints
of the left creation operators. We call these spaces *-invariant. For
example, compression of the left creation operators to the symmetric
Fock space gives rise to Arveson’s d-shifts, and the dilation result
of [4, Theorem 4.5] follows immediately. In this paper we will show
that an induced representation of a tensor algebra of a directed graph
is associated with a subspace of l2(F}) ® H invariant under (L; ®
Ig)*, (Lo ® Ig)*,...,(Ly ® Ig)*. This allows us to apply Fock space
techniques to these algebras.

Non self-adjoint algebras of directed graphs have been studied re-
cently by Muhly and Solel [17, 18], Kribs and Power[13], Jury and
Kribs [9, 10] and Katsoulis and Kribs [11, 12]. Kribs and Power [13]]
introduced a generalized Fock space to study these algebras, but we
will use the C*-correspondence language of Muhly and Solel [16, 17].
The full Fock space techniques seem to adapt better to this language.

In Section 2 we review background material and define the Poisson
kernels for C*-correspondences. These are explicit dilations that are
modeled after Popescu’s Poisson kernel of the full Fock space.

In Section 3 we study non self-adjoint algebras generated by finite
directed graphs. We assume that the directed graph G has N edges
91,92,--- ,gn and n vertices. The formal span of the edges is the
Cuntz-Krieger bimodule E = X (G) over I.. And the Fock module

F(E)=IL0EasE”®0E¥ 0 E® 6.

is the orthogonal sum of the E®*s, where E®* is spanned by elements
of the form g¢;, ® g;, ® -+ ® g;, such that g;, g, - - - g;, is an allowable
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path in G. Each edge generates a left creation operator L(g;) : F(E) —
F(E) defined by

L(g:) (9 ® - ® gi,)
B {gi ®gi, ® - ®¢i, if 9:9i, i, -+ gi, 1s an allowable path in G

0 otherwise.

The tensor algebra generated by G is the norm closure of the algebra
generated by L(g1, ... , L(gn) and n orthogonal projections Q1, ... ,Qx
that add up to the identity and that satisfy the relation L(g;) =
Qr(iyL(9:)Qs(;)- Function r(i) is the range of and s(i) is the source
of the ith edge. Notice that we multiply from right to left.

A completely contractive covariant representation of F = X(G) on
B(H) consists of N bounded linear operators 11,75, ... ,Ty in B(H)
that satisfy Zf\il T;T7 < I and n nonzero orthogonal projections
Py, P,,...,P, in B(H) that add up to the identity and that satisfy

(1.1) T; = PooyTiPygiy-

More abstractly, a completely contractive covariant representation of
E = X(G) on B(H) consists of an ordered pair (7,0) such that
T : E — B(H) is completely contractive, o : [, — B(H) a faithful
x-representation, and 7" and o satisfy an algebraic condition that is
equivalent to (1.1). Moreover, the faithful x-representation o : I —
B(H) induces the Hilbert space F(F)®, H and an isometric covariant
representation of F = X (G) on F(E)®, H with left creation operators
L,(g1),---,Ls(gn) and projections Ind (¢)(e1),... ,Ind (c)(en).

The connection with full Fock spaces lies in the fact that we can
identify F(E) ®, H with an *-invariant subspace of [»(F}) ® H in
such a way that the L, (g;)s are compressions of left creation operators
L; ® Igs on the full Fock space lg(FX,) ® H. We actually have that

Ly (9:)" = (Li ® In) pegyg,u  fori < N.
If graph G has no sinks, the projections Ind (o)(e;)s belong to the

double commutant of the L,(g;)s. This implies for example that the
module maps of the two Hilbert modules

(F(F)®, H; Ly (91) -y Lo (gn) ;Ind (o) (€1),...,Ind (o) (en))
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and

(F(E)®s; H; Ly (91),--- Lo (9n))

are equal. As a result, in many problems we ignore the projections and
study only the left creation operators.

In this paper we work with C.¢ completely contractive representations
(T'yo) of E = X(G) on B(H). These are completely contractive
representations with an extra condition that for example allows us
to define the Poisson kernel K : H — F(F) ®, H. This map is an
isometry and its adjoint satisfies K*L,(g;) = T;K* for ¢ < N, and
K*[Ind (0)(e;)] = o(e;)K* for j < n. This means that

K*:F(E)®, H— H

is a surjective coisometric module map.

In principle there are two possible Poisson kernels associated to the
C.o completely contractive representation (T, 0) of E = X(G) on B(H).
One is the Poisson kernel of the C*-correspondence that we define
in Section 2: Ky : H — F(F) ®, H, and the other one is the full
Fock Poisson kernel Ky : H — I(F}) ® H associated to the maps
Ty,...,Tn. It turns out that when we identify F(E) ®, H with a
subspace of ZQ(F}) ® H, the two maps are equal. This makes the
connection with full Fock spaces even stronger. For example, we show
that there exist partial isometric module maps ®; and ®5 such that
the following is a short exact sequence
(1.2)

0— > F(E)®s Hy, —2 F (B) ®, H —

H 0.

The existence of (1.2) can be deduced from the dilation theorem of C*-
correspondences [16]. However, in this case, we deduce the existence
of (1.2) easily from Poisson kernels on Fock spaces.

If (T1, 0) is a C.¢ completely contractive representation of E = X (G)
on B(H), (Ta,m) is a C.y completely contractive representation of
E = X(G) on B(H), and f : H — H is a module map, then
there exist module maps f; : F(E) ®, Hi — F(FE) ®, H; and
f2: F(E) ®4 Hy — F(E) ®~ Ha such that [|f2|| < [|f1]l < [f]| and
such that the following diagram commutes:



FOCK SPACE TECHNIQUES IN TENSOR ALGEBRAS 1093

3] >3

0 ———— F(G2) =~ H2 —2 5 F(G1) ®s H1 L H 0
2 vy

0 ——— F(G2) ®~Ha ——— F(G1) @ H1 H 0.

This can be deduced from the general commutant lifting theorem of
C*-correspondences of [16], but we deduce it from the commutant
lifting theorem of Fock spaces. We obtain precise information about the
module maps f; and fy. As in the classical case, they are associated to
certain analytic “symbols.” We use this to obtain the following rigidity
result: Suppose that M; and My are submodules of F(E) ®, H; and
F(FE) ®, Hy and that M7 is isomorphic to Mj:

L

P
0 M, F(E) ®y, H —2 M{ 0

L

P
0 M, F(E) ®y, Hy —2 M5z 0.

We prove that if the inclusions M;* C F(E) ®,, H;, i = 1,2, are
“minimal,” then M is isomorphic to Ms. We use this to show
that the map @, : F(E) ®> Hy — F(F) ®, Hy of (1.2) determines
(H;Ty,...,Tn;Py,...,P,) up to unitary equivalence. Following the
classical case, we say that ®, is the characteristic function of H.

The directed graph G5 is a deformation of G, or G; < G5 in symbols,
if G5 can be obtained by identifying some vertices in G;. Katsoulis and
Kribs [11] proved that the left creation operators of G “dominate” the
left creation operators of G;. We strengthen this result by proving that
if Gy < Gy < G3 < .-, then there exist partial isometric module maps
P, : F(Gi+1) Ooisr Hiy — F(Gl) ®e, H; such that

. :I)—3> F(Gg) ®03 H3 :1)—2> F(Gg) ®g2 H2 :I)—l) F(Gl) ®o’1 H1 — 0

is an exact sequence. We also prove a stronger version of the commutant
lifting theorem that allows us to conclude that if f; : F(G1) ®y, H; —
F(G1) ®y, Hy is a module map, then there exist module maps f; :



1094 ALVARO ARIAS

F(G;) ®,, H; — F(G;) ®o, H; such that || fi|| < ||f|| and such that the
following diagram commutes:

@3 By L
w7 F(G3) ®og H3 — 7> F(G2) ®oy Ho — > F(G1) ®oy Hi ————>0

R

23 22 2
< F(G3) ®oy Hy ——— F(G2) ®¢y Ho ——— F(G1) ®, Hi ——— 0.

In Section 4 we look at the weighted Fock spaces F2(w,) ® H studied
in [1, 3]. Given a faithful representation o : I, — B(H) we define
F,.(G)®, H to be a natural *-invariant subspace of F2(w,)® H. The
left creation operators L,(g;) are the compression of the left creation
operators of F2(wy) ® H to F,_ (G) ®, H, and we look at the Hilbert
module

(Fuo (G) @6 H; Lo (91) 5+ -+ Lo (9n) 5 [Ind (0) (e1)], - -, [Ind () (en)]),

where [Ind (o) (e;)]’s are orthogonal projections that add up to the
identity. The left creation operators are no longer partial isometries,
but the main results of Section 3 are true. The proofs of these results
are almost identical, and we only indicate the differences. We decided
to give the complete proof for the full Fock spaces case. The addition of
weights causes no difficulties. The main difference is that the projective
resolutions of (1.2) are no longer finite.

2. Preliminaries and Poisson kernels. A Hilbert C*-module
E over the C*-algebra A is a right A-module with an A-valued inner
product {-,-) : E x E — A with the following properties: (i) (z,-) is
linear for every z € E, (z,y)* = (y,z) for every z,y € E, (ii) (z,y-a) =
(x,y)a for every z,y € E and a € A, and (iii) (z,z) > 0 for every z € E
(moreover, (z,z) = 0 if and only if + = 0). We assume that E is a
complete normed space with the norm ||z| = +/|/{z, z)||.

If F and F are Hilbert modules over the C*-algebra A, a map
T : E — F is adjointable if there exists a map S : F — E such
that for every x € F and y € F,

(Tz,y) = (z, Sy).
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The map S is denoted by T, and one easily checks that 7" is a bounded,
linear and A-linear map, i.e.,ifx € Fanda € A, then T'(z-a) = T(z)-a.
The set of adjointable maps from FE to F is denoted by £L(E, F'), and
the set of adjointable maps from E to E is denoted by £(E). One can
check that L(FE) is a C*-algebra.

Example 1. If A = C, then any Hilbert space H is a Hilbert C-
module with the usual inner product. It is easy to check that £(H) is
the usual B(H).

Example 2 (Sums). Suppose that E; is a Hilbert A-module for
i € I. Define @;crE; to be the set of (z;);e; such that ), (x:, 2)
converges in A. Then ®;c; F; is a Hilbert A-module with inner product

given by ((x:), (vi)) = 2icr(@ir ¥i)-

A Hilbert module E over a C*-algebra A has a natural operator space
structure induced by linking algebra £ (we refer to [5] for details). For
example, if A = C any Hilbert C-module E is a Hilbert space at the
Banach space level and a column Hilbert space at the operator space
level. That is, E = Cj if E is N-dimensional or £ = C'if E is separable
and infinite-dimensional. We also mention that an adjointable map T’
between A-Hilbert modules is completely bounded and |7 = [|T|-
We refer to [14] for additional information about Hilbert C*-modules.

2.1. Tensor products and C*-correspondences over A. Sup-
pose that E is a Hilbert A-module and that F' is a Hilbert B-module.
For every x-representation o : A — L(F) one can construct the “bal-
anced” tensor product F ®, F (if there is no confusion about o, the
tensor product is also denoted E ® 4 F') which is a Hilbert B-module
that satisfies the following properties:

() IfzeE,ye F,and a € A, then (z-a) ® y = 2 ® (0(a)y) (the
tensor product is balanced over A).

(2) If 1,22 € FE and y1,y2 € F, then (1 ® y1,22 @ y2) =
(y1,0((21, 22))y2).

Notice that if E is a Hilbert A-module and o : A — B(H) is an *-
representation, then F' ®, H is a Hilbert space. Indeed, H is a Hilbert
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C-module and B(H) = L(H). Then E ®, H is a Hilbert C-module,
which makes it a Hilbert space.

A C*-correspondence over A, or a Hilbert bimodule over A, is a
Hilbert A-module FE with an *-representation ¢ : A — L(E). The map
¢ induces a “left” action of A on E given by a-z = ¢(a)z. If E is
a C*-correspondence over A we can construct the Hilbert A-module
E ®4 E, and more generally, for every n > 1, we can construct the
Hilbert A-module

E®"=E®4E®4s---Q4 E.

n times

Each of these Hilbert A-modules becomes a C*-correspondence if
o) 1 A — L(E®") is defined by

™ () (21 @12 ® ) =[p(a)21] Q22 ® - - - 2.

The following example is due to Pimsner [15].

Example 3 (Fock module). Let E be a C*-correspondence over
A. The Fock module of E is the Hilbert A-module defined by

F(B)= AGEGE®0E® @ 0 B @ .

F(FE) is a C*-correspondence over A if o, : A — L(F(FE)) is defined
by ¢o(a) = G720 (a).

2.2. Representations and tensor algebras: 7, (E). Let E be
a C*-correspondence over the C*-algebra A. Muhly and Solel [16]
defined a covariant representation of E to be an ordered pair (T, 0)
such that

(1) T: E — B(H) is a bounded linear map,
(2) 0 : A — B(H) is an injective *-representation, and

(3) For every € F and a € A,

T(z-a)=T(z)o(a) and T (p(a)z)=0(a)T (a).

The covariant representation is
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(1) Completely bounded if ||T|| < oo.
(2) Completely contractive if |||, < 1, and
(3) Isometric if T'(z)*T(y) = o((z,y)) for every z,y € E.

Fowler and Raeburn [8] considered isometric covariant representation
but they did not require o to be faithful. They called such representa-
tions Toeplitz representations.

Example 4 (Fock representation). Suppose that E is a C*-
correspondence over A, and let F'(E) be the Fock module of Example 5.
Define

L:E— L(F(E)) by Lz)(n)=zQmn.

It is easy to check that (L, ¢ ) is an isometric covariant representation
into L(F(E)).

The tensor algebra of the C*-correspondence E is denoted by 7 (E),
and it is the norm-closed subalgebra of L(F(E)) generated by L(x) for
z € E and ¢ (a) for a € A. This is the non self-adjoint part of an
algebra introduced by Pimsner, see [15]: The Toeplitz algebra Tg is
the C*-algebra generated by L(z) for x € E and ¢ (a) for a € A.
Pimsner also defined Of (the Cuntz-Pimsner algebra) as a quotient of
Te. These algebras have been the object of much study recently.

Muhly and Solel proved that every completely contractive covariant
representation of F induces a completely contractive representation
on 7, (E), and it is easy to see that every completely contractive
representation on 74 (E) induces a completely contractive covariant
representation on E. Moreover, they proved that every completely
contractive covariant representation has a unique minimal isometric
covariant dilation [16].

The Fock representation is an isometric covariant representation of
E into an abstract C*-algebra. Every x-representation o : A — B(H)
induces an isometric covariant representation into a concrete Hilbert
space:

Example 5 (Induced representation). Suppose that E is a
C*-correspondence over A and that ¢ : A — B(H) is an injective
x-representation. Define
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Ly: E— B(F(E)®, H) by Ls(z)(n) = L(z) ®n,
and
Ind (6): A— B(F(E)®, H) by Ind (0)(a) = ¢ (a)®I.

It is easy to check that (L,,Ind (o)) is an isometric covariant repre-
sentation into the bounded linear operators of F(E)®, H. Notice that
since F(E) is a Hilbert A-module, F(E) ®, H is a Hilbert space.

Suppose that (T, o) is a covariant representation of E into B(H). Let
E ®, H be the subspace of F ®, H spanned by vectors of the form
z ® h, where z € E and h € H, and define

T:E®, H—H by T(x®h)=T (z)h.
The following lemma of Muhly and Solel is fundamental:

Lemma 1 ([16]). T is completely bounded if and only if T is bounded.
And, more precisely, ||T||, = |T : E ®; H — H||. Moreover, (T,o) is
isometric if and only if T : E ®, H — H is an isometry.

2.3. Poisson kernels. In this section we define the Poisson kernels
for Hilbert bimodules by adapting the definition of Poisson kernels for
Fock spaces. These were introduced by Popescu in [24], where he used
them to prove several versions of von Neumann inequalities. In [2]
we used them to obtain noncommutative multi-variable interpolation
results, and in this paper, we use them to study C*-correspondences of
directed graphs.

Let (T,c) be a completely contractive covariant representation. For
every k > 1, define

ﬂ:E®k®JH—>H by ﬁ(azl@xg@---@xk@h)
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Since TFFL(TFF1)* = T*(Iger @ T)(Iger ® (I)*)(TF)* < TH(TF)*, it
follows that

T(T)* =TTV > T2(T?)" > .- > T*(T%)* > 0.

The representation is called C. if SOT — limk%ooﬁ(ﬁ)* = 0, see
[19].

Let A: H — H be A = (I — T(T)*)*/2, and define

(21) K:H—F(E)®, H by K(h iIE@c@A T%)"h.

Since

(2.2)

H IE®k®A Tk ‘ <(IE®k®A ) h, (IE®k ®A)(ﬁ)*h>
= <(IE®k ® A?) Tk’ >
:<(Iw®[r 7(7) ])( ), (@)
_ <(T )*h) — (Tk+1) h, (Tk+1) >

<[Tk — TETL(TRR) ]h,h>,

we obtain the following proposition:

Proposition 1. Suppose that (T,o) is a completely contractive
covariant representation. Then

(1) K: H— F(F)®, H is a bounded map.
(2) K : H —» F(E) ®, H is an isometry if and only if SOT-
limy 0o T*(T*)* = 0 of and only if (T,0) is a C.y representation.

B) K*(z1 @22 ® - @z ® h) = T(x1)T(x2) - - T(xr)Ah for every
TRy ® @ ®h € E® ®, H. Consequently,

(a) K*L,(z) = T(z)K* for every x € E, and
(b) K*[Ind (0)(a)] = o(a)K* for every a € A.
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Proof. Parts (1) and (2) follow from (2.2), and (3) (a) and
(b) follow easily from the formula K*(z; ® 22 ® - ® 2 ® h) =
T(z1)T (z2) - T(zk)Ah. So we only need to verify the formula. Let
k' € H. Then

(K* (21 @22 @@z @ h),h')
= (21 Q22® -+ @z @ h, K(R'))

<x1®w2®---®mk®h,(I®A) (ﬁ)*(h’)>
= <m1®m2®---®xk®Ah, (ﬁ)*(h’)>
= <ﬂ(x1 ®x2®---®xk®Ah),h'>

= (T(z1)T (z2) - T(x)Ah,h').

This proves the proposition. a

2.4. W*-correspondences and H*(FE). A Hilbert C*-module E
over the von Neumann algebra M is a W*-module if F is self dual. This
means that for every M-linear bounded map f : E — M, there exists
an a € E such that f(z) = (a,z). Paschke [20] proved that if E is a
W*-module, then F is a dual space and that £(E) is an abstract W*-
algebra. A W*-correspondence over the von Neumann algebra M is a
W*-module E over M, and a w*-continuous injective homomorphism
©: M — L(E).

If (E, ) is a W*-correspondence, then so is (F(E), poo). Muhly and
Solel defined H*(E) to be the WOT closed subalgebra of L(F(E))
generated by L(x) for x € E and ¢o(a) fora € A. If 0 : A — B(H)
is a faithful normal x-representation, then H*(F) is isomorphic to the
WOT closed subalgebra of B(F(E) @, H) generated by the induced
representation, see [18]. We call this algebra H°(E).

A covariant representation of E in B(H) is an ordered pair (T, 0)
such that T : E — B(FE) is a w*-continuous bounded linear map,
o : M — B(H) is a w*-continuous injective homomorphism, and
T(z - a) = T(z)o(a) and T(p(a)z) = o(a)T(a) for x € E and
a € M. As before, the covariant representation is completely bounded
if T is completely bounded, completely contractive if T' is completely
contractive, and isometric if T'(z)*T(y) = o({(z,y)) for every z,y € E.
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It is useful to note that a completely contractive C.y-representation
(T,o) induces a representation in H*°(E). Indeed, the map @ :
B(F(E)®,H) — B(H) defined by ®(B) = KBK* is WOT-continuous.
Identify H>°(E) with the WOT closed subalgebra of B(F(E) @, H)
mentioned above, and notice that the restriction of ® to this algebra
is an isometric representation that is continuous with respect to w*-
topologies.

2.5. Noncommutative algebras on Fock spaces. One of the
most important examples of C*-correspondences is given by Popescu’s
noncommutative analytic algebras [21]. Let A = C and E = IY, or
E = CY if we look at the operator space structure of E. The left action
is trivial and then I ®c Y ®c - ®c 1 (k-times) is the usual tensor
product of Hilbert spaces. Then F(FE) is identified with the full Fock
space [2(F}), the Hilbert space with orthonormal basis {J, : @ € F}}
indexed by the free semi-group on N-generators g1, gz, ... ,gn. The left
creation operators L; : lo(F L) — [2(F}) are defined by L;(6a) = 04,0,
for i < N. The norm closure of the algebra generated by the L;’s and
the identity is a noncommutative analogue of the disc algebra A(D),
and it was denoted by Popescu by Apx. The WOT closure of Ay is a
noncommutative analogue of the Hardy space H*°, and it was denoted
by Popescu by F°. It can be easily checked that 7 (E) = Ay and
that H>(E) = F°°.

In [23], Popescu proved that the commutant of F* is generated by
the right creation operators R; (which are defined by R;(ds) = duyg;)
and the identity. (In [6], the WOT closed subalgebra generated by
the R;s and the identity were denoted by Ry, and the WOT closed
subalgebra generated by the L;’s and the identity were denoted by Ly.)

Since A = C, a completely contractive representation (T,c) has
trivial o, and it is entirely determined by the completely contractive
map T : Cy — B(H). Let 0;, i < N, be the canonical basis of Cy,
and let T; = T(6;) for i < N. It follows that (T,c) is completely
contractive if and only if Y T;7 < I, which is equivalent to T' =
(T}, Ts,...,Ty) being row contractive. And (T,0) is C.o contractive
if and only if WOT-limy_, o ZaeF;,M:k T,T% = 0 (we use the free

semi-group on N generators Fj\', to represent arbitrary products: if
o= giyGi, " Gij, € FE, then T,, = T;,T;, - -- T3, ). Popescu called this
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condition Cy, and he showed that whenever T' = (T}, T5s,... ,Tn) is a
Cy row contraction, there exists an isometry K : H — lo(F},) ® H that
satisfies K*(L; ® Iy) = T; K* for ¢ < N. This is the construction that
motivated the definition of Poisson kernels for C*-correspondences.

The #-invariant subspaces play an important role in Fock spaces.
Consider I5(F}) ® H with ampliation of the left creation operators:
Li®Ig,... ,Ly®Ig. A subspace M C I, (F})@H is called *-invariant
if for every ¢ < N, (L; ® I,)*M C M. Define V; = Py(L; ® In,) | m
for i < N, and notice that

‘/7:1‘/;2”"/1'k :PM(Lil ®IH)(Li2 ®IH)"'(Liz ®IH)‘M
= Pa (Liy Liy -+ Liy, @ Ig) | -

This implies that, for every ¢ < N, Pyp(L; ® Ig) = V;Py. In the
notation of the next section, it is stated that (M;Vi,...,V,) an
submodule of (lg(F}) ®H;Ly ® Iy,...,Ly ® Ig) and that Py, is a
module map; see [1] for related results.

The following summarizes some of the most important tools of F*°.

Theorem 1 [22, 23]. Suppose that M C l2(F}) ® H is a subspace
invariant under (L; ® Ig)* for i < N, and that N C I(F) ® H is
invariant under (L; @ I3)* fori < N. If f : M — N is a bounded
linear module map, then there exists g : lo(FL) ® H — I(F}) @ H
such that lgl) = £, f = Pxaini, and g(Ls ® L) = (Ls ® In)g for
every i < N. Such a map g is of the form g = ZaeF; R, ® A, for
some Ay : H — H. Furthermore, if M is invariant under (R; ® Ig)*
for i < N, and N is invariant under (R; ® Iy)* for i < N, any map
of the form Py (Ra ® Aa)im : M — N is a module map.

2.6. Hilbert modules. A Hilbert module over an index [ is a
Hilbert space H and a family of bounded linear maps {7, : H —
H}oer If (H,{Th}aer) and (K, {Sa}tacr) are two Hilbert modules, a
module map f: H — K is a bounded linear map that intertwines the
T,s with the Sys. That is, fT, = S, f for every a € I. The Hilbert
modules are isomorphic if an isometric surjective module map exists
between them.

For example, if E is a C*-correspondence and (T, 0) is a completely
contractive covariant representation on B(H), H is the Hilbert module
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with maps {T'(z)}.cr and {o(a) }aca. The adjoint of the Poisson kernel
is an example of a module map.

Proposition 2. Suppose that (T, 0) is a C.g-completely contractive
covariant representation of the C*-correspondence E on B(H), and
let K : H — F(E) ®, H be the Poisson kernel. Then (T,7) is a
C.o-completely contractive covariant representation of E in B(K(H)),
where T : E — B(K(H)) is f(x) = Pgu)Lo (%) k) and 7 : A —
B(K(H)) is 5(a) = Px(m|Ind (0)(a)] |k (mry. Moreover, Hilbert modules
(H;T(z),z € E;0(a),a € A) and (K(H);T(z),z € E;5(a),a € A) are

isomorphic.

Proof. From Proposition 1 it follows that Ind (c)(A) leaves K(H)
invariant and therefore @ : A — B(K(H)) is a representation. Let
z € E and a € A. Then

—

T(z-a)= Pr(myLo (z - a) g (1) = Pr(m) Lo () [Ind (o)
— Pty Lo (@) Piany [0 (o) (@) g ary = T ()

a)] |K (H)

(a).

Q)

To check the other direction, start from

~)

(p(a)r) = Pg(gy[Ind (0)(a)] Lo (@) k (m)-

Then

[7 (¢ (@)2)]" = P Lo (2)]" [ (0) (@) e
= P sy [Lo (2)]" Pr(ary [Ind () (@) ey

~

=[Tw] B =[@Tw)| .

Hence we obtain that (f, o) is a completely contractive covariant
representation of E in B(K(H)). The isomorphism is implemented
by (K*)|k(m), and the module map properties follow from (3)(a) and
(3)(b) of Proposition 1. o

Since H and K(H) C F(E)®, H are unitarily equivalent, the Poisson
kernel can be used to show that a completely contractive C.g covariant
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representation can be dilated to an isometric induced representation.
This is a result of [16].

A completely contractive covariant representation of the C*-corres-
pondence E on B(H) induces two natural Hilbert modules:

(H5 {T (x)}zEE ) {U (a’)}aeA) and (H7 {T (m)}zeE) .
We will study Hilbert modules H that satisfy

(2.3) {he H:T(z)h =0 for every z € E} = {0}.

Proposition 3. Suppose that, for i = 1,2, (T;,0;) is a completely
contractive covariant representation of E in B(H;). Suppose also that
H, satisfies (2.3). If f : Hi — Hs satisfies fT1(z) = To(x)f for every
x € E, then for every a € A, we have foi(a) = o2(a)f.

Proof. Fix a € A and z € E. Then

T3 (z) [fo1 (a) — 02 (a) f] = T2 (z) fo1 (a) — T2 (2) 02 (a) f
= fT1 (z) o1 (a) — To (x) o2 (a) f
=fTi(z-a) = To(z-a)f
=Tif(x-a)—Ta(x-a)f =0.

Since z € E is arbitrary, it follows from (2.3) that foi(a) = o2(a)f. O

If the completely contractive covariant representation (T, ¢) in B(H)
does not satisfy (2.3), we can find a largest X C H such that the
compression of (T,0) to H satisfies (2.3). Define Hy = {h € H :
T(x)h = 0 for every z € E}. Notice that Hy is invariant under T'(x)
for x € E and under o(a) for a € A. The first statement is clear. The
second is easy: If h € Hy, a € A, and z € FE, then T(z)[c(a)h] =
T(x - a)h = 0 because « - a € E. Since x € E is arbitrary, it follows
that o(a)h € Ho. Define T : E — B(Hg) by T(z) = Py T(2) s
and define & : A — B(Hg") by 5(a) = Pyio(a)gs. We can easily
check that (T',5) is a completely contractive covariant representation
that satisfies property (2.3).
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Property (2.3) is satisfied if (T, o) is an isometric covariant represen-
tation, E is a full Hilbert A-module and A is unital. This simplifies a
little bit the proof of the commutant lifting theorem of [16], because
one does not have to pay attention to the algebra A. We illustrate this
in subsection 3.3.

3. C*-correspondence of directed graphs. Let G = (G°,G,r, s)
be a directed graph with vertex set G°, edge set G', and range and
source maps 7,5 : G} — G°. For simplicity, assume that G° and
G! are finite, say G° = {v1,...,v,} and G = {e1,... ,en}. We
view each edge ¢; as an arrow from s(g;) to r(e;). We multiply from
right to left and we say that €;,¢;,_, - €i,€i, is an allowable path
in graph G if and only if r(e;;) = s(ei,), r(ei,) = s(ei5) ..., and
r(gir_,) = s(€;,)- The set of allowable paths of G is denoted by T'q,
and it can be thought of as a subset of F} We extend the definitions
of r,s: T'g — G in the obvious way: s(g;,€i,_, " €i,€i,) = s(€;,) and
T(E":kE":k—l e siZEil) = T(Eik)‘

Let A =1 (G®) =12, and define the Hilbert I -module E = X (G)
to be the set of functions z : G! — C with module action over I, given
by

r-a(e)=z(c)a(s(e)) forz e E,ac A, and ¢ € G,

and

(z,y) (v) = Z z(e)y(e) for z,y € E and v € G*.
{e€Gt:s(e)=v}
Let e; € I be the canonical projection (e;(v;) = 0 if ¢ # j and
e;(vj) = 1if i = j), and define g; : G* — C by gi(¢;) = d;;. Notice

that £ = X (G) is the span of the g;s and that

0 if i #j
es(si) if 1 = j

(9i,95) = {

In the future, we will write s(g;) or s(i) instead of s(g;), and we will
assume that the range of r and s is {1,2,... ,n} instead of G°.
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The range function r : G — {1,... ,n} defines the x-representation
0 : 1% — L(E) by

0 ifr(g)#J
gi ifr(g:;) =j.

o) o) = {

With the left action, the Hilbert [Z -module £ = X(G) is a C*-
correspondence, and it is called a Cuntz-Krieger bimodule.

For k > 1, we construct E®* = EQ,EQ®,,---®,E (k times), and then
we define the Fock module of Example 3: F(E) =" @ E®E®*®--- .
To understand the structure of F(FE), it is instructive to look at a
simple example. Let g; ® g; € E®2 and notice that

9i ® 95 = [9i - €s(g)] ® 95 = 9 ® ¥ (es(qn)) (95)
_{0 if 7 (g;) # s (9:)

gi®g; ifr(g;) =s(g)

Similarly, g;, ® i, ® -+ ® g;, € E®* is nonzero if and only if
9i19i, - Gi, = 7 is an allowable path in I'c. We denote g, :=
9i, ® gi, ® -+ ® gi,,. Moreover, we can check that

( > { 0 ify#a

v Gal = ese,) ify=oa

This implies that {g, : ¥ € I'g and |y| = k} is a basis of E®*. If
o : 17 — B(H) is an *-representation, then g, ®, H is orthogonal to
Ja ®s H if o # 7.

3.1. Full Fock space representations. In this section, we study
induced representations of the Cuntz-Krieger bimodule of Example 5.
We will prove that they are associated to *-invariant subspaces of full
Fock spaces. Consider a faithful *-representation o : i — B(H). This
decomposes H = Hy ® Hy @ --- ® H,,, where H; = o(e;)H for j < n.
Notice that if g; ® ¢ € E ®, H, then

Gi®T =g+ esg) ®T =i @0 (exgy) ().

Hence, we can assume that x € Hy(g,). Similarly, if g, ® z € E®t @, H
is nonzero, then v € I'g and, since g, @ = g,-e,(,) @ = g, Q0 (e,)(),
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we can assume that © € H,(,). It follows that F'(E)®, H is spanned by
vectors of the form g, ® x for v € '¢ and x € H,(,) and by vectors of
the form 1®z for € Hj, j < n. Consequently, we identify F'(E) ®, H
with the closed subspace M, of Io(F ) ® H spanned by vectors of the
form

(3.1) {(57®:v:vef‘g,xeHS(V)}U{%@m:xEH}.

Proposition 4. There exists an *-invariant subspace M, of
lo(FX)®H such that the Hilbert module (F(E)®,H;Ly(g1), - - - Lo (gn)
is unitarily equivalent to the Hilbert module (My; Pa, (Li®1) a5 -
Pr, (Ly @ I)jp,,)-

Proof. Let M, be the subspace of F(E) ®, H spanned by vectors of
the form (3.1). If v = gi, 9i, - - - gi, € ¢ and = € H,(,), then

, . _ gy g, @z i (y) =7(g:) =1
u4®ng(@®xy_{0 oo 21

And, naturally, (L; ® Ig)*(6op ® ) = 0 for every z € H. Thus, it
follows that M, is *-invariant in Iz(F};) ® H. Define u: F(E)®, H —
2(F}) ® H by u(gy ®x) = 6, ®w if y € I'g and = € H,(,) and by
w(l®x) =0 @ if x € H. The map w is unitary and we easily check
that u(Ls(g:)) = Pm, (Li ® I)jam,u for every i < N. This proves the
result. O

For j < n, Ind(o)(e;) corresponds to projection P; : M, — M,,
defined by

(3.2)
0@z ifr =3
P; (57®x)_{ K ) @ ] for v € T'g and dx € Hy(,)
0 ifr(y) #J
oRx ifj=k
Pj (60@.’13):{ 0 J for x € Hy.
0 if j + k.

As a result, we simply identify F(F) ®, H with M,, and we assume
that
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(3.3)
F(E)®, HCl,(F§)®H is *-invariant,
L (9i) = Pr(p)o,u (Li ® I)|p(pyg, i for i < N, and that
Ind (o) (e;) = P; is given by formula (3.2).

Notice that for every i < N,

L, (gi) = Pr(gi)Ltf (92) Ps(gi)'

Definition 1. A directed graph G has no sinks if every vertex is the
source of a directed edge.

The following simple observation tells us that the two natural Hilbert
modules associated to a directed graph are equivalent if the graph has
no sinks.

Lemma 2. Suppose that G has no sinks and that o : 1) — B(H) is
a faithful x-representation. Then F(E) ®, H satisfies property (2.3).
That is, if Ly(gi)z =0 for i < N, then z=0 in F(E) ®, H.

Proof. Tt is enough to look at vectors of the form (3.1). First take
v € I'c and a nonzero x € Hy(,). Since G has no sinks, there exists
j < N such that s(g;) = r(vy). Then L,(g;)(6y ® ©) = 64,4 ® x is
nonzero. Now take a nonzero x € Hy. Since G has no sinks, there
exists a j < N such that s(g;) = k. Then L, (g;)(do ® z) = dg, @ x is
nonzero. O

From Proposition 3, we obtain

Corollary 1. Suppose that G has no sinks, and let o : 1", — B(H)
and w: I — B(H) be injective x-representations. If T : F(E)®, H —
F(E) ®; H is a bounded linear map that satisfies TL,(g9;) = Lr(9:)T
for i < N, then T[Ind (c)(e;)] = [Ind (7)(e;)]T for j < n.

The condition that G has no sinks is necessary.
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Example 6. Suppose that G is a directed graph with incidence
matrix [(1) (1)} Label the vertices {a,b} and the edges {g1,¢92}, where

g1 goes from a to a and g, goes from a to b. Define T : F(E) ®, 13 —
F(E) ®, 3 by the formula

T (60 ® €a) = 0g, ® €0, T (00 ® &) = 0,

and
T(6y®h)=0 foryeTlg.

We can easily check that T'L,(g;) = L,(9;)T = 0 for ¢« = 1,2, and
this implies that T intertwines the L,(g;)s. However, T does not
intertwine the projections. If P, is the projection induced by vertex
a, then TP,(dp ® &) = T(dp ® €a) = dg, ® &. But since r(g2) = b,
P,T (60 ® &a) = Pa(dg, ® &4) = 0. Therefore, the condition that G has
no sinks is necessary.

3.2. Poisson kernels and von Neumann inequalities. Suppose
that (T, 0) is a C g-completely contractive representation of £ = X (G)
in a Hilbert space H. We start by giving the explicit form of the
Poisson kernel of (T, o). Notice that the representation is characterized
by the bounded linear maps T'(g1),... ,T(gn) and by the orthogonal
projections o(e1),...,0(e,). For simplicity, we will denote T'(g;) =
T; for i < N. Recall that 7% : E®* @, H — H is given by
Tk(gi1 ®Gi, - - '®gikgh) = Ti1E2 T Tzk(h) If7 = Gi19i " Jix € FE’
we can write this as T*(6, ® h) = T),(h), where T\, = T}, T}, - - - T}, .

Lemma 3. If (T, 0) is a completely bounded covariant representation
of E = X(G) in a Hilbert space H, then for every k > 1, (T*)*(h) =
Z}?FG, y|=k 07 ® (Ty)*(h). If k =0, then T* is the identity from H
to H.

Proof. Let h € H. Then (ﬁ)*(h) = D€l |y|=k 0y ® @ for some
Ty € Hyy). To see that z, = (To)*(h) for a € T'g with |a| = k, take
h' € H,(q) arbitrary and compute

(%) (1), 00 @) = (A TF (00 @) ) = (b, Tal') = ((La) B, 1) .
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On the other hand,

<(Er7c)* (h), b ®h’> = < > 6, ®x,,0, ®h’> = (za, 1) .

vela
lvl=k

Since h' is arbitrary, we conclude that z, = (Ty)*h. O

It is well known that if (T, 0) is completely contractive, then T =
(T1,...,Tn) is a row contraction. You can see this from Lemma 3:
A%h = (I — TT*)h = h — YN, T;Tfh, and hence A2 = I —
SE T s o

Proposition 5. The Poisson kernel of the C o-completely contractive
representation of E = X(G) in a Hilbert space H is the isometry
K :H — F(E)®, H given by the formula

K(h)=0®Ah+Y > 6, 0A(T,) h.
k=1~v€lq
lv|=Fk

Proof. The formula follows from (2.1). We only need to comment on
the £ = 0 case. Since A is unital, we identify A ®, H with H in the
natural way: 1®h +— h. Recall that we identify 1® h with §o ® h when
we see 1 ® h as an element of the x-invariant subspace of lo(F})® H. 0

Suppose that (T, o) is a C o-completely contractive covariant repre-
sentation of E = X(G) in a Hilbert space H. This representation
induces two natural Poisson kernels on H. The first one is the Poisson
kernel of the C*-correspondence of subsection 2.3. This is the isometry

Ko :H — F(E) ®, H defined by Kc (h)
=0 @Ah+Y D 5 @A(T)" h.

k=1v€lq
lv|=k
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We use the subscript K¢ to indicate this is the Poisson kernel of the
C*-correspondence.

On the other hand, we can look only at the row contraction T' =
(Ty,Ts,...,Ty). Since this is a Cp-row contraction, we have the Fock
space Poisson kernel associated to T'. This is the isometry

Kp:H—1(F)®H definedby Kp(h)= > 0a®A(Ts)"h

aEFx

where A and T, have the same meaning as in the Poisson kernel of the
C*-correspondence. We used the subscript Kr to indicate this is the
Poisson kernel of 7" and that it takes values in the Fock space.

Proposition 6. If we use (3.3) to identify F(E) ®, H with an
x-tnvariant subspace of lg(FE) ® H, the Poisson kernel of the C -
completely contractive covariant representation of E = X(G) in a
Hilbert space H is exactly the Poisson kernel of the Cy-row contraction
T=(T1,...,Tn). In particular, Kp(H) C F(E)®, H.

Proof. The proof of this result is simple. We only need to show that
if a ¢ I'g, then T, = 0. Recall that, for every i < N, T; = P,(4)T; Py(y)-
Ifa= 9i19is " Giy,y WE have

Ta = Elﬂz o 'Tik

= Pr(iy) Loy Po(in) Priin) Tio Ps(in) = Priin_y) Tin 1 Pstin_1) Priin) Tin Psir) -

Then it follows that T, # 0 only if s(i1) = 7(i2), s(iz) = r(is),...,
and s(éx—1) = r(ix). But this means that o € I'¢. Therefore, the two
maps are equal and they have the same range. We just note that A
commutes with the projections. ]

In [11], Katsoulis and Kribs proved the following von Neumann
inequality associated to directed graphs: Suppose that 17,75,... ,Tn
are bounded linear operators in B(H) such that T = (T1,Ts, -+ ,Tn)
is a row contraction and that Py, P,,... , P, is a family of orthogonal
projections on H that add up to the identity and that stabilize T in
the following way:

T;P;, P, T; € {T;,0} for i < N and j <n.
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They noted that this relation determines a directed graph with n
vertices and N edges, whose source and range maps are determined
by the relation

T; = Pr(iyTi Py(i)-

They proved that if p(z1, 22,... ,2zy) is a noncommutative polynomial
in N variables, then

3.4)  |p (11, Ts,... ., TN)I < lp (Lo (91) s Lo (92) -+ » Lo (gn))I,

where o : I, — B(H) is the xrepresentation generated by the Pjs.
They denoted [|pll¢,c0 = [P(Loy(91), Los(92),-- - 5 Loy (9i)) || (motice
that this has the same value for any faithful *-representation o : [T, —
B(H)).

We will show that this inequality can be deduced from the usual von
Neumann inequality on Fock spaces. Assume first that the norm of
[T1T5 - - T] is smaller than one, and hence that 77,...,Ty is a Cy
contraction. (If this is not the case, replace T; with rT; for 0 < r < 1.
Obtain inequality (3.4) for this r and then let » — 1.) Then construct
the Fock space Poisson kernel K : H — I5(F}) ® H of the Cy row
contraction 7. Map K has the property K*(L; ® Ig) = T;K* for
i < N, which implies that, for every a € Fi;, K*(Ly ® Ig)K = T,
Popescu’s noncommutative von Neumann inequality follows from this.
Indeed, since

p(Tl,TQ,... ,TN) :K*p(L1®IH,L2®IH,... ,LN®IH)K,

||p(T17T2a 7TN)H < Hp(L1®IH7L2®IHa 7LN®IH)||
= Hp(LlaL27"' aLN)H

We can strengthen this result because K takes values in F(F) ®, H.
Indeed,

Ta = K* (La ®IH)K = K*PF(E)®(,H (La ®IH)PF(E)®<,HK
= K*L, (g0) K.

Hence, we have that

p(T17T27'-' 7TN) :K*p(LO' (gl):LO' (92)7 7L0' (gl))K7
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and this implies that

Ip(T1, T2, - .., TN < |lp(Lo(91), Lo (92)s - - - 5 Lo (gn))]-

Kribs and Katsoulis defined an order of directed graphs. Suppose that
G is a graph with N edges and n; vertices and G5 is a graph with N
and ng vertices. G is a deformation of Gy, or G; < G2 in symbols,
if we can obtain G5 from G by identifying some vertices in G;. For
example, the graph with one vertex and N edges—which corresponds
to the usual full Fock space—is the largest graph of N edges.

They proved that if G; < G3, then the left creation operators of Go
dominate the left creation operators of Gy. That is, if p(z1, 22, .. ,2N)
is a noncommutative polynomial in N variables, then

12l Gy 00 < 1PllGy,00 -

The following proposition gives an alternative proof of this result.
In subsection 3.4 we will strengthen this result using homological
language.

Proposition 7. Suppose that G; < Gs, and let o1 : [} — B(H)
be a faithful representation. Then there exists a faithful representation
o2 : 172 — B(H) such that F(Gy) ®,, H C F(G2) ®,, H C 12(F}) ®
H. This implies that F(G1) ®y, H is an =-invariant subspace of
F(G2) ®¢72 H. Consequently} La1 (gi)* = Laz (g’)rF(E)®,,H fO’I’i < N}

and p(Lo,(91), Lo, (92),--- > Loy (9:)) = PMolp(Loz(gl)vLoz(QZ)a T
Loy (91) 1Mo, -

Proof. Assume that the equivalent edges of Gy and G are indexed
by the same ¢ € {1,...,n}. Let o1 : I — B(H) be a faithful
representation. This decomposes H = Hy & --- ® H,,. The equivalence
relation that identifies vertices in G1 to obtain GG induces a partition
on {1,2,...,n}. Let Ay, As,...,A,, be the set of equivalent vertices,
and define o, : {22 — B(H) by o2(e;), where o3(e;) is the orthogonal
projection onto H; = ®;eca,H;. Clearly, 'q, C I'g, and if v € I'g, we
have Hy, (4) C Hs,(y). Therefore, every element in F(G) ®,, H is an
element in F(G3) ®,, H. O
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Popescu pointed out to us that the Wold decomposition of Jury and
Kribs [9] is a consequence of the Wold decomposition for isometries with
orthogonal ranges. The argument goes like this: Let T1,75,... ,TN be
partial isometries on B(H) satisfying (1.1). Let V1, Va,..., Vi be the
minimal isometric dilation on the Hilbert space K O H. Take the Wold
decomposition of the V;s on K and decompose K = K; & K.. Denote
H; = HNKs; and H. = HN K,.. It is easy to check that Hs and
H, are invariant under the T;s. Moreover, the restriction of the T;s to
H; is a Cy-contraction of partial isometries that satisfies (1.1), and the
restriction of the T;s to H, is a Cuntz contraction. The Poisson kernels
can be used to prove that the restriction of the T;s to H is a direct
sum of the shifts L,(g1), Ls(92),--- s Lo(gn)-

3.3. Intertwining spaces and commutant lifting theorems.
Muhly and Solel [18] developed a general duality theory for W*-
correspondences that says H2°(E) is its double commutant. This was
also proved by Kribs and Power [13] for free semi-groupoid algebras.
We will use Fock space techniques to characterize the maps that
intertwine the left creation operators of two induced representations.
We will obtain the specific form of these maps. This is useful in
subsection 3.4. Furthermore, the methods of this section generalize
to the weighted graphs that we study in Section 4.

Theorem 2. Suppose that G has no sinks, and let o : I, — B(H)
and w: 1%, — B(H) be faithful x-representations. If T : F(E)®, H —
F(E) ®, H satisfies TL,(g9;) = L(g;)T for i < N, then there exist
operators A, € B(H,H) satisfying Ay = Py, AaPH,, fora €l
and operators A; € B(H,H) satisfying A; = Py, A;j Py, for j < n such
that

T=> (I®A4) M, + Y (Ra®Ad)m,-

j=1 a€lg

Let T : F(E) @, H — F(E) ®, 1 be a bounded linear map that
satisfies TLy(g;) = Lx(g;)T for i < N. By Theorem 1 there exists T:
12(FL) @ H — 1o(F) ®H such that | T|| = | T, T(L; ®1) = (L; @ I)T
for every 1 < N, and PMWf\MU = T. Moreover, T= ZaeF; R, ® A,
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for some A, € B(H,H) (recall that R,(dg) = da). Hence,

(3.5) T=> Ru®Aa= > D> > Ra® Py, APy,

aEF} aEF; j=1k=1

Lemma 4. Let a € F. Then Pa, [Ro ® Py, Ao Pu,)im, 15 nonzero
only if « € T'g and j = s(a). Moreover, the maps of the form
[Ra X PHS(Q)AQPHT(Q)]‘MU for a € T'g, and [I X P?{jAaPHtha for
Jj < n map M, into M, intertwine L,(g;) with L(g;) and intertwine
Ind (0)(a) with Ind (7)(a), even if G has sinks.

Proof. Suppose that Pu, [Ra ® Py AaPrlim, # 0 for [a] > 1.
Then either there exists v € I'¢ and = € Hy(,) such that P, [Ra ®
Py, Ao P ], (04 ®2) = (0ya ® Py, Ao P, x) # 0, or there exists z €
Hy, such that Py, [Ro ® Py; Ao P, Jjm, (00 @) = 00 ® Py, Ao Pz #
0. In either case it is clear that a € I'g and that Py; A, Pu,x # 0,
which implies that s(a) = j.

Suppose now that a € I'g and define W, = [Ra®PHS(Q)AaPHT(a)]|MU.
We show first that W, maps M, = F(F)®, H into M, = F(E)®,H.
We only need to check the vectors of the form (3.1). If v € ' and
S Hs(’y)a then

Oya ® PHS(Q)AQPHT(Q):E eM, ifs(y)

=r(a)
0 if s (7) #

Wa (6, ® z) = { (o)

r
r
And if x € Hj, then

00 ® Py, AaPr, v € My ifj=r(a)
0 if j #r(a).

These two formulas prove that W, M, C M, . We will check now
that W, intertwines L,(g;) and L,(g;) for i < N. As before, we
only check vectors of the form (3.1). Let v € I'g and ¢ € Hy(,.
Then WoLo(9:)(6y ® &) = Ogiqa @ PHs(a)AaPH‘r(a)x if s(g:) = ()
and r(a) = s(y), and WaLs(9:)(dy ® ) = 0 otherwise. On the other
handa Lw(gi)Wa(5’7 ® LE) = 5gi’ya ® P?-L 44(J¢1:)HT(O‘)3j if T‘(Oé) = 5(7)

W

s(a)
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and s(g;) = 7(a) and L,(9:)Wa(6y ® ) = 0 otherwise. Now let
z € H;j. Then WoLy(g;) (0o ® ) = 04,0 @ Py, AaPr, T if s(g)) =13
and r(a) = j and WyL,(9:)(do ® ) = 0 otherwise. On the other
hand, Lr(g:)Wa(do ® ) = dg,a ® Pa,,,AaPu, ., if r(a) = j and
r(a) = s(g;) and L, (g;)Wa(0o ® ) = 0 otherwise. This proves that
WaLs(gi) = Lz(gi)Wy for every i < N.

We will now check that W, intertwines Ind (o)(e;) and Ind (o)(e;).
As before we look at vectors of the form (3.1). Let v € T'¢ and
r € Hyy. Then W,[Ind (0)(e;)](0y ® ) = 0ya ® &s(a) if r(v) = 7
and (o) = s(y) and Wy[Ind (0)(e;)](0y ® ) = 0 otherwise. Now let
x € Hj. Then [Ind (7)(e;)]Wa(0y ® ) = §ya @ &y(qa) if 7(a) = s(v) and
r(v) = j, and [Ind (7)(e;)]Wa(6y ® x) = 0 otherwise. This proves that
[Ind (7)(e;)]Wa = Wa[Ind ()(e;)].

Now define Q; = [I ® Py, AaPh,]jr, - A similar proof will give that
QiMs C My, QjLy(g9:) = Lr(9:)Q; for i < N, and Q;[Ind (0)(e;)] =
[Ind (0)(e;)]Q; for j < n. O

It follows from Lemma 4 that
T =T+ Ty,

where
T = Z Ppm, (Ra ® PHS(Q)AQPHr(a))\Ma

a€l'g

+ ) Pr, (I © Py AoPry) pa,
j=1

Ty= Y Y Pat,(Ra®Pr o AaPi)im,
a€clg k#r(a)

+ Z Z P, (I ® Py, AoPr,)|m,, -
=Lk

An averaging argument shows that 7} and T, are bounded.

Lemma 5. |T1|| < ||Tl.
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Proof. Let

n

2= Y (5p®@bg)+ Y (6o ®b;) € F (E) @, H,

aclg j=1

where bg € Hygy and b; € H;. Then

PMWﬁMU (2)

n
= Z da ® Z P’Hr(a)Aabk +P’HT(Q)Aabr(a) + Z P’HT(,Y)A‘Ybﬁ
a€el’ k=1 ,B€T
¢ Lk#7r(c) ‘Yﬁ'yzac
n n
+ 250 ® ZP’H]-AObk + Py Aobj
j=1 k=1
Lk#7
Let € = (e1,62,-+,6n) € {—1,1}" be a fixed sequence of signs.

Define the unitary map ®. on F(F) ®, H by
g (6, @ if |y|=0 and z € H;
<I>E((57®a:):{](7 ) "Y| J
Er(y) (67 @z) if|ly|>1,7y€lg, and € Hs(,y),
and define a similar unitary map ®. on F(F) ®, H. Then we have

®,. 0 PMWZA]MU o ®, (2)

:;’Zr:(la) (Ekfr(a)) Py, oy Acbr + (6r(a)6r(a)) Py, oy Aabr(a)

- Zwﬁerc (er(@)Er(a)) Proyy Avbs
’Y:a

n

n
+ Z&o ® Z (EkEj) P’HjAObk + (EjEj) PHjA()bj
Jj=1

k=1
k#j

Notice that if 8y = « then ¢,y = €,(4). This means that the signs
(€k€r(a))s (Er(a)Er(a)), and (gj¢;) in (3.6) are equal to +1, and (crer(a))
and (exe;) are sometimes equal to +1 and sometimes equal to —1. If
we look at all possible signs € = (1,2, ,&,) € {—1,1}", then half
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the time (exe, (o)) and (exe;) will be equal to +1 and half the time
they will be equal to —1. When we take the average over all signs, the
terms that have (ere,(q)) and (exe;) in front of them disappear and
(3.6) becomes

Average., 41 [‘PE o PM,,ﬁMU °®. (Z)}

= Z o ® P’HT(Q)Aabr(a) + Z PHT('\{)A’Yb/B
a€lg v,8€le
By=a

+ 250 ® [PHJ.AOI)J'] .

i=1

Since this is equal to T3(z), we obtain that |71] < ||PMWT"MV|| <
1Tl =T]. o

Notice that it follows from Lemma 4 that 77 commutes with {L,(g1),
ooy Lo(gn)}-

Lemma 6. For every v € I'c and x € Hy(), T2(0y ® &(4)) = 0.
Consequently, if Fy(E) ®, H is the closed span of 6, @ x for v € T'q
and © € Hy(,), we have that Ty py(p)e,1; = 0. Moreover, if G has no
sinks, To = 0.

Proof. Let v € I'¢ and = € Hy(,). We will prove that T5(d, ® z) = 0
by checking that each term in 75 annihilates 6, ® x. Take first a € I'g
and k # r(c). Then

PMW (Ra ® P’Hs(a)AaPHk)\M,, (57 ® l’)
0 if s (v) #
Py, ((5.ya ® PHS(Q)AQQ:) if s(y) =

k
k

Now, P, (040 ® P, ,Aaz) # 0 only if r(a) = s(y). But this
implies that 7(a) = k, which is not possible. Hence Ppq (Ro ®
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Py, oy AaPr,) M, (0, ® ) = 0. Fix now j,k < n with k # j. We
easily see that Pay, (I ® Py, AoPm,)im, (64 ® x) # 0 only if & = s(7)
and 0y ® Py, AoPp,r € M. But this implies that j = s(v), which is
not possible since k # j. This proves the first part of Lemma 6.

Notice that T and T} intertwine L, (g;) and Ly (g;), and T = T7 + T.
Hence, we have that T» also intertwines L, (g;) and L,(g;). That is,
for each i < N, L(g;)T> = T2L,(g;) = 0. And since G has no sinks,
it follows from Lemma 2 that F(E) ®, H has property (2.3) and this
implies that T5 = 0. O

This completes the proof of Theorem 2. a

We now obtain a particular case of the duality of [13, 18]. We will use
the rank one maps 6, , : H — H that map y tox and O, , =1 ® 0, .

Corollary 2. If G has no sinks, the double commutant of {L,(g1),
.-, Lo(gn)} is generated by {L,(g;) : ¢ < N} U {Ind (0)(e;) : j < n}.
Consequently, {Ls(91),.-.,Lo(gn)}' =2 H°(E).

Proof. Let T : My, — M, be an element of {L,(g1),...,Ls(gn)}".
By Theorem 2 applied to m = o, we have that T" commutes with maps
of the form

{[Ra ® A]\MU ca€Tlgand A= PHS(Q)APHT(Q)} ,

and
{[I@A]WU : A= Py, APy, and j < n}

Fixz € Hj. Then T(6o®x) = 10, 5 (0o®@z) = O4 ;T (00®@x) = Yy
for some 9, € lo(FY). If z,y € Hj, then T(0y ® y) = 10, (0o ® ) =
Oy,:T (0 ® ) = ¢, ® y, and T(dp ® y) = ¥y, ® y. This gives that
1y = 1)y, and since = and y are arbitrary, we conclude that there exists
¥; € l2(F};) such that

(3.7) T(bo®z)=19%;®x for every x € Hj.

Moreover, for z € Hj, ¢¥; @ x = 9; ® o(ej)z = ¥, - ¢; ® x, and we can
assume that ¢; = ¢; - e;. The map T is determined by (3.7). Indeed,
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let yeTl'g,z € Hs(’y) and y € Hr(’y)- Since 6’17y =Py
have that

s(a) ezvyPH\s(a) , We

T (57 ® ac) =T [R7 & ez’y] (50 ® y) = [R7 ® ez’y] T (50 ® y)
= [Ry ® 0,,] (wr("/) ® y) =R, (1/17’(7)) ®z.

Fix j < n, and consider T; = T'[Ind (0)(e;)] : My — M. Since both
T and [Ind (o)(e;)] belong to the double commutant of the L, (g;)s, so
does T};. Moreover, T} is determined by

Y@z ifk=j

Tj(50®$):{0 ik for z € Hy.

Then it follows that T} is the left multiplication by ;. Using an
argument similar to [13] we obtain that T} is in the WOT closure of the
span of {L,(g;) : 4 < N}. And since T' =T} + --- + T},, we have that
T is the WOT closure of the span of {L,(g;) : 4 < N} U {Ind (o)(e;) :
j<n} O

The commutant lifting theorem for Fock spaces can be used to obtain
several versions of the commutant lifting theorem for directed graphs.
We use the following version in the next section.

Theorem 3. Suppose that G is a graph with no sinks, and let o, :
A — B(H) be faithful x-representations. Suppose that (H;T1,... ,TnN)
is a Hilbert module satisfying

(3.8) {heH :T;h =0 for every i < N} = (0)

and that ® : F(E) ®, H — H is a coisometric module map. Then, for
every module map f : F(E) ®, H — H there ezists f1 : F(E) ®, H —
F(E) ®x H satisfying ||f|| = [[fll, f = ®o f1, and fiLo(x) = Lr()f1
forz e E.

Proof. Our goal is to define f; : F(E) ®, H — F(E) @, H. To do

so, we first extend the diagram to l2(F}) ® H.
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LFY)®H

12(F) ®HL>F(E) ®c H—L 9.

Since f o Py, is a module map and ® o Py, is a coisometric
module map, by Popescu’s commutant lifting theorem, there exists
g+ L(ER)® H — L(Ff) ® H such that [lg] = [|f], g(Li ® In) =
(L ® H)g for every i < N and ® o Py, (9)|m, = f- Such a function g
is of the form

9= Z Ro® Aoy = Z ZZRa®PHJ’AaPHk

+ + oj=1k=
acF} acF} J=1k=1

for some A, : H — H.

The compression Puq, (9)m, : F(E) ® H — F(E) ®, H satisfies
| Prt, (9)im, || = [ f]] and QO[PM (9)jm,] = f, but it doesn’t necessar-
ily intertwine the L, (g;)s and the L.(g;)s. (According to Theorem 1,
this would be formal if F(E)®, H and F(E)®, H were invariant under
the (R; ® Iy)* and (R; ® I3)* but they are not).

Similarly as in Lemma 4, we have that for a € F}, Py [Ry ®
PH]’.AaPHk]lMG is nonzero only if @ € T'¢ and j = s(a). Moreover,
maps of the form

[Ra ® PH;(O‘)AQPHT(Q)} L., foracla,

and

[I® PH;AQPHJ " for j<n

o

intertwine L, (g;) with L. (g;) and Ind (0)(a) with Ind (7)(a).
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Then we have that

Py gm, = [+ fo,

where
fl = Z PMW(RQ X PH;(a)AaPHT(a))|Ma
a€elg

+) Py, (I® Py AoPh;)|m,

Jj=1

f2= % Y Pm.(Ra®Puy AaPr)im,
a€lg k#r(a)

+ ZZPMW(I@ PH;AOPHk)\MU
J=1k#j

The maps f; and fy are bounded and ||f1]] < ||f|| by Lemma 5. In
general, we do not know if fo = 0, but we will show that ® o fo = 0.
This implies that ® o f; = f. The map f; : F(E)®, H - F(E)®, H
satisfies all conditions of Theorem 3.

Similarly, as in Lemma 6, we check that for every v € I'¢ and
r € Hyy), f2(6, ® x) = 0. This means that f5p, (g)g, m = 0. Since
f and ® o f; intertwine L,(g;) with T;, we have that ® o f5 also
intertwines L,(g;) with T;. Let z € F(F) ®, H. For every i < N,
T;0®o0 fa(z) = Po faoLy(gi)(z) =0, because Ly (g;)(z) € Fo(E)®, H.
By (3.8) we have that ® o fa(2) = 0, which is what we wanted to
prove. O

The next example shows that condition (3.8) is necessary.

Example 7. Let G be a graph with no sinks, and suppose that (T, )
is a C'¢ completely contractive covariant representation of E = X (G) in
B(#) that does not satisfy property (3.8). Then there exists a nonzero
h € H such that T'(g;)h = 0 for every ¢ < N. Find j < n such that
h # ©(e;)h, and define f : F(E) ®, H — H by

hoifk=j

f(50®§k)—{0 ik £
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and f(éy ® fs(’y)) = 0 for
bounded and that fL,(z

h = flInd (0)(e;)] (60 ® &;

v € I'gq. We easily check that f is
= T(z)f = 0 for every z € E. Moreover,

)
), but 7(e;)f(00;) = m(ej)h # h.

Property (3.8) is not necessary if we include the projections in
Hilbert modules. If (T,0) is a C.o completely contractive covariant
representation of E = X (G) in B(H), we look at the Hilbert module:
(H;Ly(91),--- ,Ls(g91); Ind (o)(e1),--., Ind(o)(e1)). The following is
a proof of a particular case of the general commutant lifting theorem
of Muhly and Solel [16].

Theorem 4. Suppose that (T1,71) and (Tz,ms) are C.o completely
contractive covariant representations of E = X(G) in B(Hy) and
B(H,), respectively, and that ® : Hy — Hj is a coisometric module
map. Then, if 0 : A — B(H) is a faithful x-representation and
f: F(E)®, H — H; is a module map, then there exists a module
map f : F(E) ®, H — Hy such that ® o f = f and ||f]| = ||f|. That
is, the following diagram commutes

Proof. Let Ky : Hy — F(E) ®,, Ha be the Poisson kernel of (T3, m2).
and define ¥ : F(E) ®,, H» — Hy by ¥ = ® o K. Following the proof
of Theorem 2, we find fi, fo : F(E) ®, H — F(E) ®x, Hy of the form

fl = Z PMﬂ— (Ra ® PHs(a)AaPHT(a)MMU

a€lg

+ Y Pu, (I® Py, AgPr,) p,
j=1
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f2 = Z Z P (Ra @ P,y AaPr) | m,
a€lg k#r(a)

+ Z Z Pp, (I ® Pr;AoPr,,)im,,
J=1 k#j
such that ¥ o (f; + f2) = 1.

Notice that f and ¥o f; are module maps, and hence V¥ o f5 is also a
module map. We need to prove that Vo fo = 0. Since for(r)9,n =0,
it is enough to prove that ¥ o f5(dp ® h) = 0 for h € Hy and k < n. So
fix k < n and take h € Hi. Then

Z 50( ® PHS(Q)Aah + 260 ® PH]AOh

f2 (50 X h) =
aclg j=1
rla) Ak Jk
= Y. [Md (@) (er@)] (0 ® Pr,(,, Aah)
aclg
r(o)#k

+ 3 [Ind (0) ()] (30 ® Pa Aoh)

ik
and
Vo fg (50 ® h) = Z T (er(a)) v (Ja ® PHS(D‘)Aah)
a€lg
r(a)#k
(3.9) n
+ Zﬂ'l (€j) \IJ ((50 ® PHJth) .
2

On the other hand,
Yo f(bo®h)=Vo fr[Ind (o) (ex)] (b0 @ h) = m1 (ex) Yo f2 (6o @ h).
Since 71 (ex)m1(er(a)) = 0 if r(a) # k and 7 (ex)m1(e;) = 0 if k # j, we

see from (3.9) that 71 (ex)¥ o f2(dg ® h) = 0, which is what we wanted
to prove. To finish, define f = K3 o fi. ]
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Suppose that we work on a category of Hilbert modules. A Hilbert
module H is called strongly orthogonally projective if, whenever there
exist Hilbert modules H;, H;, a surjective coisometric module map
® : H, — H; and a module map f : H — Hy, there exists a module
map fi : H — Ho satisfying || f1|| = || f|| and fio® = f

g
H—1 . m.

This property was introduced by Douglas and Paulsen [7] with the
name “hypoprojective,” and it was later renamed “strongly orthogo-
nally projective” by Muhly and Solel.

Theorem 4 says that the Hilbert modules

(F(E)®; H; Lo (1) s Lo (9n) ;Ind (o) (e1) ;... ,Ind (o) (en))

are strongly orthogonally projective in the category of C.y completely
contractive covariant representations of E = X(G). The following
proposition characterizes the projective elements in this category:

Proposition 8. Let G be a graph with no sinks. If (T,c) is a C.g
completely contractive covariant representation of E = X (G) on B(H)
such that H 1is strongly orthogonally projective, then H 1s isomorphic
F(E)®, L for some L C H.

Proof. Let K : H — F(E)®, H be the Poisson kernel of (T, o). Since
H is isomorphic to K (H), we have that K(H) is strongly orthogonally
projective too. Consider the diagram

F(E)®, H
JPK(H)
K(H)—Y - K (H),

where P (g is the orthogonal projection and Id is the identity. Recall
that K(H) is xinvariant and that Pgg) is a module map. Then
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there exists a contractive module map ® : K(H) — F(F) ®, H such
that Pg(gy o @ = Id. The condition ||®|| = 1 forces ® to be the
identity, and it follows that K(H) is a submodule of F(F) ®, H.
This implies that K (H) is invariant under the L,(g;)s and L, (g;)*s
for i < N. In particular, K (H) is invariant under [ — L, (g1) Ly (91)* —
o+ —Lg(91)Lo(g1)*]. Since [I — >, Lo(gi)Lo(gi)*] is the orthogonal
projection in F(F) ®, H onto the subspace dy ® H, it follows that

I =Lo(91) Lo (91)" =+ = Lo (91) Ly (91)"] K (H) =60 @ £

for some £ C H.

Arguing as in the proof of Theorem 7 of the next section, we see that
L is the “right slice” of K (H). This implies that K(H) C F(E) Q, L.
On the other hand, we have that F(E) ®, £L C K(H) because K(H)
is invariant under the L,(g;)s. Therefore, we have proved that H is
isomorphic to F(E) ®, L. u]

3.4. Hilbert module formulation. In this section assume that
the graph G has no sinks. Let o : {2 — B(H) be a faithful x-
representation. We view F(E) ®, H as the Hilbert module (F(F) ®,
H;L,(91),---,Ls(g1); Ind(o)(e1),... ,Ind (c)(e1)), but sometimes we
ignore the projections and look only at the Hilbert module (F(E) ®,
H;L,(91),---,Ls(g1))- Suppose that M C F(E) ®, H. We say that
M is an x-submodule of F(E) ®, H if

L, (g;)* M C M for every i < N,
and

[Ind (o) (¢;)]* M C M for every j < n.
And we say that M is a submodule of F(E) ®, H if

Ly (gi) M C M for every i < N,
and

[Ind (o) (e;)] M C M for every j < n.
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If M is either a submodule or *submodule of F(E) ®, H, define
T:E — B(M)by I'(x) = PuLs(z)jpq and 7 : 17, — B(M) by
o(a) = Ppm[Ind (0)(a)]jam, and notice that (T,7) is a C p-completely
contractive covariant representation.

The *-invariant submodules play a very important role. Proposition 2
can be restated to say

Proposition 9. Suppose that (T, c) is a C.q completely contractive
covariant representation of E = X(G) on B(H). Then the Hilbert
module (H;T(z),z € E;o(a),a € l%) is isomorphic to an x-submodule
of F(E) ®, H.

If M is a submodule, the representation (7,0) is isometric. Then
A? is a projection and A% = A. The set A(M) = L is the wandering
subspace. The Poisson kernel of T'is an isometry K : M — F(E)®z; M.
However, since A is the orthogonal projection onto £, we see from (2.1)
that K(M) C F(E) ®; L.

Proposition 10. Suppose that M is a submodule of F(E) ®, H
with wandering subspace L and Poisson kernel K : M — F(E) @5 M.
Then K(M) = F(E) ®s L. Consequently, the invariant subspaces of
F(E)®, H are of the form F(FE) ®s L.

Proposition 10 was proved by Muhly and Solel in the general setting
of C.g-completely contractive covariant representations [17] and by
Kribs and Power for free semi-groupoid algebras in [13]. We sketch
a proof of this result using Poisson kernels. The same proof works in
the general setting of Muhly and Solel. Notice that, for every i < IV,
(T;)*A% = A?T; = 0. Hence, it follows that if v € I'g, |y] = j and
z € L, (Ty)*z =0 and AT,z = 0. Recall that K*(§, ® z) = T,z. Then

K (Ty2) = 6y ® A (T z) +Z (Iger ® A) (T*)" (Ty2)
=1

— (T9)" (T, (TJ)*T ®2)=06,®2

This shows that F(E) ®s £L C K(M), which is what we wanted to
show.
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We can reformulate the last two propositions in the following way:

Theorem 5. Suppose that (T,o) is a C.o completely contractive
covariant representation of E = X (G) on B(H). Then there exists a
Hilbert space L, an isometric module map @1 : F(E) ®, L — F(E) ®,
H, and a surjective coisometric module map ®2 : F(E) ®, H — H,
such that the following is a short exact sequence

0 F(E)® £L—22 s F(B)o, H—2 - H 0.

Proof. Suppose that K; : H — F(E) ®, H is the Poisson kernel of
H, and let ®; = K. Since ker ®; is a submodule of F(F) ®, H, it is
of the form F(E) @4 L for some £ C F(FE) ®, H. The map that sends
F(FE) ®s L onto ker ®; is an isometric module map. O

The sequence 0 — F(E) ®s L 2z, F(E)®,H 24 H —» 0s called
a projective resolution of Hilbert module H. From Proposition 8, we
obtain the following theorem:

Theorem 6. If (T1,0) is a C.o completely contractive representa-
tion of E = X(G) on B(H), (Tz,7) is a C.o completely contractive
representation of E = X(G) on B(H) and f : H — H is a module
map, then there exist module maps fi : F(E) ®, Hiy — F(E) @ H1
and fa : F(E) ®s Hy — F(E) @ o satisfying || f2[] < || f1ll < [[f]] and
such that the following diagram commutes:

0——— F(Gy) ®s Hy —2 F (G1) ®y Hi — 22— H 0

T

0— > F(Gy) @ Hy —2 F (G1) @ H1 —2H 0.

Proof. Since f o @ : F(G1) ®, Hi — H is a module map and
U, : F(G1) ®r H1 — H is a coisometric module map, it follows from
Theorem 4 that there exists f1 : F(G1) ®, Hi — F(G1) ®, H1 that
satisfies ||/ = [|f o @] = ||f]] and f o @1 = ¥ o fy.
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We claim that f; maps ker ®; into ker ¥;. To see this take x € ker &
and compute ¥y (f1(z)) = f(P1(z)) = 0. Then we have the diagram

F(Gs) ®5 Hy —22—s ker &,

f1) ker &4

F(Gy) ®3 Ho —22— ker ®,.

Applying Theorem 4 again, we see that since fi|rera, © P2 : F(G2) ®5
Hy; — ker @, is a module map and ¥ : F(G3) ®;z Ha — ker @o
is a surjective coisometric module map, there exists a module map
fo: F(G2) ®5 Hy — F(G3) ®5 Ha satisfying the required properties. O

We need the following definition:

Definition 2. If £ C F(E)Q®,ls, the “right slice” of £ is the smallest
Hilbert space H C I3 such that £ C F(E) ®, H.

It is easy to see that the right slice of £ is the closed span of
vectors of the form {z; : j < n}U{z, : v € I'g} where z =
Z?:l do @ x; +Z’YEFG 0y ®xy€E.

If : F(F)®, H — H is a surjective coisometric module map, then
®*(H) is an *-invariant submodule of F(EF)®, H isomorphic to H. We
say that ® is a munimal resolution of H if H is the right slice map of
o*(H).

We now prove a rigidity result:

Theorem 7. Suppose that M; C F(E)®, H and My C F(E)Q,H
are submodules such that Mi and My are isomorphic, H is the right
slice of M1, and H is the right slice of M5 . Then M; and M, are
isomorphic via a map of the form I @ U, where U : H — H 1s unitary,
and UH; = H; for j <n. The subspaces H; and H; correspond to the
decomposition H = Hy @ --- ® H,, induced by o : I, — B(H) and the
decomposition H = H1 @ --- & Hy, induced by w: I, — B(H).
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PMJ_
0 My F(E)®, H L Mt 0
P
(3.10) o M F(BE) @ H ——— M§ 0
JfZ Jul
PML
0 Mi F(E)®s H L M 0.

Proof. Suppose that there exists a u : Mi — Mj such that u and
u~ ! are isometric module maps. Since uPps : F(E) ©@0 H — My is a

module map and Py F(E)®,; H — M is a surjective coisometric
module map, it follows from Theorem 3 that there exists a module map
fi: F(E)®;H — F(E)®xH such that || f1[| = 1 and Py fi = uPy,z.
Similarly, there exists a module map fo : F(E) @ H — F(E) @, H
such that || fo|| = L and Py fo = u 1Py

The maps f; and fy are of the form

leZI®Aj+ Z R"/®A7
j=1

v€le

fr=) 1®Bj+ Y Ry® B,
j=1 Y€l

where Aj = PHjAjPHj for j < n, 14,y = PHS("{)A'YPHT‘('y) for v € T'g,
Bj = PHJ.BJ'P%], for j < n, and B,y = PHs(a,)B’YPHr(w) for v € I'g.
Since || f1]| = ||f2]| = 1, it follows that [|A;]| < 1,||B;|| < 1 for j < n,
and ||A,]| <1, ||B,]| <1 for v € I'g. We verify that

fofi = (ZI ® B,-A,-)
j=1

(3.11)

+ Z R,y® B’YAT(‘Y) +Bs(7)A7+ Z BaA,B

v€lg Ba=y
a:ﬁerG
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We will check that for every z € Mi, fafi(z) = z. Notice that ||z|| =
lutuzll = |Pacs foPais i < 1FoPais A < [ Pa (] <
[f1(2)[| < [|z]. Then it follows that [Py fi(2)[| = |l fi(2)|, which
implies that Py fi(2) = fi(2). Moreover, we have that ||f2f12| =
|Prq f2f12], and this implies that Py f2f1(2) = f2f1(z). Combining
these two equalities we conclude that fafi(z) = z.

Let

n
(3.12) 2= 6@z + ¥ 0@z, € M.

Jj=1 v€lg
Since H is the right slice of Mi, H is the closed span of the vectors
of the form z;, j < n, and z,, v € I'g, where = € Mf However,
a moment’s thought indicates that H is the span of vectors of the
form z;, j < n, for ¢ € M. Indeed, if v € I'g, then L,(7)*z =
So®@my+ > iy is(y) 00 ® yi + [higher order terms|. And since M s
*-invariant, L, (v)*z € M{i.

We now claim that

(3.13) BjAjz =« for every j < n and every z € H;.

By the previous paragraph, it is enough to take x; € H; where x; comes
from (3.12). From (3.11) we have that fafi(2) = >-;_, do ® BjAjz; +
[higher order terms| and since this is equal to (3.12), we conclude that
BjAjx; =z for j <n.

Since A; and Bj are contractions, it follows from (3.13) that A;
is a partial isometry with initial space H;. Indeed, if x € Hj,
lzl]| = |BjAjz|| < ||Ajz|| < ||z||. Similarly we obtain that B; is a
partial isometry with initial space H; and final space H; and that A;
has final space H;.

Now we will prove that, for every a € I'g, A, = 0. Recall that
A, = P’Hs(a)AaPHT(a)a and take xz € Hr(a)- Then f1(50 ® CE) =
0o ® Ap(a)T + Z"/EFG 0y ® Ayx, and hence

I2l? = Arerall” = 60 ® vy

< (160 ® Avyz|” + 3 118, ® Azl
v€le

=1 (o ®2)|* < 6o @ z|* = [l
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This implies that A,z = 0 for every v € I'g. In particular, we have
that A,z = 0.

Similarly, we prove that, for v € I'g, B, = 0, and we conclude that

A=) 104 =1® (ZAj> =Ig@U, and f=)» I®B;
j=1 j=1 j=1

The map U : H — H defined by U = Ay + Az + --- + A, is unitary.
To finish the proof, we check that f; maps M; into My and that fo
maps My into M;. But this follows from diagram (3.10). o

Remark 1. Notice that the proof of Theorem 7 gives that F(E)®, H
is isomorphic to F(E) ®, H. Themap f = I®U : F(E)®, H —
F(E) ®, H is a unitary module map.

Two module maps ® : Hy, — H; and ¥ : Hy — Hj are unitarily
equivalent if unitary module maps Uy : Hy — Hz and Uy : Hy — H,y
exist such that U; o ® = W o Us.

Definition 3. Suppose that (T,0) is a C.o completely contractive
representation of E = X(G) on B(H) with minimal resolution 0 —
F(E) ®s Hy 22 F(E) ®, Hi =% H — 0. The map ®, : F(E) ®
H, — F(E) ®, H; is called the characteristic function of H.

The next result indicates that the characteristic function is essentially
unique.

Theorem 8. Suppose that (T, o) and (T, 7) are C.q completely con-
tractive representations of E = X (G) on B(H) and B(H), respectively,
with minimal resolutions:

00— F(E)®; Hy —22  F(B)®, H, —2 + H 0
0— F(E)®: Hy — 2 F(E) @, H1 —2 M 0.

Then H and H are isomorphic if and only if ®3 : F(E) s Hy —
F(F)®q Hy is unitarily equivalent to Uy : F(E)®4 Hy — F(F) @, Hy.
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Proof. Suppose first that a unitary module map v : H — H ex-
ists. Since H is isomorphic to the *-invariant submodule (®,)*(H) C
F(F) ®, Hy and H is isomorphic to the x-invariant submodule
(¥1)*(H) C F(E)®zH1, it follows that (®1)*(H) and (¥;)*(H) are iso-
morphic to each other. Applying Theorem 7 to these modules, we con-
clude that a unitary module map U; : F(E)®,H; — F(E)®,H exists
that satisfies uo®; = ¥;oU; and that maps ker ®; = ((®,)*(H))* onto
ker Uy = ((¥1)*(#))+. This implies that Uy yers, : ker @1 — ker ¥y
is a unitary module map. Since ®; : F(F) ®s Hy — ker ®; and
U, : F(F) ®3 M2 are coisometric module maps, we can apply Theo-
rem 7 again to conclude that a unitary module map Us : F(E)®s Hy —
F(E)®,H2 exists that satisfies Ut|ker8,0P2 = ¥20U;. But this implies
that Uy o 3 = ¥y o Us, which is what we wanted to prove.

Suppose now that unitary module maps Uy : F(E)®, Hy — F(E)®,
Hi and Uy : F(E) ®; Hy — F(E) @4 Ha exist such that U o &5 =
Wy0Us,. Since ker @1 = Im ®5 and ker ¥; = Im ¥4, we easily check that
Uy (ker ®1) = ker ¥; and U (ker ®;)* = (ker ¥;)%. We need to check
that U; : (ker®;)t — (ker ¥;)* is a module map, but this follows
formally from the next lemma. i

Lemma 7. Suppose that Hy, Hy are Hilbert spaces, T : Hy — Hj,
S : Hy — Hs are bounded linear maps, and E, C Hy, Eo C Hy
are subspaces satisfying T*E, C E; and S*Ey C E;. Then, if
U : Hi — Hj is an isometry satisfying UT = SU and UE, = Es,
it follows that (Pg,Ug,)(Pe,T\E,) = (Pr,S g,) (Pe,UiE, )

Proof. We compute T*(U*)|g, in two ways:

T (U")g, = T"Pp, (U) |, = Pe, T" Pg, (U") g,
= (‘PE1T\E1))k (PEZU\El)* )
and

" (U")\g, =U"(S") g, = U P, (S*) |, = Pe,U"Pg, (S™) |,
= (PEzUIEl)* (PE25|E2)*'

The result follows by dualizing the two equalities. ]
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We will now strengthen Proposition 7.

Theorem 9. Suppose that Gy < Gy < --- < G, are directed graphs
with N edges such that G;y1 is a deformation of G; and that o1 :
I — B(Hy) is a faithful representation. For 2 < i < m, there exist
Hilbert spaces H;, faithful representations o; : I — B(H;), a surjective
coisometric module map ®, : F(G2)®y, Hy — F(G1)®,, Hi and partial
isometric module maps ®; : F(Giy1) ®q,, Hix1 — F(G;) ®o, H;
such that Im ®; = ker ®; 1. Moreover, G;+1 = Gy and &, is an
isometry. That is, if P, = F(G;) ®,, H;, we have the following short
ezract sequence:

P P ]
0 — Ppyy -3 P, 5 ... 22

'——>P3;?£)P2;?1)P1—-—>0.

Proof. By Proposition 7 a faithful representation oy : [22 — B(Hs)
exists such that Hy = H; and F(Gi) ®y, Hi C F(G2) ®y, Ho.
Since F(G1) ®y, Hy is #-invariant under the L,,(g;)s, define ®; :
F(G2) ®4, Hy — F(G1) ®4, Hy to be an orthogonal projection. ®; is
a coisometric module map and ker ®; is a submodule of F'(G2) ®,, Ho.
By Proposition 10, ker ®; = F(G2) ®s, L, where L is the wandering
subspace of ker ®;. Let H3 = £ and by Proposition 7 again a faithful
representation o3 : 1% — B(Hj3) exists such that F(G2) ®s, Ha C
F(Gg) Ros Hj. Define ¥y : F(G3) Ros Hy — F(GQ) Qs Hs to
be the orthogonal projection, and let ®2 = 13 o Wy, where ¢o
F(G3) ®3, Hy — F(G1) ®,, Hy is the inclusion. Since Uy and 2
are module maps, P, satisfies the required properties. Continue in this
way until a partial isometric module map ®,, 1 : F(Gp) o, Hyn —
F(Gm-1) ®¢,,_, Hmn—1 satisfying In®,,, 1 = ker ®,, o is found. As
before, we have that ker ®,,,_; is a submodule of F(G,,) ®,,, Hp,, and
hence it can be written in the form F(G,,) ®s, L where L is the
wandering subspace of ker @, ;. Let Gyy1 = Gmy Hm+1 = £, and
define @, : F(Gp,) ®s,, L — F(Gp) ®q,, Hp, to be the inclusion. This
proves the result. ]

Theorem 3 can be used to complete the following diagram.

Theorem 10. Use the notation of Theorem 9, and suppose that
fi: F(Gy) ®,, HA — F(G1) ®,, Hy is a module map. Then, for
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i <m+1, there exist module maps f; : F(G;) ®y, Hi — F(G;) ®, H;
such that || f;|| < ||fi|| and fi o ®; = ®; 0 fi11. That is, the following
diagram commutes:

3. o o E3
0 Pt e R 2 5P, L sp 0
me+1 Jfa sz Jfl
[ . P3 b2 $;
0 Prt1 e Ps Py Py 0.

Proof. We look at F(G1) ®,, H; and F(G2) ®,, Hy as the Hilbert
modules:

(F (GQ) Qo H2;L0’2 (gl) Y 7Lf72 (gn))

and
(F (Gl) ®ay Hl;Ldl (gl) g 7Ll71 (gn))

Notice that f1 o ®; : F(G3) ®y, Hy = F(G1) ®¢, H; is a module map,
®; : F(G2) Qy, Hy — F(G1) ®y, Hi is a coisometric module map, and
that F(G1) ®,, H; satisfies (3.8). Then it follows from Theorem 3 that
a module map f : F(G3) ®,, H» — F(G2) ®,, Hy exists such that
@0 fy = fr 0Py and ||f2]] = || f1 0 P2|| < ||f1]|- Proceeding in this way
we find f3, f4,..., fm+1, and we prove the result. n]

4. Weighted graphs. In [3], we studied a large family of weighted
Fock spaces and their quotients that includes as special cases: the full
Fock space, the symmetric Fock space, the antisymmetric Fock space,
the Dirichlet algebra, and the reproducing kernel Hilbert spaces with a
complete Nevanlinna-Pick kernel. We constructed Poisson kernels for
these spaces, and we proved that they satisfy commutative and non-
commutative interpolation theorems. In [1], we used Hilbert module
language to study this family. We proved a commutant lifting theorem,
and then we characterized the strongly orthogonally projective objects
of each family.

In this section we define weighted graphs, and then we use the
techniques from [1] to show that results from the previous section apply
to weighted graphs. The proofs are almost identical, and we only sketch
their proof. We decided to give the complete proof for the full Fock
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spaces case. We felt it was more instructive. The addition of weights
causes no difficulties.

Given a family of weights (wq),.p+ satisfying the three condi-
N

tions listed below, we define the weighted Fock space F?(w,) to be
the Hilbert space with complete orthogonal basis (4),.p+ satisfying
N

(8ay0a) = wa. The left creation operators L; : F2(wy) — F2(wq) are
given by L;dq = 04, for i < N.

We choose weights (wq) satisfying

(wy) wq >0 for every a € F} and wg = 1,
Wyiag; _ Wy,
(w2) Z9%95 < T for all i, < N and a € FY,
Wag; We
and there exist scalars (aa)aeFL such that for every (Ai,...,An)

satisfying >,y [Ni? < 1,

(w5) (¥ 20) = % e

aeF} aeF}

The motivation for these weights comes from a paper by Quiggin [25].
The first condition is clear. The second one implies that the maps L;
and R; are bounded. And the most useful fact of the third condition
is that ap > 0 and a, < 0 if |a| > 1. For example, if w, = |a] + 1,
the three conditions are satisfied. In the one-dimensional case, this
corresponds to the Dirichlet algebra.

Suppose that G is a directed graph with N edges and n vertices
and that o : I, — B(H) is a faithful representation. As before, ¢
decomposes H = H; @ - -- @ H,,. We define the weighted graph induced
by o to be

F,.(G)®, H=span{{0,®x:v €T,z € Hy}
U{bo®@z:x € H}}
C F? (wa) ® H.
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For ¢ < N, define

Lo (9:) = Pr. ()21 (Li ® In) 5, ()0, 0 -

The proof of Proposition 4 can be applied to obtain

Proposition 11. F, (G)®, H is invariant under (L; ® I'g)*, (L ®
Ig)*,...,(Lv®Ig)*. Consequently, (F, (G)®sH;Ls(g1),-- . Lo(gn))
is an x-submodule of F*(wa) ® H.

The orthogonal projections Ind (o)(e;) : F,, (G) ®s H = F,, (G) ®«
H are defined by formula (3.2). Following the proof of Theorem 2, we
characterize the maps that intertwine the left creation operators:

Theorem 11. Suppose that G has no sinks, and let o : 17, — B(H)
and m : 1% — B(#H) be faithful x-representations. If T : F, (F) ®,
H — F,_(E) ®; H satisfies TL,(g9;) = Lx(9:)T for i < N, then there
exist operators A, € B(H,H) satisfying Aoa = Pu,,AaPH,, for
a € T'q, and operators A; € B(H,H) satisfying A; = Py, A;Py, for
j < n such that

T = Z(I®AJ)\MU + Z (Ra ®Aa)\/\/la'

j=1 a€lg

Furthermore, T'[Ind (0)(e;)] = [Ind (7)(e;)]T for j < n.

Proof. We start by taking T : F,_(G) ® H — F,_(G) @, H
satisfying TL,(g;) = Lx(g;)T for i < N. To simplify notation, let
My = F, (G) ® H and M, = F,_(G) ®, H. By the commutant
lifting theorem of [1], T : F2(wa) ® H — F2(wa) ® H exists such
that ||T|| = ||T||, T(L; ® I) = (L; ® I)T for every i < N, and
PM,rf\Mg = T. Moreover, by [1, Corollary 3.7], T= ZaeF; Ry, ® A,
for some A, € B(H,#). Hence,

T=> Ra®Aa= > > Y Ro® Py A.Pp,.
@eFT j=1k=1

+
acFy
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The same proof as in Lemma 4 gives that Pu, [Ra ® Py, AaPr,]im,
is nonzero only if o € ' and j = s(a). Moreover, the maps of form
[Ro ® PHS(Q)AQPHT(Q)]‘MU for a € T'g, and [I ® Py, AaPu,|ipm, for
j < nmap M, into M, intertwine L, (g;) with L(g;), and intertwine
Ind (0)(e;) with Ind (7)(e;). Then we write T' = T; + T» where

T1 = Z PM,, (Ra ® P’}-LS(Q)AQPHT(Q))‘MU
a€clag

+ " Pu, (I® Py, AgPy,)
j=1

L= Z Z Pp, (Ra ® PHSm)AaPHk)IMU
a€Te kr(a)

+ ) Pr, (I® Py, AoPu, ) im, -
i=1k#j

The averaging argument of Lemma 5 works in weighted Fock spaces,
and we get that ||71|| < ||T'||. The proof of Lemma 6 applied to weighted
Fock spaces gives that 75 = 0, and this proves Theorem 11. ]

The proof of Theorem 11 with the changes we just outlined gives a
commutant lifting theorem for weighted graphs.

Theorem 12. Suppose that G is a graph with no sinks, and let o, 7 :
A — B(H) be faithful x-representations. Suppose that (H;T1,...,TnN)
is a Hilbert module satisfying

{heH :T;h =0 for every i < N} = (0)

and that ® : F, (G) ® H — H is a coisometric module map.
Then, for every module map f : F,_ (G) @, H — H there exists
fi: Fo (G) ®s H = Fo, (G) ® H satisfying || f|l = [[f1ll, f = 2o f1,
and fi1Ly(giz) = Lx(gi)f1 fori < N.

Proof. Suppose that £ C F,,_(G) ®, H and that ®¢ : B(F, (G) ®,
H) — B(€) is the compression operator ®¢(T) = PgTjc. We look at
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the subspaces £ that satisfy the following conditions

(4.1) ¢ (Lo (9i) Lo (9in) - -~ Lo (9i))
= D¢ (Lo (9ir)) P& (Lo (9i5)) - ®e (Lo (9))  for ke N,

and

(4.2) ®¢ ([Ind (o) (a
= ®¢ ([Ind (o) (a)])®e([Ind (o) (b)]) for a,be 2.

Condition (4.2) implies that £ is invariant under maps of the form
Ind (0)(e;), and then we have that & : I, — B(&) defined by o(a) =
Pg[Ind (0)(a)]je is an *-representation. For each i < N, define T; =
PgLs(g:)e and obtain the Hilbert module

(5;T1a"' 7TN;E(61)5"' 73(671))

Suppose that € C F,,_(G) ®, H satisfies (4.2). Then

(1) € is a submodule if L, (g;)€ C & for every i < N,

(2) € is an *-submodule if L, (g;)*€ C € for every i < N, and
(3) € is a subquotient if it satisfies property (4.1).

It is clear that submodules and *-submodules are subquotients. Sara-
son [26] proved that £ is a subquotient if and only if two submodules
&, and &, exist such that £ @ &1 = .

In [3], we proved that if £ is a subquotient of F, (G) ®, H, an
isometry K : & — F?(w,) ® € exists satisfying K*(L; ® Iy) = T, K*
for i < N. The map K is defined by

O .
(4.3) K(z)= > o ©AT e,
aeF}
where
(4.4) A= " aaTuTI;.

+
acFy
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We proved in [3] that A% > 0.
Since Ly (g;) = [Ind (0)(er(;))/T[Ind (0)(es(;y)], we have that

Tz’ = PELU (gi)‘g

= P¢ [Ind (o) (er(3))] Lo (g:) [Ind (o) (es(s))] i
= P¢ [Ind (o) (er(i))] Lo (gi) Pe [Ind (o) (es(s))] €

Dualizing this equality, we obtain

T7 = Pe [Ind (0) (e5(s))]" PeLo (9:)* [Ind (o) (eri))] |*5
= P¢ [Ind (o) (es(i))]* PeL, (g:;)" Pe [Ind (o) (er(i))] |*<‘5
=7 (estn) 177 (er) "
and this implies that
(4.5) T,=0 (671(,')) T;o (es(i)) for ¢ < N.

Arguing as in Proposition 5, we conclude that T,, # 0 only if o € I'.
Therefore, we conclude from (4.3) that K takes values in F,_(G) ®s
H. o

Proposition 12. Suppose that £ is a subquotient of F,,_(G) ®, H.
Then there exists an isometry K : € — F,,_(G) ®4 € defined by

K(z)=d®Az+ » 5—a®AT;m
aclg «

such that K*Ly(g;) = T;K* for i < N and K*[Ind (0)(e;)] = o(ej) K*
forj <mn.

Proof. We only need to check the last statements. For i < N,

K*Lo. (gz) = K*PFwa(G)‘X)aH (Lz X IH)‘FWQ(G)®(7H
= K* (LrL ® IH)lFua(G)®oH
= EKTF‘WQ(G)(@aH = EK*.
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The representation ¢ : {7 — B(E) decomposes £ into £ =& & &2 B
-+ @ &y. Suppose now that a € I'g and = € &(4). It is not hard to
see from (4.3) that K*(d, ® z) = T, A(z). Moreover, it follows from
(4.4) that Az € £,(4), and from (4.5) that TA(x) € &,(q). This implies
that K*[Ind (0)(e;)](0a @ ) = 7(e;)K* (0o @ ) for j < n. Moreover,
we also have that K*[Ind (c)(e;)](0o ® ) = 7(e;) K* (6o @ z) for € &
where k,j < n. Hence, K*[Ind (c)(e;)] = &(e;) K* for j <mn. mi

With the Poisson kernels of Proposition 12 and Theorem 12, we follow
the proofs of Theorem 5 and Theorem 6 to obtain projective resolutions
for subquotients of F,_(G) ®, H:

Theorem 13. Suppose that € is a subquotient of F,, (G)®,H. Then
a family P; = F,, (G;) ®,, H; and partial isometric module maps ®;
exist such that the following sequence is exact:

P P P P
Py P : P Z .p L ¢ 0.

Moreover, if &1 and & are subquotients of F,,_(G) ®, H with projective
resolutions

$2

P, P2 g 0

and
Q —2 - —2 ¢ 0,

and f : & — &2 is a module map, then there exist module maps
fi + Pi = Q; satisfying ||fi|| < ||f|| for every i € N such that the
following diagram commutes:

pp—=t sp % p % p P g 0

Jf4 Jf3 sz Jfl Jf

Qi Qs — s @y — 2  — 2 & 0.
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