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HYPOELLIPTIC CONVOLUTION EQUATIONS
IN THE SPACE OF DISTRIBUTIONS ON
NONCOMPACT SEMI-SIMPLE LIE GROUPS

KHALIFA TRIMECHE

ABSTRACT. We characterize by simple proofs the hypoel-
liptic convolution equations in the space of distributions on
noncompact semi-simple Lie groups, in terms of their spheri-
cal transform.

1. Introduction. In this paper we recall first the main results of
harmonic analysis on noncompact semi-simple Lie groups G of real rank
¢, and next we define the generalized translation operators on G and
we give their properties. With the aid of these operators we define and
study in this work the convolution product on spaces of distributions.
We present also the spherical transform of distributions. The results
obtained have permitted to characterize by simple proofs the hypoellip-
tic convolution equations in the space of distributions in terms of their
spherical transform. This characterization was first given by Ehren-
preis [3] and next by Hormander [7] in the case of the classical Fourier
transform on R. In [1, 2] the authors have studied this character-
ization for the Hankel, Jacobi and Chébli-Trimeche transforms. We
remark that their proofs are complicated and our proofs can be applied
in the case of these transforms (see [9]).

2. Preliminaries. In this section we recall some basic results on
real semi-simple Lie groups. (See [4, 5, 6]).

2.1. Structure of real semi-simple Lie groups. Let G be a
noncompact connected real semi-simple Lie group with finite center, G
the Lie algebra of G. Let 6 be a Cartan involution of G,G = K+ P the
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corresponding Cartan decomposition and K the analytic subgroup of
G with Lie algebra K. Let a C P be a maximal abelian subspace, a*
its (real) dual, af; the complexification.

The Killing form of G induces a scalar product on a and hence on
a*. We denote by (.,.) its C-bilinear extension to ag.

The ¢ = dim « is called the real rank of G. Let ej,esz,... ,e; be an
orthonormal basis of o and ej,e3,... ,e; the dual basis of a;. Then
every A in o is uniquely written in the form

A=z1e] +zes+---+ 25, z;€C, j=12,... L

Using the basis ey, e, ... , e, we can identify o with RY.

For A € o*, put G = {X € G/[H,X] = A H)X, for all H € a}.
If A\ # 0 and dimGy # 0, then X is called a (restricted) root and
my = dim G, is called its multiplicity. The set of restricted roots will
be denoted by > . If A, are in a*, let Hy in a* be determined by
ANH) = (Hx,H) for H € o, and put (A, u) = (Hyx, H,). Let W be the
Weyl group associated with > and |W]| its cardinality.

Fix a Weyl chamber at in «a, and let a® be its closure. We
call a root positive if it is positive on a*. The corresponding Weyl
chamber in a* will be denoted by a, and let a’ be its closure.

Let S.F be the set of positive roots. Put p = 1/2 Zaez+ Mo Q.

Let 3o = {& € Y,1/2a ¢ Y}, and put Y5 = 37N>, Let
N =6 o5~+Ga and N = ON.

Let A be the analytic subgroup of G with Lie algebra a. The
exponential map is an isomorphism from a (considered as an abelian
Lie group) onto A. We put AT = expa™. Its closure in G is
At = expaT. Let N, respectively N, be the analytic subgroup of
G with Lie algebra N, respectively A.

Let T be  in at-component of z € G in the Cartan decomposition
G = K(expa™®)K, and let |z| = ||zT||. Viewed on G/K (or K\G),|.|
is the distance to the origin 0 = {K'}.

Let H : G — a be the Iwasawan projection according to the Iwasawa

decomposition G = KAN, ie., if x € G then H(z) is the unique
element in o such that € K (exp H(z))N.
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We normalize the Lebesgue measures dH and d\ on o and o* such
that for the classical Fourier transform

(2.1) FolH)A) = /A fla)e M50 gg A € o)

of a regular function on A, we have the inversion formula

(2.2) Fo (h)(a) = / B(V)ePMED) gy g A

*

here h is a regular function on a*.

On the compact group K the Haar measure dk is normalized such
that its total mass is 1. The Haar measure of nilpotent groups N and
N are normalized such that 6(dn) = dn and

/ o= 20(H(™) g — 1.
N

In the Iwasawa decomposition, the Haar measure dx of G is given by

(2.3) /G f(@) do = /K /A /N f(kan) dk da dn.

This relation can also be written in the form

(2.4) /G f(z) do = /K /a /N F(k(exp H)n)e2e™ dk dH dn;

here f is a C*°-function on G with compact support.

In the Cartan decomposition the Haar measure dz of G is given by

(2.5) /Gf(x)dx:/K/A+/Kf(k1 aks) dky da dks .

We can also write this relation in the form

(2.6) /Gf(x)dx:/K/m/Kf(kl(epo)kz)w(H)dkldﬂdkz,
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where

(2.7) wH) = [ [2sha(H)™.
a€2+

We have the following estimate for the density w :

(2.8) 0<w(H) <) Heat.

Remark 2.1. If G has rank one, then for some « in a*, Y is equal
to {a, —a} or {a, —,2a,—2a}. Let Hy be in a such that a(H;) =1,
and write G41,G4o instead of Gi,,G+o, with dimension m4q,m4o,
respectively. Choose the ordering on a* such that « is positive. Then
p = (m1+2m2)/2.

For f a C'*°-function on G bi-invariant under K and with compact
support the Haar measure on G is given by

(2.9) /G f(z) do = /0 FlexptHy) Ay () dt,
with

(2.10) A, 4(t) = 2% (sht)?P T (cht)?TT?,
and

1 1
(2.11) p:§(m1—|—m2—1), q:i(mg—l), p=p+q+1.

(See [8, pages 14-16, 27]).

2.2. The Harish-Chandra’s c-function. The Harish-Chandra’s
c-function is given by the formula
(2.12)

_ T((iA,a0) /2T (A a0)/2+1/2)
c(A) = co H ST e JATT /2 (hito) [2) e /AT mae JET(Na0) /2)

OCGZ:

where oy = a/{a, a), the constant c; is defined by ¢(ip) = 1 and T is
the gamma function.
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The function c satisfies the following properties

i) e(=A) =c(N), X € ag.
ii) The function |c()\)|~? is analytic and W-invariant on a*.
iii) The function |c()\)|~2 possesses the estimate

(2.13) e(A)]72 < const (1 + |A)¥, A€ a”,

for some positive constant b.

2.3. Spherical functions. The spherical functions on G are defined
by

(2.14) o (z) :/ ePAPHER) gp  pe G e ak.
K

We collect some properties of these functions.

i) The function ¢y(z) is bi-invariant under K in z € G and W-
invariant in A € ag.

ii) The function ¢y (z) is a C°°-function in # and a holomorphic
function in A.

iii) We have
e piae)=1 and ¢ ;(z)=1 =z€G, I€ag
(215) o pr(x) =p_a(z7h),p_5(2) = pa(r), z€G, Aeag
o ¢\=opy, ifandonlyif XN =w) forsome we W.
iv) We have
(2.16) e PH) < po(exp H) < const (1 + |H|)%e H), Heat,

for some positive constant a.

v) We have
(2.17)
o 0<p p(expH)<erpy(expH), Heat, e at.
(2.18)
o |oa(2)| < vima(z), z€ G, Ae€ag.
(2.19)

*

o |or(z) <1, ze€G, lea’.
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vi) For all A € ag, the function ¢, is an eigenfunction of each
operator D in D(G/K) the algebra of G-invariant differential operators
on G/K. More precisely, we have

(2.20) Doy =~(D)(iM)er, D € D(G/K),

where v : D — (D) is the natural isomorphism between D(G/K) and
S(a*)V the algebra of complex valued polynomial functions on a*
which are W-invariant. It is called the Harish-Chandra isomorphism.
In particular, when D is the Laplace-Beltrami operator A, we have for
all A € o,

(2.21) Apx = =(IIAlI* + llol*)pa-

vii) The function ¢y (z) admits the following product formula with
respect to the variable x:

22)  a@nW= [ ek oye6 Aeas.
K
This relation can also be written in the form
22) b = [ er@)dumila), beeat, Acat,
A

where . is a positive W-invariant measure on A with compact
support.

viii) The function ¢, (z) also satisfies the following product formula
with respect to the variable A:

1 d\
= W oa(@)K(p, v, N) v
a*

oul@)ey () ;
g le(M)?
mvea*, zeQqG,

(2.24)

where K (u, v, A) is a positive function on a* x a* x o*, which is analytic
and W-invariant in all three variables. It is given by the relation

(2.25) KN = [ eulapulalo-s(o)do.
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and satisfies

1 dX

(226) W o K(/L, v, A) |C()\)‘2

=1

Remark 2.2. When G has rank one, it follows from [8, page 27], that
the set of all spherical functions for (G, K)

(2.27) ox(a) =oP0(t), a €A, teR,
where
1 1
(2.28) p=§(m1+m2—1), q= §(m2—1),
(p,9)

and ¢)""’ are the Jacobi functions defined by

(2.29) PP () =oF ((p+q+1—iX)/2,(p+q+ 1+iN)/2;
p+1; —sh%t),

with o F} the Gaussian hypergeometric function.

3. The Abel transform and its dual. In this section we consider
the Abel transform A and its dual A4* on spaces of functions, and we
give their properties (see [4, 5, 6]). Next we define and study the Abel
transform on spaces of distributions.

Notations. We denote by C%(G), respectively C(A4)"W, the space of
continuous functions on G, respectively A, which are K bi-invariant,
respectively W-invariant. C%(G), respectively C,(A)", is the space of
continuous functions on G, respectively A, which are K bi-invariant, re-
spectively W-invariant, and with compact support. £ h(G), respectively
E(A)W | is the space of C*°-functions on G, respectively A, which are
K bi-invariant, respectively W-invariant. D%(G), respectively D(A)"W,
is the space of C*°-functions on G, respectively A, which are K bi-
invariant, respectively W-invariant, and with compact support. We
provide these spaces with their classical topology.
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We consider also the following spaces of distributions. D;(G), respec-
tively Dy, (A), is the space of distributions on G, respectively A, which
are K bi-invariant, respectively W-invariant. It is the topological dual
of DI(G), respectively D(A)W. &;(G), respectively £y, (A), is the space
of distributions on G, respectively A, which are K bi-invariant, respec-
tively W-invariant. It is the topological dual of £%(G), respectively
gAY,

Definition 3.1. The Abel transform A is defined on C%(G) by

B A(f)(a) = ertos® / flan)dn, forall a € A,
N

The function A(f) belongs to C.(A)" and satisfies the properties
given by the following theorem.

Theorem 3.1. i) The transform A is a topological isomorphism from
DYG) onto D(A)W. More precisely, f has support in the closed ball
{z € G/|z| < R} if and only if A(f) has support in the closed ball
{a € A/|a|] < R}.

ii) The transform A has the transmutation property
(3.2) A(Df)=~(D)A(f), feDG),

for each D € D(G/K).

Definition 3.2. The dual Abel transform A* is defined on C(A)W
by

(33)  A'(g)(x) = / g(exp H(zk))e="T @) gk for all 2 € G.
K

The function A*(g) belongs to C%(G) and satisfies the following
properties.

i) We have

(3.4) A (e?O) =0y, Aeak.
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ii) For all z € G, we have

(3.5) A (1) () = / e=PUHR) gpp < 1.

K

Theorem 3.2. i) The transform A* is a topological isomorphism
from E(A)W onto E4(G).

ii) The transform A* has the transmutation property
(3.6) DA*(g) = A*(y(D)g), g¢€é&(a)”,

for each D € D(G/K).

iii) The transform A* is connected to the transform A by the duality
relation

(3.7) /A A(f)(a)g(a) da = /G £(2)A*(g)(x) da,
where f is in DY(G) and g in E(A)W.

Remark 3.1. When G has rank one, explicit formulas for the Abel
transform and its dual are given respectively as Weyl and Riemann-
Liouville fractional integrals. (See [8]).

Definition 3.3. The Abel transform on &;(G) denoted also by A is
defined by

(3.8) (A(S),4) = (S, A*(¥)), ve&A)"”.

The mapping A possesses the properties given by the following
theorem.

Theorem 3.3. i) The transform A is a topological isomorphism from
& (G) onto &y, (A). Its inverse is given by

(3.9) (ATH(S),9) = (S,(A) 7 (W), v € EX(G).
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ii) Let Ty be the distribution in E,(G) given by the function f, with
f in DY(G). Then we have

(3.10) A(Ty) = Tagp).

iii) Let Ty, be the distribution in £}, (A) given by the function h in
D(A)W. Then we have

(3.11) ATNTY) = Ta-r (.-

4. The spherical transform. In this section we define the spherical
transform of functions and distributions, and we give the main results
satisfied by this transform.

Notations. We denote by H(ak)" the space of entire functions on
ag, which are W-invariant, of exponential type and rapidly decreasing.
We have

H(aj)" = UrsoHr(ag)",
where Hp(ag)W
for all m € N,

is the space of entire functions ¥ on o satisfying,
sup (14 [IAI%)™ [p(A) e~ AT < oo,
rea,

H(ag)" is the space of entire functions on afy, which are W-invariant,
of exponential type and slowly increasing. We have

H(ag)" = UrzoHr(ag)",
where Hp(af)"W is the space of entire functions ®

sup (14 ||)\||2)_N|<I'()\)|e_RHIm’\H < 400
AEQLE

(o]
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on ag such that there exists an N € N and L‘g(G), p € [1,+00], is
the space of measurable functions on G, bi-invariant under K and such
that

1/p
IIfIG,p=< / If(a?)l”dx> < 400, pel,+odl,

[fllg,00 = ess sup |f(z)| < +oo.
z€G

LY (a*), p € [1,+00], the space of measurable functions on a*, which
are W-invariant and such that

1 a \'?
e = (57 [ 1FOP ) <00 pe oo,

[fllor 00 = ess sup [f(A)] < +oo.
reoer
We provide these spaces with classical topology.
4.1. The spherical transform of functions (see [4, 5, 6]).

Definition 4.1. The spherical transform F, sometimes called the
Harish-Chandra’s transform, is defined on D%(G) by

(4.1) FFO) = /G F@)o r(z)dz, forall A € a.

Remark 4.1. When G has rank one, the spherical transform can be
written for all A € R in the form

F(HN) = / " F )P () Ay o(t) dt, € DHE)
where
A, (1) = 2% (sht)?P T (cht)?THE,

We put
fla) = flt], ar€ A, teR.

The function f[t] belongs to D.(R) (the space of C*°-functions on R,
even and with compact support).
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Using this notation the preceding relation takes for all A € R the
form

(42)  FHW = / T F 0000 () Aty dt, f € Du(R).

Then the spherical transform of f[t] is the Jacobi transform. (See [8,
page 27]).

The transform F has the following properties:

i) For f in L; (G) the function F(f) belongs to C*(G) and tends to
zero as ||A|| goes to infinity.

ii) For f in Lj(G) we have

(4.3) IF(Hllee o0 < NI £llc -

Theorem 4.1. The transform F is a topological isomorphism from
DY(G) onto H(ag)" .

The inverse transform is given for all x € G by

o FAWGE = g7 [ 0o

Theorem 4.2. i) Plancherel formula for F. For all f in D'(G)
we have

., L 5 dA
(4_5) /G|f(£l,')‘ d:U—|W‘ o |j:(f)()‘)| |C(/\)|2'

ii) Plancherel theorem for F. The transform F can be uniquely

extended to an isometric isomorphism from L3(G) onto L, (a®).

Proposition 4.1. For all f in D*(G) we have
(4.6) F(f) = Fo o A(f),

where Fy is the classical Fourier transform given by the relation (2.1).
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4.2. The spherical transform of distributions.

Definition 4.2. The spherical transform of a distribution S in &(G)
is defined for all A € a* by

(4.7) F(S)(A) = (S,0-2)-

The following proposition gives some properties of the transform F
on &(G).

Proposition 4.2. Let S be a distribution in &;(G). Then
i) The function F(S) is of class C™ on o* and W -invariant.

ii) We have that
(4.8) F(S) = Fo o A(S),

(where Fy is the classical Fourier transform of distributions in Ej;,(A))
is given for all A € o by

(4.9) Fo(U)(N) = <Ua,e_i’\(l°g“)>.

From relation (4.8), Theorem 3.3 and the properties of transform Fj,
we deduce the following Paley-Wiener theorem for the transform F:

Theorem 4.3. The transform F is a topological isomorphism from
& (G) onto H(ag)™.

5. Convolution product of functions and distributions. In
this section we give first the definition and properties of the generalized
translation operators on GG, and next we study the convolution product
of functions and distributions on G.
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5.1. Generalized translation operators on G.

Definition 5.1. The generalized translation operators 7., z € G,
are defined on C%(G) by

(5.1) =f(y) = /K f(zky)dk, forallyeG.

Proposition 5.1. i) The function 7, f(y) is bi-invariant under K
with respect to the variables x and y.

ii) The operators Tp, b € AT, possesses the following integral repre-
sentation

(5.2) wf© = [ f@duna), for allce a*

where pip, . is the measure given by the relation (2.23) and f in C(A)W.

The operators 7., © € G, also satisfy the following properties.
i) For all z € G, the operator 7, is continuous from £4(G) into itself.

ii) Let f be in D(G). For all z € G, the function 7, f belongs to
DH(@).

iii) For all f in C%(G) and z,y € G, we have
(5.3) Tef(z) = f(2); mf(y) =1y f(2).
iv) For all z,y € G and A € ag we have the product formula
(5.4) TaA(Y) = ea(@)ea(y)-
v) For all f in D4(G) and = € G, we have for all A € a*,
(5.5) F(raf)(A) = @a(@) F(£)(N).

vi) Let f be in L’;(G), p € [1,+00]. For all z € G, the function 7, f
belongs to Lé’(G’), p € [1, +o0], and we have

(5.6) 172 flle.p < I fllep-
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Remark 5.1. We denote by o,, a € A, the classical translation
operators on A defined on C(A)Y by

(5.7) oaf(b) = f(ab), forallbe A.

5.2. Convolution product on G.

Definition 5.2. The convolution product of f and g in C%(G) is the
function f * g defined by

(5.8) fxglx)= /Gf(a:y_l)g(y) dy, forall z e G.

This relation can also be written for all x € G in the form

(5.9) frg(z) = /G 7o F(ya(y) dy.

Remark 5.2. The classical convolution product of functions on A is
defined for f; and g; in C.(A)" by
(5.10) fi*0g1(a) = / oafi(b™1)g1(b)db, for all a € A.
A

Proposition 5.2. Let f and g be in C8(G). Then the function f x g
is bi-invariant under K and we have, for all a € AT,

(5.11) £+ gla) = /A Tl (57 V)g(b) b

The following propositions give some other properties of the convo-
lution product x*.

Proposition 5.3. i) The convolution product * is commutative and
associative.
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ii) For f and g in D¥(G), the function f* g belongs to DY(G) and we
have, for all X € a*,

(5.12) F(f x9)(N) = F(HNF(9) (V).

iii) For f in L’;(G) and g in LE(G) with p,q € [1,400], the function
fxg belongs to Li(G) with r € [1,+00], such that 1/p+(1/q)—1=1/r
and we have

(5.13) 1/ *gller < fllepllglle.q

iv) For f and g in D%(G), we have

(5.14) A(f * g) = A(F) 0 Alg)-

(See 4, 5, 6]).

Remark 5.3. When the rank of G is one, Koornwinder has given
the expression of the generalized translation operators on G and has
studied the convolution product of functions in this case. (See [8, pages
57-61].)

Definition 5.3. The convolution product of a distribution S in
Dy(G) and a function ¢ in DU(G) is the function S * ) defined for all
r € G by

(5.15) S xP(z) = (Sy, ¥ (y™)).

Proposition 5.4. i) Let S = T} be the distribution in Dy(G) given
by the function f in C%(G). Then, for ¢ in D%(G), we have

Sxp =[xy
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ii) We consider S in DE(G) and v in DY(G). Then the function S 1)
belongs to E4(G).

iii) Let S be in &(G) and ¢ in DA(G). Then the function S * v is in
DY(G).

Definition 5.4. Let U be a distribution in D;(G) and S a distribu-
tion in & (G). The convolution product of U and S is the distribution

U+ S in D}(G) defined for all ¢ in D(G) by

Proposition 5.5. Let S be in Di(G) and T} the distribution in £(G)
given by the function f in DY(G). Then we have

(517) S*Tf :Ts*f.

Remarks 5.4. i) The classical convolution product of a distribution
Sy in Dy, (A) and a function 91 in D(A)W is defined for all a € A by

(5.18) S1 %0 ¥1(a) = (S1p,0atir (b)),
ii) The classical convolution product of a distribution Uy in Dy, (A)

and a distribution S; in &}, (A) is given for all ; in D(A)W by

(Ui *0 S1,¢1) = (U1,a, (S1,6,0a%1(D)))
(5:19) — (S1y Uty 0alth1) ())-

Theorem 5.1. Let S and U be two distributions in &(G). The
convolution product S+ U of S and U belongs to &(G), and we have

(5.20) F(S «U) = F(8).F(U).

Theorem 5.2. Let S and U be two distributions in &(G). Then we
have

(5.21) A(S+U) = A(S) %0 AU).
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6. Hypoelliptic convolution equations in the space of dis-
tributions. Let S be in £;(G). In this section we study convolution
equations of the form

(6.1) SxU=V,

where U and V' are distributions in Di(G).

We say that equation (6.1) is hypoelliptic if all solutions U are given
by a function f in £4(G) whenever V is given by a function g in £%(G).

When (6.1) is hypoelliptic we also say that the distribution S is
hypoelliptic.

The main result of this section is the characterization of hypoelliptic
convolution equations in terms of their spherical transform.

We say that the distribution S in Eé (G) satisfies the H-property if

i) there exist k, M > 0 such that |[F(S)(\)| > ||A||7F for all A € a*
with [[A]| > M.

i) lim .|| 4o0,2€z || Tm 2] /log ||2]| = 400, where
Z ={z € ag, F(9)(2) = 0}
with [|2]? = 325, (Rez;)” + (Imz;)?).

Proposition 6.1. Let S be in E(G). If S is hypoelliptic, then S
satisfies 1) of the H-property.

Proof. We assume that i) of the H-property does not hold. Then we
can find a sequence (Ap)nen C o* such that ||A,]| > 2" and, for all
n €N,

(6.2) IF(S)An)] < [[Anll™"
We consider the sequence (Up)pen of distributions in D;(G) given by
Up = Z T, s,
n=0

where Ty, _, = is the distribution in D}(G) given by the function ¢_»,,.
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Let ¢ be in D(G). For all p,q € N with p > ¢, we have

P

(Up¥) = Ugy 0y = D (Ty_,, ).

n=q+1

Thus,

(6.3) (Up¥) = Ug ) = Y F@)An).
n=q+1

But from Theorem 4.1 the function F(¢) is rapidly decreasing. Then
there exists a positive constant C' such that for all y € o™,

c
F < .
FOW) <
Thus, for all n € N,
C C
6.4 F )| < < —.
(64) F@O < 57 < 5

By applying this relation to (6.3), we obtain

p
1
|<Up7¢>_<Uva>|SC Z 2—n—>0, as ¢ — +oo.
n=q+1
Then
(Up, ) — L(¥), as p — +oo.

We deduce that L is a distribution U in D{(G) and U, converges to U

in D}(G) as p tends to infinity. Thus,

(65) U= i Tcp,An )
n=0
and for all ¢ in D¥(G) we have

n=0
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We shall prove now that the distribution S = U of D{(G) is given by
a function f in £%(G).
From (5.16), (6.2) and (5.5), for all 9 in D(G), we have
<S * U7 ¢> = <Syv <Ut77—y¢(t)>>'
Thus,
(S+U,) = (S, Y ox, ()F($)(An))-
n=0

By applying Theorem 4.1, we obtain

(S U, ) = F(1)(An)(Sys oa, (v))-
n=0
Then, Definition 4.2 implies
(6.7) (S*x U ) = F@) (M) F(S)(=An)-
n=0

This relation can also be written in the form

o0

(S*xU,¢) = Zf(S)(—An)/ o_, (OY(t) dt.

n=0 G

By using (2.19) and the fact that the function 3 belongs to D!(G) and
F(S) satisfies the relation (6.2) we can exchange the series and the
integral, and we obtain

sevw= [ [27(5)(—%)@4\" v ae

Thus, the distribution S * U is given by the function f defined by

o0

F) =) F(S)(=An)p-xr,(t), forallteg.

n=0

From relations (6.2) and (2.20), we deduce that the function f belongs
to £4(G).
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In the following we will show that the distribution U is not given by
a function g in £%(@). If not, we take a function ¢ in D¥(G) such that
#(e) = 1 and F(9) is positive. For all u € a*, we consider

(6.8) (oulU, 0) = (U, pu8)-

By using (6.6) we obtain

(6.9) (0ulU,8) = > Flpud)(An).
But for all v € a*, we have
(6.10) Floud)(v) = /G (D)o ()(2) dt.

On the other hand, from relation (2.25), for all ¢t € G we have

b a9
Wi a*sog(t)K(u, ”’£)|c(g)\2’

pu(t)p-v(t) =
with K (u, —v,.) the positive function on a* given by (2.24).

By using this relation and Fubini-Tonelli’s theorem, for all v € a*,
the relation (6.10) can also be written in the form

L » en
Flpuo)(v) = W e K(p, ,£)</G¢(t)sos(t)dt> EGE

_ 1 _ Lo %

(6.11)

Thus, for all p,v € a* the function F(p,¢)(v) is positive. By taking
v = A, and by replacing F(p,¢)(A\,) by its expression (6.11), we
obtain from (6.9):

dg

(puU, ) = ‘W| Z K, =2, F )-8 5
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As the function p — (p,U, ¢) and those of the second member are
positive, then by applying relations (2.25) and (2.26) and by using
Fubini-Tonelli’s theorem, we deduce that

1 dup
W/*“OILU’Q” )|2
_ dp 96
|W|Z/ : LW o A ) 3 | PO 0

_ 1 %
= Z/ FOEOge

But, from Theorem 4.1, we have

e P

i [ OO oo = 1.
Thus,

1 e _
(0:12) W] Jo o200 e =

On the other hand, as the distribution U is given by the function g
in £8(G), then from (6.8) we have

(oul,8) = (T, put) = /G oD (D)B(t) dt = F(g ) (—p)-
Thus,

dﬂ _ b _

1
W e le(w)]>

By applying Theorem 4.1, we obtain

dp
U. = .
‘W| o <SOM 7¢> |C|,U'|2 g(6)¢(€)
Then

5 = 9g(e).

|W|/WU¢|<>
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This contradicts (6.12). Hence, the distribution U is not given by a
function g in £8(G).

Proposition 6.2. Let S be in &(G). If S is hypoelliptic, then S
satisfies ii) of the H-property.

Proof. Suppose that ii) of the H-property does not hold. Then there
exist a sequence (z,)nen C & and a positive constant M such that,
for all n € N, F(S)(z,) =0 and ||Im z,,|| < M log ||z,]|.

Let ¢ be in D¥(G). According to Theorem 4.1, there exists an R € N
such that, for every p € N, we can find C,, > 0 for which, for all z € ag
such that ||z|| > 1, we have

|F(¢)(2)] < Cpeftltm=l—plogliz,
If we take p € N such that p > MR+ 1, we get for all n € N,

(6.13) [zl |F(6)(zn)] < Cp.

oo

Let (an)nen be a complex sequence such that the series )~

convergent.

lan| is

We consider the sequence (Vy)qen of distributions in D;(G) given by

q
Vo= anTiz, .. -

n=0

For all ¢, € N with ¢ > r, we have

q
(Vard) = (Vs ) = (Y anTlenfo, )
n=r+1
q

= Z an| 2| F($)(—22).

n=r+1

Thus, using (6.13) we obtain

q
(6.14)  [(Vg,0) = (Ve, ) < Cp Y lan| — 0, as 7 +oo.
n=r+1
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Then
(Vg, ) — L(¢), as qr— +oo.

We deduce that L is a distribution V' in Dy(G) and V; converges to V
in D}(G) as g tends to infinity. Then

(6.15) V= Z a’”THZnHLPzn ,

n=0
and from (6.14) we deduce that
(6.16) (Vi) < Cp D lanl:
n=0

On the other hand, by making a proof similar to those which has
given the relation (6.7), we obtain

(S V,6) = > anllzallF(S)(20) F(¢) (—2n) = 0.

Thus,
SxV =0.

As S is hypoelliptic, we deduce that the distribution V is given by a
function f in £%(G). Then we have

(6.17) V=1
From (2.15), for all n € N, we have
¢.,(e) =L

Thus, for all closed balls B = {z € G/|z| < r}, and for all n € N, we
have

(6.18) sup |¢., (z)| > 1.
z€B

On the other hand, using (6.15), (6.16) and (6.17), we obtain

sup |£(@)] < Cp 3 faul
zEB n=0
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Thus, for all n € N,

(6.19) [2nl sup |z, (z)| < Cp.
zEB

From this relation and (6.18), we deduce that, for all n € N,
(6.20) [znll < Cp,

which is a contradiction with our choice of the sequence (z;,)nen. This
completes the proof of the proposition. o

Proposition 6.3. Let S be in £(G). If S satisfies the H-property,
then there exists a parametriz for S, that is, there exist a V in Eé(G)

and a ¢ in D¥(G) such that 5. = S x V + Ty, where 5. represents the
Dirac distribution at e.

Proof. Using (4.8), the H-property can also be written in the form

i) there exist k, M > 0 such that |Fy(A(S))(A\)| > ||\ 7F, for all
A € a* with |[|A|| > M.

i) lim .|| 4o0,2€z || Tm 2| /log ||2]| = 400, where

Z ={z € a5, Fo(A(S))(z) = 0}.

We see that the H-property is true for the distribution A(S) of £};,(A)
in the case of the classical Fourier transform Fy on A. Then, from [7],
there exists a parametrix for A(S), that is, there exist a V4 in &}, (A)
and g in D(A)" such that

(6.21) Se = A(S) %0 Vo + Ty,

As the operator A is a topological isomorphism from & (G) onto &y, (A),
we deduce from (6.21) and (3.11) that

Je = A(S) xo A(A™1 (Vo)) + A(A™H(Ty,))-
Thus,

(6.22) be = A(S) %0 A(V) + A(Ty)
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with
ATH (Vo) =V and A7 (3o) = ¥
The distribution V' and the function 3 belong respectively to &;(G) and
DH(G).
On the other hand, from Theorem 5.2, we have

A(S V) = A(S) %0 A(V).
Thus, relation (6.22) can also be written in the form
ATY(8.) = S *V + Ty,

But

Thus,
5e:S*V+T1/,. O

Theorem 6.1. We assume that the distribution S in E((G) is such
that Z = {z € a&,F(S)(z) = 0} is infinite. The following assertions
are equivalent.

i) S is hypoelliptic.
ii) S satisfies the H-property.
iii) There exists a parametriz for S, that is, there exist a V in Eé(G)
and a b in DYG) such that

6e:S*V—I—T¢.

Proof. From Propositions 6.1 and 6.2 it suffices to prove that iii) =
i). Assume that the distribution U is in Dj(G) and that S« U is given

by a function f in £%(G). From iii) we have
be =S*xV + T¢,

with V' in &(G) and ¢ in DA(@).
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Thus,
U=U =%/,

=Ux*(S*xV+Ty).

Using commutativity and associativity of the convolution product of
distributions, we obtain

U=V=x(S«xU)+UxT,
=V Ty +Ux=Ty.

By applying (5.17), we deduce that
U=Ty.s + Ty
= Tvef+Usy)

But, from Proposition 5.4 ii), the function V % f 4+ U * ¢ belongs to
£%(G). Thus, S is hypoelliptic.

Remark 6.1. In [2, 9] the authors have proved the analogue of
Theorem 6.1 in the case of the Jacobi transform. Their result implies
Theorem 6.1 when the rank of G is one.

Example 6.1. We suppose that the rank ¢ > 2, and we consider the
equation

(6.23) AU =YV,

with U and V' in D{(G) and A is the Laplace-Beltrami operator on
Dy (G) defined by

(AU, ¢) = (U,A¢), ¢ DYG).

We say that the operator A is hypoelliptic if all solutions U of (6.23)
are given by a function f in £%(G) whenever V is given by a function
g in E8(G). We have

AU = (AS.) + U,

where §. is the Dirac distribution at e.
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Then the hypoellipticity of A is equivalent to the hypoellipticity of
the distribution A d. in &(G), given by

(Abe, ) = (6c, Ad) = Ag(e), ¢ €ENG).

Relation (2.21) implies that, for all z € ag,
¢
(6.24) F(a8)E) = (X + 1ol ).
j=1

i) From (6.24) we deduce that, for all A € a*,
F(AG)N) = =P+ [lell*)-
Thus, for ||A|| > 1, we have
(6.25) [ F(Ad) (N = A
ii) Relation (6.24) also implies that

Z ={z€ a5, F(Ad)(z) =0}

={(Rez,Imz) € a" x a*, [Rez||* = [[Imz||* + | ||

and (Rez,Imz) = 0}.
Thus,

i [Imz| ‘o 2||Im z||
= 2 2
(6.26) lzll»+o00,2€2 log||z]]  Iim 2] =400 log(2||Im z||2 + ||p||?)

= +00.

Relations (6.25) and (6.26) show that distribution AJ. satisfies the
H-property. Thus, Theorem 6.1 implies that the distribution Ad, is
hypoelliptic. The Laplace-Beltrami operator A is then hypoelliptic.
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