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SOME SERIES OF HONEY-COMB SPACES
ELENA BARBIERI, ALBERTO CAVICCHIOLI AND FULVIA SPAGGIARI

ABSTRACT. We study the topology and geometry of some
series of closed connected orientable 3-manifolds constructed
as honey-comb spaces. These manifolds are quotients of
certain polyhedral 3-cells by pairwise identification of their
boundary faces. We determine geometric presentations of the
fundamental group and study the split extension of it. Then
we describe geometric structures, homeomorphism type and
covering properties of our manifolds which are shown to be
cyclic coverings of the 3-sphere branched over known links
with two components. Finally, we answer open questions on
certain manifolds, defined by Kim and Kostrikin, and give a
complete classification of them.

1. The Seifert-Weber dodecahedron space. Following [16, 22],
we start with a detailed discussion on a classical example of hyperbolic
closed 3-manifold, i.e., the Seifert-Weber dodecahedron space. Recall
from [5] that the Coxeter group [p,q,r] is generated by four elements
a, B, v and d subject to the following relations:

The group [3,3,5] has order 14400, and is also generated by the
elements oy, (3, v and 6, where a; = (a(B76)%)?a. Since these
elements satisfy the relations of [5, 3, 5], there is a unique epimorphism
- [57335] - [37375] such that (,D(Ck) = ai, @(B) =B, ‘10(7) = v and
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FIGURE 1. Polyhedral representation of the Seifert-Weber hyperbolic manifold.

©(0) = 6. Let I' denote the subgroup of [3,3,5] generated by the
elements adyBivdaByaB, ayBévéByéyaB and aB(v8)2BvéByB. It
has index 120 and intersects (8,~,d) trivially. As is well known, the
hyperbolic 3-space H? can be tessellated by regular dodecahedrons
with 12 meeting at each vertex and 5 meeting at each edge. The
symmetry group of this tessellation can be described in terms of the
generators «, 3, v and §, and it turns out to be isomorphic to [5, 3, 5].
Furthermore, [5, 3, 5] acts sharply transitively on the dodecahedral cells
of the tessellation. Let us consider the orbit space obtained from H?
under the action of p~1(I'). The interior of a dodecahedral cell A is
a fundamental region for the orbit space. This means that each point
in the interior of A lies in a different orbit, and each point of H? is in
the same orbit as at least one point of A. Then the orbit space can
be obtained from A with certain identifications among vertices, edges
and faces in JA. The boundary identifications, induced by the action
of ¢~1(T), are illustrated in Figure 1.



SOME SERIES OF HONEY-COMB SPACES 383

The resulting 3-manifold, which we denote by M, , = Ms 1, is hyper-
bolic. The fundamental group Gs2(= ¢ 1(I')) of M; > has the finite
presentation

G52 = (r1, 22, T3, T4, Ts, Y:T1T223T425 = 1,

z; ' ip3mip17y, = y (indices mod 5)),

which corresponds to a spine of the manifold. The first, respectively
second, relation arises by walking around the boundary of the face
F = I, respectively Fj 3 = Fj 5. It is a routine matter to compute the
integral homology of M5 » from the above presentation, i.e., Hy (Ms5,2) =
Z3. The dodecahedral representation in Figure 1 can be depicted in
a Zs-symmetric form as shown in Figure 2, where the shift £ = 2 is

pointed out.

Let a;, 1 =1,2,3,4,5, and b denote the isometries which identify the
pairs of faces (F;, F}) and (F,F'), respectively. Then G52 admits the
further presentation

Gs,2 = (a1, az,as, a4, as, b:arazasazay = 1,

aia; ! a;"ya;_3 = b (indices mod 5)),

which corresponds to a spine of the manifold (dual to the previous
one). Let H,j, = Hso be the split extension group of G52 by
Zs = (p:p° = 1), where p is the cyclic automorphism of G5 given
by p(a;) = ai;1 (indices mod 5), and p(b) = b. Then Hj » has the finite
presentation

Hsz = (a,b,p:p° =1, p~lbp=10, (ap~%)° =1, b=p’ap(a='p)*a)
= (a,p:p° =1, (ap7?)° =1, ap(a~'p)*ap=pap(a~*p)a),
2

where a; = a and a;,; = p~‘ap’. Setting T = ap~
a = 7p? yields the presentation

and eliminating

H572 = <p,T H p5 = T5 = ]_’ wp = pw>’
where w = 7p7 lp lr7lpr. Since w = 71 p273 p=4 75 p%6 77 where
€1 = €3 =¢¢ = ¢e7 = 1 and €3 = €4 = €5 = —1, the exponent ¢; is
the sign (£1) of 3¢ reduced mod16 in the interval (—8,8). Then the
word w corresponds to the 2-bridge link 8/3, i.e., the Whitehead link
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>
shift k =2

FIGURE 2. The Zs-symmetric form of the Seifert-Weber manifold Ms 2 (With shift
k=2).

W, see [9, 20]. In particular, the finite presentation (p,7 : wp = pw)
defines the link group of W, where p and 7 are meridians around the
components of . Therefore, Hs» is the fundamental group of the
hyperbolic orbifold Os 5(W), whose underlying space is the 3-sphere
and whose singular set is the Whitehead link W = 8/3 with branching
index 5 on its components. This agrees with the well-known fact that
the Seifert-Weber 3-manifold Ms » is the strongly cyclic 5-fold covering
of S branched over the Whitehead link (for further information on
strongly cyclic branched coverings of 2-bridge knots and links see also
[4, 18, 19]. As general references on branched coverings of links we
refer, for example, to [2, 10, 20]).

2. Branched coverings of generalized Whitehead links. The
Z5-symmetric complex with boundary identifications shown in Figure 2
was first generalized by Helling, Kim and Mennicke [7] to construct
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IS N

s
shift k =2
FIGURE 3. The polyhedral scheme P,y ; = Ps,2,3 with identifications.

a nice family of polyhedral schemata representing closed connected
orientable 3-manifolds M, ; for n and k& coprime, n > 2 and 1 <
k < n — 1. Then they proved that these manifolds are n-fold strongly
cyclic coverings of the 3-sphere branched over the Whitehead link.
Subsequently, the polyhedral description of the whole family of cyclic
branched coverings of the Whitehead link was given by Cavicchioli
and Paoluzzi in [3]. More recently, it was constructed in [11] (for n
and k coprime) and in [14] (in the general case) a family of closed
connected orientable 3-manifolds M, ;; which contains the Seifert-
Weber dodecahedral space M52 (= Ms22) and the manifolds M, x
(= My i, for I = 2). This section is devoted to describe the polyhedral
construction of the manifolds M,, ;; from [11, 14|, where they were
denoted by M (2m+1,n, k) and M(2m+1,n, k), respectively, for m = [
and (n,k) = 1in [11], and d = (n,k) > 1 in [14]. Then we recall the
results on these manifolds obtained in the quoted papers. As remarked
in [14, page 804], the technique for such results is the same as the one
developed by Cavicchioli and Paoluzzi in [3]: it basically depends on
the cancelation of handles on Heegaard diagrams representing three-
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dimensional orbifolds. This generalizes to the orbifold case a method
described in [6] for link complements. Finally, we complete the known
results with more information on certain geometric presentations of the
fundamental group and study the split extension of it in the general
case.

For every n > 2,1 > 2 and 1 < k < mn — 1, let us consider the
combinatorial 3-cell P, x; whose 2-sphere boundary consists of two n-
gons F and F’ in the northern and southern hemispheres, respectively,
and 2n (20 + 1)-gons, labeled by F; and F!, i = 1,2,...,n, in the
equatorial zone. Then 0P, j; has exactly 2n + 2 faces, 2n(l + 1)
edges and 2nl vertices. The side pairing of index k is determined
by identifying the pairs of faces (F;, F]) and (F,F’), and also the
corresponding oriented edges on the boundary with the same labels are
identified (see Figure 3 for P, ; = P52,3, where d = (n,k) = (5,2) =1,
and Figure 4 for P, ;; = Ps 44, where d = (n,k) = (8,4) = 4). The
integer k is again the number of (2! + 1)-gons which we have to shift
before gluing the face F; with F!. The resulting identification space
M, 1.1 has d vertices, n+d 1-cells, n+1 2-cells, and one 3-cell. Since the
Euler characteristic vanishes, the quotient complex M, ;. ; is a closed
connected orientable 3-manifold. Let us denote, for simplicity, by G, i
the fundamental group of M, ; ;. We can obtain a finite presentation
of G,k by considering the isometries a;, ¢ = 1,2,...,n, and b which
identify the pairs of faces (F;, F}) and (F, F'), respectively. Following
the cycles of equivalent edges we get for the label z; (= ¢ in the figures),
i =1,...,n, the relation

(I even) (a;a; 1) (a; aix 1)V =1
(1 odd) (aiaff1)(l’1)/2ai(ai+k—1ai_+1k)(l’1)/2ai+k_1b’1 —1,
and, for the label y;, i =1,...,d, d = (n, k), the relation

Qi@ kQit2k """ Qigk(n—-1) = L.

Then we have the following result, compare with [14, Theorem 1,
page 807].

Theorem 2.1. The polyhedral 3-cell P, with identifications,
n>212>21<k<n-—1, constructed above, defines a closed
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F
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shift k = 4

FIGURE 4. The polyhedral scheme P, ;; = Ps 4,4 with identifications.

connected orientable 3-manifold M, ; which has a spine modeled on
the finite presentation

Gn,k,l = <a1, ceeyQp, b

. (aia; )2 (a7 aimk—1)"? if | even
(aia; )"V ai(@ik—10;5) " Pagsk—1 if L odd
1=1,...,n
it kQit2k " Gitk(n-1) =1, 1=1,.. '7d>7

where the indices are taken modn, and d = (n, k).

If I = 2, then the manifolds M, 1 are exactly the manifolds M,
considered in [7] for (n, k) = 1 and in [3] for the general case. Suppose
now that m and k are coprime, ie., d = (n,k) = 1. Then the
quotient complex M, ;; has exactly one vertex, so we can obtain a
further presentation for the fundamental group Gnr; = ™1 (Mp k)
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with generators z1, ... ,z,,y and relators arising from the boundaries
of the 2-cells Fi,...,F,,F of the polyhedral scheme. For each i =
1,...,n, the boundary cycle of the polygons F; and F] is

1 1/2( 1/2

(I even) (z; @imk) " (@ip1Timk+1) " =y

(I odd) (ziz; ) Y 2 (a2 ) Y P =
where the indices are taken modn, and the boundary cycle of the

polygons F and F’ is
1Ty Ty = 1.

Then we have the following result which corrects a misprint in the
exponents of the relations in the presentation obtained in [11, page
68], at the end of Section 2.

Theorem 2.2. If n and k are coprime, then the fundamental group
Gn k, of the manifold My g, n > 2,1>2,1 <k <n—1, admits the
finite presentation

Grkg = <:v1, ey T, YT T Ty = 1,
(fvglmifk)l/2(xi+133;_1k+1)l/2 if 1 even
(xixi__lk)(lil)/zxi(l'i—k+ll'i_.|_11)(lil)/zxi—k—l—l if | odd

i=1,...,n; indices mod n>,
which corresponds to a spine of the manifold (hence it is geometric).

To see the equivalence between the presentations obtained for G, i,
we use some Tietze transformations, and set z; :=ag;, j=1,...,n.

Case [ even. Taking an integer k' such that kk’ = —1 (mod n),

we get a; = T_gr, Q-1 = T—gritk', Gi—k = T—gri—1 and a;_p—1 =
ZT_kritk'—1. Substituting these formulae in the relation

(asa )Y (0 e )2 = 1
and setting y = b~!, we get

(mfk:’im:]lc/i+kl)l/2 (m:jlcli_lek’iJrk’fl)l/Zy =1,
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whose inverse relation is

y_l(m:]t:’zlfk;’f]_w—k’i—l)l/z(m—k’i-!,-k’m:]{:/i)l/z = ]_

Setting j = —k'i + ¥’ — 1, we obtain

-1

yfl(xj 3Ej—k’)l/z(5‘%’4-1&0]-__1k'+1)l/2 =1

Now we can interchange the role of k and k' to get the relation of the
second presentation for Gy, ;. Substituting the formulae a; = z_;,
il = T—fli41ye .- ,ai+k(n_1) =T _k'it+n—1 in the relation

AiQitk* Qipk(n-1) = 1

yields
T kT kitl" Tfifn—1 = L.

Setting ¢ = k, hence —k'i =1 (mod n), we get
T1To Ty = 1.
Case | odd. Taking an integer k' such that k&’ = 1 (mod n), we

get a; = Tpri, Qi1 = Thii—k/y Qitk—1 = Thri—k/'+1 and Qipp = Tpriql.
Substituting these formulae in the relation

(@ia;i )"V 205 (@i p-1a75) T Pag b7 = 1,

and setting y = b, we get

1-1)/2

1-1)/2 -1 —
( )/ l'k’i(xk'i—k'-i-ll‘kli_i_l)(

(Ik’ix;%_k/) l‘k’i—k’+1971 =1.
Setting j = k’i, we obtain
—1 \(-1)/2 —1 \(I—1)/2
(@jz; ) T P (2 w1 Py g = .

Now we can interchange the role of ¥ and k' to get the relation of the
second presentation for Gy, ;. The relation

AiQitk* Qiqk(n—1) = 1
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becomes

Th/iThtitl " Thtign—1 = 1
and setting ¢ = k, hence ki = 1 (mod n), we get the relation
T1To - Ty = 1.

Now we study the split extension group of G, x,; by the cyclic
automorphism corresponding to the presentation in Theorem 2.1. More
precisely, we have the following new result which generalizes Theorem 1
of [11], case d = (n, k) = 1.

Theorem 2.3. Let H, ;,; be the split extension group of Gn i,
where n,l > 2 and 1 < k < n—1. Then H,y; is isomorphic to
the fundamental group of the orbifold Oy, (n/q)(Wi) whose underlying
space is the 3-sphere and whose singular set is the 2-bridge link W, =
(4l)/(21 —=1) (if I = 2, then W, = W = (8/3) is the Whitehead link)
with branching indices n and n/d on its components, where d = (n, k),
see Figure 5.

Proof. Let us consider the finite presentation of G, 1 given in the
statement of Theorem 2.1. Let p be the automorphism of Gy, 1. defined
by p(a;) = a;+1 (indices modn) and p(b) = b.

(I even). The split extension group Hy, x; of G, i1 by Zy = (p: p"
= 1) has the finite presentation

Hy kg = (a,b,p:p" =1, pb = bp,
ap~apk p=Fap?® .. 'p—k(n—l)apk(n—l) _1,
b— (p—lapa—l)l/Z(pk—la—lp—k+1pkap—k)l/2>
> (a,b,p: p" =1, pb=bp, (ap_k)”/d =1,
b= (p~"apa™")""(p" a" pap™)'%)

k

where a; = a, a;41 = p~'ap’ and b = p~lbp. Setting 7 = ap~" and

eliminating a = 7p* and
b= (p~ rpr )2 (p~ v pr)/?
yields the finite presentation

Hppp = (r,p:p" =1, 7% =1, wip = puy),
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where
1 1

wp=rprH(p trpr YD (pT i pr) /2
(note that if I = 2, then w; is exactly the word w considered in
Section 1). Because

w; = 7.€1pf527. . 7.E‘ufs1)541727.64171

where ¢; is the sign (£1) of (2] — 1)i reduced mod 8! in the interval
(—41,41), the word w; corresponds to the 2-bridge link (41)/(20 — 1),
i.e., the link W;. In particular, the finite presentation (p, 7: w;p = pwy)
defines the link group of W, where p and 7 are meridians around its
components. Therefore, H, . ; is the fundamental group of the orbifold
On,(n/a)(Wi) whose underlying space is the 3-sphere and whose singular
set is the link W, with branching indices n and n/d on its components.

(I odd). The split extension group H,, ; has the finite presentation

Hypg = (a,b,p:p" =1, pb=1bp, (ap™")"* =1,

b= (p—lapa—l)(l—l)/Zp—lap

. (pfkapkpfk 1 1pk+1)(l 1)/2 —k
= (a,b,p:p" =1, pb=bp, (ap~

b= (ptapa )"V 2p lap

‘(P ap la 1pk+1)(l 1)/2 —k ,0k>-

ap®)
)(n/d> _1

k

Setting 7 = ap~* and eliminating a = 7p* and

1

DD trp(rp e tp)

b— (p717_p7_ (171)/27_,021@

yields the finite presentation
Hn,k,l = <TaP:Pn =1, Tn/d =1, wip = ,Owl>,
where

wi=1pr (o trpr )R e p(rpm i) D2

Because
wp =T p%2r3 .- 7-54l—3p54l—27—54l—1,
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Mokt n>2, 0>2, 1<k<n-1, d=nk)

(g) - fold strongly cyclic covering

n/d

d-fold cyclic covering
(quotient by a rotation about
the " vertical " circle A)

_ A
Wi= 57

FIGURE 5. Representing the manifolds M, ;; as branched coverings.

where ¢; is the sign (£1) of (2] — 1)i reduced mod 8! in the interval
(—41,41), the word w; corresponds to the 2-bridge link (47)/(2l — 1) =
W;. This completes the proof. a

Theorem 2.4 (Branched covering representation). The closed
connected orientable 3-manifolds My 1, n>2,1>2,1<k<n-1,
are strongly cyclic (n/d)-fold coverings of the 3-sphere S® branched over
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the link Lq; pictured in Figure 5, where d = (n, k) (if { = 2, then Lq;
is exactly the link L4 considered in [3]). Furthermore, M, 1. are cyclic
branched n-fold coverings of the 2-bridge link W, = (41)/(21 — 1) in the
3-sphere, where the branching indices of its components are n and n/d,
respectively.

Theorem 2.4 was first proved in [3, Theorem 3.1, page 464], for
I = 2 and recently generalized in [14, Theorem 2, page 807, and
Theorem 3, page 809]. As remarked in [14, page 804], the authors
apply methods from [3] to modify Heegaard diagrams of closed 3-
orbifolds by simplifications along closed curves and cancelations of
handles. These extend to the orbifold case the techniques described in
[6] for link complements. A proof of the second part of the statement
in Theorem 2.4 can also be found in [11, Theorem 2, page 70].

To end the section, we describe geometric structures and the home-
omorphism type of the manifolds M, ;. The next two theorems com-
plete Corollary 1 and Theorem 3 of [11, pages 70-71], where (n,k) = 1,
and Theorems 4 and 5 of [14, pages 811-812].

By [17, Remark 5.2], the orbifold O,, ,,((4l)/(2] — 1)) is hyperbolic
for every | > 2 and n,m > 3, see also [23]. So we get the following
result

Theorem 2.5 (Geometric structures). The manifolds M, x,
n>2,1>2,1<k<n-—1, are hyperbolic for alln >3 and d < n/2,
where d = (n, k). In these cases, Gn 1 = m1(Mp) are hyperbolic
groups (hence infinite and torsion free). If d = n/2, then the manifolds
are Seifert fibered spaces.

By Theorem 4.1 of [21] the symmetry group of the 2-bridge link
W, = (4l)/(2l — 1) is isomorphic to either (Z2)* or the dihedral group
Dy, see also [8]. Therefore, it has order 8. So we can apply Theorem 1
of [24] for the case (n, k) = 1 and Theorem 2.2 of [3] for d = (n, k) # 1
to get the following classification of the manifolds M, 1 ;.

Theorem 2.6 (Homeomorphism type). If n > 3 and d =
(n,k) = (n,k') = 1, then M, ,; is isometric (homeomorphic) to
My if and only if | = U and k' = (£1)'7'k*! (mod n). If
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d = (n,k) = (n, k') # 1, then the manifolds M, ; and My 1 are
homeomorphic if and only if | =1' and k' = (£1)'*'k (mod n).

To illustrate the arithmetic conditions in Theorem 2.6, we recall
that two oriented 2-bridge links o/ and o'/f' are equivalent if and
only if « = o and ' = B*! (mod 2a), as shown, for example,
in [2, page 184]. In this case, the n-fold strongly cyclic branched
coverings M, x(a/B) and M, (c'/B") are homeomorphic (=¢). By [19,
Proposition 2.1], we have M, x(a/B) = M, r(—a/B) = M, _i(a/
(B — «)), and M, x(a/B) = My, 1 (a/B) if Kk’ = 1 (mod n). In our
case, we have o = 4l and 8 = 2l — 1, hence M, ;1 = M, 1(41/(21 — 1))
is homeomorphic to M,, _(4l/ — (20 + 1)), where d = (n, k) = 1. Now
the oriented links 41/(21 — 1) and 41/ — (21 4+ 1) are equivalent if and
only if —(20 —1)(2l+1) = —4l>+1 =1 (mod 8l), i.e., [ must be even.
This is coherent with the statement of Theorem 2.4 in [19].

3. A class of Kim-Kostrikin manifolds. In this section we
give a complete classification of a class of closed connected orientable
3-manifolds Mj(n), constructed by Kim and Kostrikin in [12, 13|
as honey-comb spaces. In fact, let us consider the polyhedral 3-cell
P;(n) whose 2-sphere boundary consists of 8n faces, 20n edges and
12n + 2 vertices (see Figure 6 for n = 2 and n = 3). All the edges are
numbered and oriented so that to each face there corresponds precisely
one distinct face with the same induced orientation. Identifying the
pairs of pentagons (F;, F/),i=1,...,3n, and (E;, E}),i=1,...,n, as
well as the corresponding edges and vertices, yields a closed connected
orientable 3-manifold M;j(n). Computing the homology of M;(n) [13]
implies that Mj(n) is homeomorphic to M;(n’) if and only if n = n'.

The following result answers open questions on the manifolds M (n)
stated in [12, 13] (the case n = 1 was solved in [15]).

Theorem 3.1. For any n > 1, the Kim-Kostrikin manifolds M;(n)
are (3n)-fold cyclic covering of S® branched over the Whitehead link
W, where the branching indices of its components are 3 and 3n,
respectively. In particular, M;(n) is hyperbolic, and its fundamental
group G1(n) = m(M1(n)) is infinite and torsion-free.
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FIGURE 6. The Kim-Kostrikin manifolds M1 (n) for n = 2,3.
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Proof. Let p denote the n-rotational symmetry of the polyhedron
Pi(n) around the north-south axis. Let us consider the orbifold
M;(n)/{p) obtained from Mj(n) under the action of p. If n is coprime
with 3, then the singular set of M;(n)/(p) is a knot which is the image of
the symmetry axis with branching index n. If n is divided by 3, then the
singular set is formed by the image of the symmetry axis with branching
index n plus the images of three singular edges with branching index 3.
The fundamental group of the underlying space of Mj(n)/(p) can be
determined from the cellular structure of the quotient.

If n =2 (mod 3), this space (topologically) has a fundamental group

generated by four elements z,y,z,u subject to relations zuy = z2,

yur = 22, xuz = y? and zyz = 1. The polyhedron P;(n) with
identifications induces a cellular decomposition of the underlying space
of Mi(n)/{(p). If n = 2 (mod 3), then the induced triangulation is

exactly that of the manifold M3 = M3 22 considered in Section 2.

If n =1 (mod 3), the underlying space (topologically) has a funda-
mental group generated by four elements x,y, z, u subject to relations
zZuz = yx, xur = 2y, yuy = rz and xyz = 1. This presentation arises
from the honey-comb description of the manifold M3 ; = M3 ;2 con-
sidered in Section 2. A further rotation of order 3 about the symmetry
axis of the orbifold M;j(n)/(p) gives the representation of the mani-
fold Mi(n), n = 1,2 (mod 3) as a (3n)-fold covering of the orbifold
Os3n,3(W), where W is the Whitehead link. The singular set WV con-
sists of the image of the symmetry axis with branching index 3n and
the image of the edge u with branching index 3.

If n = 0 (mod 3), then the underlying space (topologically) is the
3-sphere, and M;(n) is the n-fold covering of S branched over a
4-component link. One component is the image of the north-south
axis of the polyhedron P;(n) under the n-rotational action, and it
has branching index n. The other three components have branching
index 3. A further rotation of order 3 about the symmetry axis of
the orbifold M (n)/{p) gives the representation of the manifold M;(n),
n =0 (mod 3), as a (3n)-fold covering of the orbifold Os, 3(W), where
W is the Whitehead link. |

Kim and Kostrikin defined in [12, 13] other infinite series of groups
Gi(n) and manifolds M;(n) arising from polyhedral schemata, i =
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2,3,4,5. The manifolds Ms(n) were completely classified in [1], and
they are Seifert fibered spaces. The topological classification of mani-
folds M;(n), 2 <1 < 4, will be given in a forthcoming paper.
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