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SIMPLE MODELS FOR AVIAN INFLUENZA
XINGYANG YE AND XUEPENG LI

ABSTRACT. Simple models for avian influenza are con-
structed and analyzed. These models are based on the stan-
dard SEIQ model, but include constant immigration of la-
tent class and an additional property of the avian influenza,
namely, that asymptomatic individuals in the latent period
have an infectious force.

The general quarantine-adjusted incidence and a special
incidence A1 + (A2/N) are studied, respectively. The models
not only show the importance of strengthening quarantine
work to recruitment and treatment for infections, but also
indicate that hunting and isolation are helpful to the epidemic
control.

Finally, an eco-epidemiological system of two noninteraction
species is proposed and investigated to study human avian
influence. The model gives an important indication that
the most effective way to control the disease spreads among
human beings is to inhibit the influenza virus from spreading
among animals.

1. Introduction. Avian influenza is a serious disease of poultry
occurring more and more frequently all over the world. Many methods
such as hunting and isolation have been taken to control the spread
of avian influenza. However, it is observed that poultry without any
symptom can excrete much highly pathogenic virus, which makes it
more difficult to inhibit the H5N1 type virus from spreading.

Several studies [2, 4, 5, 8] have examined models to attempt to
control such a pandemic influenza at the source where it should de-
velop.These models are based on networks and stochastic simulations.
Very recently,it is shown in [1] that many of the predictions of the
above models can also be obtained from simple deterministic compart-
mental models. It is suggested in [1] that simple models may be a

2000 AMS Mathematics subject classification. Primary 34D23, 92D30.

Keywords and phrases. Avian influenza, epidemic model, global stability.

Supported by the Education Foundation of Fujian Province of China (No.
JA05204).

The first author is the corresponding author.

Received by the editors on September 3, 2007, and in revised form on January 29,

2008.
DOI:10.1216/RMJ-2008-38-5-1813 Copyright ©2008 Rocky Mountain Mathematics Consortium

1813



1814 XINGYANG YE AND XUEPENG LI

better way for a threatening pandemic with location and parameters
as yet unknown.

Following the idea of [1], we develop a general epidemic model for
avian influenza based on the standard SEI model, including quarantine
and an additional property of the influenza described above, namely,
that the asymptomatic individuals in the latent period have infectious
force.

In our model,the total population N is divided into four compart-
ments with N (¢t) = S(t) + E(t) + I(t) + Q(t), where S(t) is the number
of individuals in the susceptible class, E(t) is the number of latent
or exposed individuals who are asymptomatic but infective, I(t) is the
number of infective individuals who are infective and symptomatic, and
Q(t) is the number of individuals who are quarantined. It is assumed
that these quarantined individuals do not mix with others, so that they
do not infect susceptibles. Thus, throughout our paper,we always con-
sider the quarantine-adjusted incidence [6], that is, the incidence is
dependent on S(t), E(t) and I(t) but independent of Q(¢).

Specifically,we make the following assumptions.

(i) There is a constant flow of A new individuals into the population
in unit time, of which a fraction p (0 < p < 1) is latent.

(ii) There is a constant per capita natural death rate constant d > 0
in each class.

(iii) The transmission coefficients of the latent and infective are 31 (V)
and B2(N), respectively. The two coefficients satisfy the following
conditions:

Bi(N) >0,  Bi(N)<0,  [B(N)N]'=0

(2

where i = 1, 2.
(iv) A fraction € of latent individuals (E) becomes infective and
proceeds to the infective class(I).

(v) A fraction n of the infective (I) is quarantined, and a fraction p
of the infective is hunted, while a fraction « of the infective recovers
and goes directly to the susceptible class (5).

(vi) The disease-related death rate constants of the infective and
quarantine are oy and as, respectively.
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These assumptions lead to the following model

( % = (1-p)A—dS — Bu(N)SE — Bo(N)SI + A1,
0 % = pA+ B1(N)SE + B2(N)SI — (d + €)E,
% =eE—(d+ar+p+n+9)1,
\ % =nl — (d+ a2)Q.

Here, N(t) = S(t) + E(t) + I(t) is the total population size except
the quarantine. It is convenient to use N as one of the model variables
rather than S, especially if a more general incidence function depending
on total population size is assumed. Thus, substituting S =N —-FE —1T
into (1), we have

% —pA+ [BUNE + B(N)I(N — T — E) — (d + )5,
i—i:sE—(d+a1+y+n+7)I,
@ <%
s =A—dN — (a1 +p+ 1),
d@ _

The special case p =0, vy =0, n = 0 and g = 0, which gives @ = 0,
is the SEI model without input to the latent class which has been
studied in [7].

In the next section, we shall consider (2) in two cases: p = 0 and
0 < p < 1, which imply that there is no input of the infections class
and that there is the constant input, respectively. To obtain more
detailed property of the epidemic equilibrium, in Section 3 we study
the special incident 8(N) = Ay + (A2/N) which includes both the
standard incidence and the simple mass action incidence. In Section 4,
an epidemic model of two noninteraction species which describes the
human avian influence is proposed and investigated. A final discussion
concludes the paper.

To keep matters simple, we denote w = d4+a;+p+n+7y, § = ay+up+n.
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2. The avian flu model with general quarantine-adjusted
incidence.

2.1. Case: p = 0. p = 0 implies that there is no input to the class
FE, that is, the input to the population is all susceptible. For this case,
denote
_ Awpi(A/d) +eBa(A/d)

Ro d w(d +¢) ’

then we have that the following holds.

Theorem 1. If p = 0, for model (2), there is always the disease-
free equilibrium Py(0,0, (A/d),0), and there is also a unique endemic
equilibrium P} = (E*,I*, N*,Q*) if and only if Ry > 1 where

*_ Y

A—dN* n
= — Ef=—-TI* * = I*.
5§ e’ @ d+ as

I*
N* is the unique Toot of equation
(3) [wB1(N)+eB2(N){[ed + d(w + §)]N — (w+8)A} = edw(d + ¢€)

in the interval (0, (A/d)).

Proof. If p =0, it is easy to see that Py(0,0,(A/d),0) is always the
disease-free equilibrium of (2). The endemic equilibrium is determined
by equations

Bi(N) + Bo(N) | (N — T~ E) ~(d+€) =0

(4) e —wl=0
A—dN —-0I=0
nI — (d+ a2)@Q = 0.

From the last three equations of (4) we can obtain the following

_ A f(st’ I 0 n

I = 1.
(5) d+ as




SIMPLE MODELS FOR AVIAN INFLUENZA 1817

Substituting (5) into the first equation of (4) gives (3). Denote
F(N) = [wBi(N) +eB2(N)|{[ed + d(w + §)|N — (w+0)A}.

Due to f(A/d) = ed(A/d)[wB1(A/d) +eB2(A/d)], Ro > 1 is equivalent
to f(A/d) > e6(d + ¢). Since Bi(N) <0, [NG;(N)]' >0,i=1,2, we

have
f'(N) = [e6 + d(w + ) {w[NBL(N)]' + e[NB2(N)]'}
— (w+ ) AwB (N) +eB5(N)]
> 0;

then f(N) is a nondecreasing function of N. B;(N) > 0, i = 1,2,
implies that f(N) < 0 for sufficiently small N. Therefore, (3) has
a unique root N* in the interval (0,(A/d)) if and only if Ry > 1.
Substituting N = N* into (5) gives I*, E* and Q*.

The proof is complete. ]

Theorem 2. If p = 0, the disease-free equilibrium Py of (2) is
globally asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof. If p = 0, analysis of the Jacobian matrix of system (2) at
equilibrium P, shows that it is locally asymptotically stable if Ry < 1
and unstable if Ry > 1. In order to prove global stability when Ry < 1,
consider a Liapunov function

wPi(A/d) + eB2(A/d) 4+ 52(A/d)1

V(B D = (d+o)w w

7

with the Liapunov derivative

wB1(A/d) + eBa2(A/d)
(d+¢e)w
+ L(f/ 9) (eE — wI)

_ wPi(A/d) + eB2(A/d)
= e [B1(N)E + B2(N)I] S

“[(3)een(3)]

V' = [B1(N)SE + (2(N)SI — (d + ¢)E]
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_ %Ro [BL(N)E + B2(N)I| S — [51<3>E+52<§)I]
< %RO [Bi(N)NE + Bo(N)NI] — [51<§>E+ﬁz<§>1]

L (£) o (2)2] - ()52
a8 a2

since Ry < 1. By the Liapunov-Lasalle theorem, solutions of system
(2) approach the largest positively invariant subset of the set where
V' =0, which is the set where E = I = 0. In this set, S’ = A—dS and
Q' = —(d+ a2)Q, so that
A A A
=at <5(0> - g)‘fdt — S Q) = Qe et — 0

as t — +o00o. Thus, all solutions in the set where E = I = 0 go to the
disease-free equilibrium Py. By the theory of limit systems, all solutions
must also approach Pj.

The local stability of the endemic equilibrium P* will be obtained
similarly for the case p > 0.

2.2. Case: 0 < p < 1. 0 <p< 1 implies that there is the input of
latent individuals. For this case,we have the following results.

Theorem 3. Suppose p > 0. For (2) there ezists no disease-free equi-
librium, but there is always the endemic equilibrium P*(E*, I*, N*,Q*),
where

A—dN* w n
I* — E* — _I* * — I*
5 ’ c ’ Q d + ay )

and N* is the unique positive root of equation

(6) [WBi(N) +eBa(N){[eD + dlw + DN — (w +5) A}
pedA

2860.} d"‘&‘*m

in the interval (0, (A/d)).
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Proof. Equilibriums of (2) are given by

pA+ [Bi(N)E + B2(N)I|(N — 1 - E) — (d+¢)E =0,
- cE —wl =0,

A—dN — 5T =0,

nl —(d+az2)Q = 0.

If we let E = 0 and I = 0, then the first equation of (7) becomes
pA = 0 which is impossible since p > 0. Thus, there is no disease-
free equilibrium of (2) if p > 0. The endemic equilibrium of (2) is
determined by equations

[B1(N) + B2(N)(I/E)|(N = I — E) = (d+¢) + (pA/E) = 0
eEl —wl=0

(8) A—dN —-6I=0
nI — (d+ a2)Q = 0.

From the last three equations of (8) we have

n
= 1.
d—|—0(2

_A-dN

FE =
5 I

(9) 1 I, Q@

w
g

Substituting (9) into the first equation of (8) gives (6). Define

F(N) = [wBi(N) + ef2(N)|{[ed + d(w + §)]N — (v + §) A}

_ B pedA
g(N) =¢ebw|d+¢ o(A—dn) |’

Then f(N) is a nondecreasing function of N which has been obtained in
the proof of Theorem 2. f(A/d) =ed(A/d)[wph1(A/d) +eB2(A/d)] >0
and f(N) < 0 for sufficiently small N. Again, g(N) is a strictly de-
creasing function of N, g(0) > 0 and limy_,(4/4)- g(IN) = —oco. There-
fore, (6) has a unique root N* in the interval (0, (A/d)). Substituting
N = N* into (9) gives I'*, E* and Q*.

Theorem 4. If 0 < p < 1, the endemic equilibrium P* is locally
asymptotically stable if it exists.
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Proof. The Jacobian matrix at the endemic equilibrium is

ai1 a2 a3 0
e —w 0 0
0 -6 —d 0 ’
0 n 0 —(d+ a2)

where
ann = B1(N*)S" = [Br(N*)E* + Bo(N*) "] = (d +¢)
aiz = Ba(N™)S* — [B1(N*)E* + Bo(N*) "]
a3 = [B{(N")E]S™ + [BL(N")E™ + Bo(NT)I7].
The characteristic equation at the endemic equilibrium is a fourth
degree polynomial given by
(A +d+82) (A + b1 A% + bod + b3) = 0,
where the coefficients are
b1 =w+ d— ail
b2 = dw — (d+ w)a11 — £a12

b3 = 6661,13 — Eda12 — wdan.

Since

pA+ [Bi(N*)E* + Bo(N*)I*]S* — (d+¢)E* =0,
we get
(10) NS = (d+e) ~ 20— Z s,

Therefore, by means of (10), after some calculation, the coefficients b;,
1 =1,2,3, can be rewritten as follows

b= (w+d)+ 20+ [B(N)E" + (NI + S (NS
by = wd + (d+ w + €)[B1(N*)E* + B2(N*)I*]

P+ L vs
by = (ed + ed + wd)[BL(N*)E* + Bo2(N*)I*]

A
+ wd% +e86S* [, (N*)E* + B4(N*)I*].
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From the above, we know that all of the coefficients of b; are positive.
Further, notice that the first term of b; multiplied by the second term
of by then minus the first term of b3 is positive, and the second term
of b; multiplied by the first term of by then minus the second term
of b3 is zero, the third term of b3 is negative and the other terms of
b1, bs are positive. All of this analysis leads to bybs — b3 > 0. Thus,
the Routh-Hurwitz criteria is satisfied which means local asymptotic
stability of the endemic equilibrium has been achieved.

3. The avian flu model with a special quarantine-adjusted
incidence A; + (A2/N) [3]. In Section 2, we only obtained the
necessary and sufficient condition for the local asymptotic stability
of the endemic equilibrium. To obtain more detailed properties of
the epidemic equilibrium, in this section we study a special incidence
B(N) = A1 + (A2/N) which includes both the standard incidence and

the simple mass action incidence.

Let 81(N) = A1 + (A2/N) and B2(N) = A3 + (Ag/N). Then system
(1) becomes

(11)
% = (1_p)A_dS_)\15E_>\ZSWE_)\351_)\4%+7I,
% :pA+)\15E+)\QSWE+)\3SI+)\4% —(d+¢)E,
% =eF —wl,
% =nl — (d+ a2)Q.

Since system (11) is a special case of (1), we have the following result
for (11).

Theorem 5. The endemic equilibrium P* of system (11) is locally
asymptotically stable if it exists.

Next we are concerned with the global property of the endemic
equilibrium P*. The variable @ does not appear in model (11) except
in the equation for Q. Thus, ) is determined when the other variables
are known, and the equation for Q may be discarded from the model.
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We now consider the following subsystem of system (11)

(12)
S’(t) = (l —p)A—dS—)qSE—)\gSWE _)\SSI_)\4% +7I,

E I
E'(t) = pA+ M SE + )\2% + A3ST + A{% —(d+¢)E,
I'(t)=eE —wl.

To keep matters simple, let = (dS/A), y = (dE/A), z = (dI/A),
t=dtand N =2 +y+ 2= (dN/A). Then (12) is equivalent to

d - - - -
d—:tf:(lfp)f:vf/\lxyf)\z%f)\gmzf)q%—}—fyz,
dy ~ v Ty o« v Tz .
(13) ai p 1Y 2N 3TZ2 4N ( )y
%—é —wz
di'_ y ’
where
~ A1 ~ A ~ A3 ~ MA
1 d, 2 a2 ) 3 da 4 a2 )
a=2 5 =1 g= % a=2
T @ d’ d
The equation of variable N is now
dN -
14 — =1—N — ay.
(14) 4 ay

The invariant set is now D = {(z,y,z) € R% :x+y+ 2z < 1}. Letting

E={(N,y,z)€D:N=1-ay}
={@y2) Do+ 1 +ay+z=1}

we have

Theorem 6. There is no periodic solution of system (13) in do-
main E.
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Proof. Obviously, the boundary curve of domain E cannot form the
periodic solution of system (13). We consider the following in the
interior of E.

Assuming that system (13) has a periodic solution ¢(t) = {z(¢), y(¢),
z(t)}, the image I" of ¢(¢) is the boundary of a plane domain IT which
is in the interior of domain E.

Let f1, fo and f3 denote the first three formulas of the righthand
side in system (13), respectively. Let f = (f1,f2,f3)T (T denotes
transpose), g(x,y,2) = 1/(zyz)r x f, (where r = (z,y,2)"T). Then

f-9=0.
Denote g = (g1, 92,93) and

o <893 092 Og Ogs 0go 391)

Y°z Tz Tz Ty
Cl-p+y M(1+a)(L+y)
3y z
As(1+ay)  Aa(1 4 2a%y?)
- 2 o =52 < 0
y (1-ay)

forany 0 <p <1.

If we choose the direction of plane domain IT upward, the direction of
the image I' conforms to the righthand rule with the direction of plane
domain II. Vector (1,1 + &, 1) is the normal vector of plane domain II.
Then we get, by Stoker’s theorem,

S . a1)tas = 4 91
\/m//HCurlg (1,14 a,1)"dS f} 7l ds.

This is in contradiction with the calculation above. The theorem is
proved. ]
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Theorem 6 means the local stable equilibrium (S*, E*, I*) for system
(12) is globally stable. Therefore, we obtain

Theorem 7. The endemic equilibrium of system (11) is globally
stable when Ry > 1.

4. An eco-epidemiological system of two noninteraction
species where the disease spreads from animals to humans
with mass action incidence. Due to the high lethality and virulence
of H5N1, its endemic presence, its increasingly large host reservoir,
and its significant ongoing mutations, the H5N1 virus is the world’s
largest current pandemic threat to human. In this section we propose
an epidemic model that describes a human infected by avian flu.

Let species (I) stand for poultry infected by the H5N1 virus. The
disease transfer among species (I) is similar to the model discussed in
Section 2. To keep the model simple we model the incidence rate by a
simple mass action.Then the epidemic model for species (I) yields:

S1= A1 —dS1 — B1S1E1 — B281 11 + i,
Ey = B1S1E1 + B2S1 11 — (d+¢)En,

I =<E, —(ar+d+m+p+n),

Q1 =1l — (d+ a2)Q1.

(15)

Let species (II) stand for people who get extensive physical contact
with infected species (I). Since there is no evidence of efficient human-
to-human transmission or of airborne transmission of HSN1 to humans,
we assume the disease does not spread among humans. The disease
transmission model equation for species (II) is

(16) {52 = Ay — bS8y — B(E1 + I1 + Q1)S2 + 7212,

Iy =B(Ey + 11 + Q1)S2 — (a3 + 72) 12,

where A, is the constant input to species (II), b is the output rate of
Sa, 2 is the recovery rate, and as is the disease-related death rate.
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Thus, we get the following six-dimensional equations:

Si= A1 —dS1 — f1S1E1 — B2S1 11 + Iy,
Ey = BiS1E1 + 82511 — (d +¢)Eny,

I =¢E; — (a1 +d+v +p+n)h,

Q1 =1l — (d+ a2)Q1,

Sy = Ay —bSy — B(E1 + I1 + Q1)S2 + 212,
Iy = B(E1+ I + Q1)S2 — (ag + 72) 2.

(17)

Based on biological significance, our following discussion is in do-
main D, where

D= {(517E17117Q17527]2) S Ri | 0< S]_ +E1 +I]_ +Q1

A Ay
< = I, < —=3%.
_d,0<52+ 2_b}

It is easy to show that D is the invariable set of system (17). Denote

B A1Br Arefr
T dd+e) dd+e)aat+d+v+pu+n)

Then we have

Theorem 8. Ifﬁo < 1, system (15) has a unique disease-free equilib-
rium Py((A1/d),0,0,0) which is globally stable. If Ry > 1, Py is unsta-
ble and system (15) has a globally stable equilibrium P*(ST, EY, I, Q7)
where

g wldte) p edll- (1/Ry))
(18) Vo Bt wp ! w(d+e)—emn’

* w * * 77 *
Ef=—1I Qi =—"TI
1 c 1> 1 d 9 1

where w =a1 +d+v1 +p+n.

By analyzing the existence of equilibria and the linearized system on
equilibria, we can easily obtain
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Theorem 9. If Ry < 1, system (17) has a unique disease-free
equilibrium ﬁo((Al/d), 0,0,0, (A2/b),0), which is locally stable if Ry <
1. If Ry > 1 and Py is unstable, then system (17) has a local stable
equilibrium P*(S}, B}, IT,Q%, 83, 1I3), where

oo _ (A2 — osl3) [ AB(Ef + I} + Q%)
2 b ’ 2 B(Bf + I +QF) + blaz + 72)

and ST, Ef, If and QF are defined by (18).

For the stability of P, and P*, we have
Theorem 10. If RO <1, ﬁo is globally stable in domain D.

Proof. From Theorem 8 we know Py((A1/d),0,0,0) is the globally
stable equilibrium of subsystem (15) for system (17). Then if t — +o0,
the limiting equation of the last equation of system (17) is

I = — (a2 + 72) I,
so Iy(t) = I»(0)e~(®2*72)t — 0, ¢ — +o00. The limiting equation about
52 is .
Sy = Ay — bS,,
so S = (As/b) + (S2(0) — (Ag/b))Ne’bt — (A3/b), t = 400. Applying
the theory of the limit system, if Ry < 1, the solutions of system (17)
in D approach Py as t — +o0.

Theorem 11. If Ry > 1, P* is globally stable in domain D.

Proof. From Theorem 8 we know P*(S}, Ef, I, Q%) is the globally
stable equilibrium of system (15). Then if ¢ — 400, the limiting
equations of system (17) are

(19) { S2 = Ay —bSy — B(ET + I} + Q71)S2 + v2l2 = X(S2, 1),
I = B(ET + I + Q1)S2 — (a3 + 72) 2 = Y (52, [2).

Consider the region Q = {(S2,I2) € R% | Sy + I < (A2/b)}, which is
the positive invariable set of system (19). The equilibrium (S5, I3) in
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the region is locally asymptotically stable. Using Dulac’s criteria, we
have
0X 0Y
R + R
0Se 0l
so that there are no periodic solutions in region 2. Thus, by the
Poincaré-Bendixson theory, all solutions starting in §2 approach (S5, I3)

ast — +oo. Hence, by the theory of limit systems, P* is globally stable
in domain D.

=—b—B(E] +I] +Q7) — (a2 +72) <0,

5. Conclusion. For the avian flu model with no input of latent,
there is a threshold behavior, with either a disease-free equilibrium
or an endemic equilibrium, approached by all solutions. If there is a
positive flow of latent into the population, it is not possible to have a
disease-free equilibrium. All of these not only embody the importance
of strengthening quarantine work to recruitment and treatment for
infections, but also show that hunting and isolation are helpful to
epidemic control. A simple model of a human infected by the H5N1
virus indicates that the most effective way to control disease spreads
among human is to inhibit the influenza virus from spreading among
animals.
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