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WEIERSTRASS’ THEOREM
IN WEIGHTED SOBOLEV SPACES
WITH K DERIVATIVES
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ABSTRACT. We characterize the set of functions which
can be approximated by smooth functions and by polynomials
with the norm

k
It = D 17 e,
j=0

for a wide range of (even nonbounded) weights w;’s. We allow
a great deal of independence among the weights w;’s.

1. Introduction. If [ is any compact interval, Weierstrass’s theorem
says that C'(I) is the largest set of functions which can be approximated
by polynomials in the norm L (I), if we identify, as usual, functions
which are equal almost everywhere. There are many generalizations
of this theorem, see e.g., the monographs [20, 23 and the references
therein].

In [24, 28] we study the same problem with the norm L (w) defined
by

(1) [fll= (wy = ess sup erlf(z)|w (),

where w is a weight, i.e., a nonnegative measurable function, and we
use the convention 0-co = 0. In [24] we improve the theorems in [28],
obtaining sharp results for a large class of weights, see Theorem 2.1
below. Notice that (1) is not the usual definition of the L° norm
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in the context of measure theory, although it is the correct one when
working with weights, see e.g., [3, 6].

Considering weighted norms L (w) has been proved to be interest-
ing mainly because of two reasons: first, it allows to widen the set of
approximable functions (since the functions in L*°(w) can have singu-
larities where the weight tends to zero); and, second, it is possible to
find functions which approximate f whose qualitative behavior is sim-
ilar to the one of f at those points where the weight tends to infinity.

If w = (wo, ... ,ws) is a vectorial weight, we study this approximation
problem with the Sobolev norm W*>(w) defined by

k
(2) [ Fllwe.oo ) = Z||f(])||Loo(wj)-
=0

Weighted Sobolev spaces are an interesting topic in many fields
of mathematics, as Approximation Theory, Partial Differential Equa-
tions (with or without Numerical Methods), and Quasiconformal and
Quasiregular maps, see e.g., [11-17]. In particular, in [12, 13], the
authors showed that the expansions with Sobolev orthogonal polyno-
mials can avoid the Gibbs phenomenon which appears with classical
orthogonal series in L?. In [7, 8, 9] the authors study some interesting
examples of Sobolev spaces for p = 2 with respect to general measures
instead of weights, in relation with ordinary differential equations and
Sobolev orthogonal polynomials. The papers [26-30] are the begin-
ning of a theory of Sobolev spaces with respect to general measures for
1 < p < oo. This theory plays an important role in the location of the
zeroes of the Sobolev orthogonal polynomials, see [18, 19, 27, 29].
The location of these zeroes allows to prove results on the asymptotic
behavior of Sobolev orthogonal polynomials, see [18]. The papers [1,
2, 4, 10, 20, 31] deal with Sobolev spaces on curves and more general
subsets of the complex plane.

One of the authors studied the problem of approximation with the
Sobolev norm (2) in [28], for bounded weights. We also study this
problem in [25] for £ = 1. In the current paper we obtain several
results for any k; in most cases, the theorems are new, even for k = 1;
besides, we manage with general unbounded weights, and we allow a
great deal of independence among the weights.
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If w is not bounded, then the polynomials are not in W% (w),
in general. Therefore, it is natural to bear in mind the problem of
approximation by functions in C*(R) or C*(R).

The main results of this paper guarantee that a function f belongs to
the closure of the space of polynomials, respectively, smooth functions,
in the norm W (w) if and only if f) belongs to the closure of
smooth functions in the norm L*(wj), for every 0 < j < k. See
Section 3 (respectively, Sections 4 and 5) for the precise statement of
the theorems.

The results of this paper are more valuable thanks to Theorem 5.3,
see Section 5, which allows to deal with weights which can be obtained
by “gluing” simpler ones.

The analogue of Weierstrass’s theorem with the norms W*»(u) (with
1 < p < oo and p a vectorial measure) can be found in [27, 30] on the
real line, and in [1, 31] on curves in the complex plane.

The main difference between W*P(w) (with 1 < p < o00) and
Wk () is that the closure of any set of smooth functions in W#?(w)
usually is the whole space W¥*P?(w); however, the closure of any set of
smooth functions in W*°°(w) usually is a proper subset of W*:°°(w)

(if w is the Lebesgue measure in a compact interval I, then the closure
of C*(I), C>(I) and P in W*>(w) are C*(I)).

The outline of the paper is as follows. Section 2 is dedicated to
the definitions and theorems for the case £k = 0, which are proved
in [24]; we also include in this section the definition of weighted
Sobolev space and a version of Muckenhoupt inequality which will be
useful. We prove the theorems on approximation by polynomials in
Section 3. Section 4 presents most interesting results on approximation
by smooth functions. Some complementary results, which require more
background, can be found in Section 5.

Now we present the notation we use.

Notation. If A is a Borel set, |A|, Xa and A denote, respectively,
the Lebesgue measure, the characteristic function and the closure of
A. By 9 we mean the jth distributional derivative of f. P denotes
the set of polynomials. We say that an n-dimensional vector satisfies
a one-dimensional property if each coordinate satisfies this property.
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Finally, the constants in the formulae can vary from line to line and
even in the same line.

2. Previous results. It is clear that our approximation results in
WH (wp, ... ,wy) must be based on approximation results in L>(w;):
if f can be approximated by polynomials in W (wy, ... ,wy), then
£\ can be approximated by polynomials in L> (wj) foreach 0 < j < k.
We describe here the very general approximation results in L (w),
which appear in [24, 25].

Let us start with some definitions.

Definition 2.1. A weight w is a measurable function w : R — [0, c0].
If w is only defined on A C R, then we set w:=0in R\ A.

Definition 2.2. Given a measurable set A C R and a weight w,
we define the space L (A, w) as the space of equivalence classes of
measurable functions f: A — R with respect to the norm

[fll (aw) i= ess sup zealf () w(z).

The theorems in this paper can be applied to functions f with
complex values, splitting f into its real and imaginary parts. From
now on, if we do not specify the set A, then we are assuming that
A = R; analogously, if we do not make explicit the weight w, we are
assuming that w = 1.

Let A be a measurable subset of R; we always consider the space
L'(A) with respect to the restriction of the Lebesgue measure on A.

Definition 2.3. Given a measurable set A, we define the essential
closure of A as the set

essclA:={z eR:|AN(x—d,z+ )| >0, for all 6 > 0},
where |E| denotes the Lebesgue measure of E.

Definition 2.4. If A is a measurable set, f is a function defined on
A with real values and a € esscl A, we say that esslimzca o0 f(z) =
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I € R if, for every € > 0, there exists a § > 0 such that |f(z) — 1] < ¢
for almost every z € AN (a — §,a + §). In a similar way we can define
esslimye 4 oo f(z) = 0o and esslimge g z—q f(2) = —00. We define the
essential superior limit and the essential inferior limit on A as follows:

ess lim SUPaeA f(z) :=inf 550 esssup,ecan(a—s,ats)f (),
T a

ess lim infng f(z) := sup s5-0 essinfyc an(a—s,a+6)f(2).
xr a

Remark 2.1. 1. The essential superior (or inferior) limit of a function
f does not change if we modify f on a set of zero Lebesgue measure.

2. When we say that there exists an essential limit (or essential
superior limit or essential inferior limit), we are assuming that it is
finite.

3. It is well known that

esslimsup,eca f(z) > essliminf,ca f(z),
r—a Tr—ra

and that

esslimgea f(z) = [ if and only if

T—ra
esslimsupgea f(z) = essliminfzeq f(z) = 1.
T—ra T—ra

4. We impose the condition a € essclA in order to have the
uniqueness of the essential limit. If a ¢ esscl A, then every real number
is an essential limit for any function f.

Definition 2.5. Given a weight w, the support of w, denoted by
supp w, is the complement of the largest open set G C R with w =0
almost everywhere on G.

Definition 2.6. Given a weight w we say that a € suppw is a
singularity of w if

ess lim infz esupp ww(x) = 0.
T—ra
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We denote by S(w) the set of singularities of w.
We say that a € ST (w), respectively a € S~ (w), if

€SS hm infz€supp ww(l') = 0,
z—at

respectively esslim inf, cqupp w, z—a-w(z) = 0.

Definition 2.7. Given a weight w, we define the right reqular and
left regular points of w, respectively, as

R (w) := {a € supp w : ess lim infzesupp ww(x) > 0} ,

z—at

R~ (w) := {a € supp w : ess liminfresupp ww(z) > 0} .

T—a~

We say that a is a regular point of w if a € R(w) := R (w) N R~ (w).

It is easy to check that R(w) is an open set.

We collect here some useful technical results which were proved in
[24, 25].

Theorem 2.1 [25, Theorem 2.1]. Let w be any weight and

feLrL>®w):

f is continuous to the right at every point of R (w),

Hy := f is continuous to the left at every point of R~ (w),
for each a € ST (w), esslim,_,q+|f(z) — f(a)|w(z) =

(z) =

for each a € S™(w), esslim, ,,-|f(z) — f(a)| w(z

Then

(a) The closure of C(R) N L™ (w) in L*>°(w) is Hp.

(b) If w € L2 (R), then the closure of C*°(R)NL*®(w) in L>®(w) is
also Hy.

(c) If suppw is compact and w € L*°(R), then the closure of the
space of polynomials is Hy as well.
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Remark 2.2. 1. Recall that we identify functions which are equal
almost everywhere.

2. Let us fix 21,...,2, € R(w). The proof of this theorem
allows to get approximating functions to f coinciding with f in some
neighborhood of {z1,... ,zm}.

Theorem 2.1 has the following direct consequence.

Corollary 2.1. Let us consider oy < --+ < a, and any weight
w in [oq,on].  Then, f belongs to the closure of C(Jo,an]) N
L~ ([, o), w) in L®([a1, an], w) if and only if f belongs to the clo-
sure of C([m,@m+1]) N L ([am, @mi1], w) in L ([am, &mi1], w) for
every 1 <m < n.

Definition 2.8. Given a weight w with compact support, a poly-
nomial p € L*®°(w) is said to be a minimal polynomial for w if every
polynomial in L*°(w) is a multiple of p. A minimal polynomial for w
is said to be the minimal polynomial for w (and we denote it by p,,) if
it is O or it is monic.

It is clear that a minimal polynomial always exists for w (although it
can be 0): it is sufficient to consider a polynomial in L*°(w) of minimal
degree. Minimal polynomials for w are unique unless multiplication is
by constants; this fact allows to define p,,.

Let us remark that p,, = 0 if and only if the unique polynomial in
L>*(w) is 0.
Theorem 2.1 and the following result characterize the closure of the

space of polynomials in L (w), if w has compact support, since then
lpw|w € L=(R).

Theorem 2.2 [24, Theorem 2.2]. Let us consider a weight w with
compact support. If p,, = 0, then the closure of the space of polynomials
in L (w) is {0}. If py is not identically 0, then the closure of the space
of polynomials in L (w) is the set of functions f such that f/p, is in
the closure of the space of polynomials in L™ (|py,|w).
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We deal now with the definition of the Sobolev space W*>(w), for
a vectorial weight w = (wy, ..., wg).

We follow the approach in [16]. First of all, notice that the distribu-
tional derivative of a function f in Q is a function belonging to Ll ().
If f' € L*°(Q,wy), in order to get the inclusion

L= (Qv wl) < Llloc(Q)v

a sufficient condition is that the weight w; satisfies 1/w; € L () (see,
e.g., the proof of Theorem 4.1 below). Consequently, f € AC)oc(Q),
i.e., f is an absolutely continuous function on every compact interval

contained in €.

Given a vectorial weight w = (wg,... ,ws), let us denote by €, for
0 < j < k, the largest set (which is a union of intervals) such that
1/wj € L} (€;). We always require that supp w; = Q;, for 0 < j < k.
We define the Sobolev space W (w), as the set of all (equivalence
classes of) functions f defined in supp wo Uy U---UQy, such that the
weak derivative fU—1) belongs to AC10c(€2;), for 0 < j < k, and £
belongs to L (w;), for 0 < j < k.

With this definition, the weighted Sobolev space W% (w) is a
Banach space (see [16, Section 3]). In general, this is not true without
our hypotheses (see some examples in [16]).

3. Approximation by polynomials.

Lemma 3.1. Let us fiz an interval [a, ], a positive integer s, a
function py belonging to L*([a, 8]) with pg # 0 almost everywhere
in [a,B], and {g;};:_, a linearly independent subset of functions of

L?([ev, 8]) \ {0}
For each continuous function h, ... , hs, letct,...,c® be real numbers
satisfying the following system of linear equations on {c™}2

m=1
s B
(3) Z cm/ pogihm =0, forall 1<i<s.
m=1 @
Then there exist polynomials hy,... ,hs, such that the determinant A
of the coefficient matriz of the linear system (3) on c',..., c* is not

Z€ETo.
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Remark 3.1. 1. Since Ag # 0, none of the polynomials Ay, ... ,hs can
be identically zero.

2. When talking about linear independence, we consider the functions
as equivalence classes in L2, that is to say, a function is linearly
dependent of some others when it is equal to a linear combination
of them almost everywhere.

Proof. Let us prove the lemma by induction on m. We will show
that for every 1 < m < s, there exists a polynomial h,,1 such that,
together with the polynomials hq,... , h,, chosen in the previous steps,
the minor A,,;1 consisting of the m + 1 first rows and columns of the
coefficient matrix of (3), is not zero.

If m = 1, since g; € L?([a, 8]) \ {0}, and py # 0 almost everywhere

in [a, (], the functional A (F) := ff F ppgy is not identically zero in
L?([a, B]) (Ay is well defined on L%([c, 8]) since py € L*°(|a, 3]) and
g1 € L*(|a, B])); hence, as the polynomials are dense in L?([a, 3]), there

exists a polynomial h; with Aj(h;) = ff pogih1 # 0.

If m = 2, we must show that there exists a polynomial hy such that

12 pogiha [° pogrhs

Az =
12 pogahn  [” pogahe

# 0,

that is to say,

B B
Ay = A12/ Pogrhe + A22/ pog2ha # 0,

where A12 = — ff pogghl and A22 = ff pog1h1 75 0.

Let us define the function

ug(x) == Arapo(x)g1(x) + Azopo(x)g2(z), for all z € [a, 3],

which is not zero at a positive measured subset of [a, 5], since Agy # 0,
g2 is linearly independent of g1, and pg # 0 almost everywhere in [a, 3].
We can define as well

A e g 2
2(F) .—/ Fus, forall F e L*([e,f]),
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since py € L>([ev, B]) and g; € L* ([, A]) imply up € L?([a, B]). As Az
is not identically zero in L?([a,3]) and the polynomials are dense in
L?([e, B]), there exists a polynomial hy with Ay = Ag(hg) # 0.

Let us assume the result to be true for m, and let us prove it for
m + 1. Then,

m—+1 B
Apt1 = Z Ai,m+1/ P0GiPm+1,
=1

[e4

where A; 41, 1 <4 < m+ 1, are the minors corresponding to the
expansion of A,, ;1 along the last column (with the proper sign in each
case). Notice that A,,+1,m+1 7 0, by induction hypothesis.

Now, let us define the function u,,; on the interval [, 3] and the
linear functional A,,;1 on L?([a, 3]) similarly to the previous case:

m+1
Upmt1(T) == Z Aimt1p0()gi (@)
i=1

and

B
Api1(F) ::/ Fuy, iy, forall F e L*(|a,d]).

[e%

The function wu,,1; is not 0 at a positive measured subset of [a, 3],
since Ay41,m+1 # 0, gm+1 is linearly independent of {g1,... ,gm}, and
po # 0 almost everywhere in [a, 8]; therefore, A,,11 is not identically
zero on L%([a, B]), and it follows that there exists a polynomial A, 1
such that Am+1 = Am+1(hm+1) # 0. ]

We also need the following elementary result.
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Lemma 3.2. Let us consider a,b,uy,...,u, € [a,0] and f €
LY ([, B]). Then,

b pz1 Tr
// / F(@rs1) daysyr - - daa day

b Y
:/ f(w)%dw

+§:%”hﬁL @)zt do+ -

)

DSLICYICr

where every sum is finite, k) (r) are real numbers, and J(r) are
subintervals of [a, 8], whose endpoints belong to the set {a,u1,...,u,}.

In order to control a function by means of its derivative, we are going
to need the following version (a proof can be found in [26, Lemma 3.2])
of Muckenhoupt’s inequality, see [21, page 44] or [22].

Lemma 3.3. Let wo,w; be weights on [, 8] and a € [, 8]. Then,
there exists a positive constant ¢ such that

/a "ot dt

for every function g on [, B], if and only if
/ 1/w1

Theorem 3.1. Let w = (wyp, ..., wy) be a vectorial weight on [a, (]
satisfying:

(i) J71/wp < oo.
(i) w; € L2 ([a, 8] \ {al, ... ,aﬁ'nj}), for every 0 < j < k.

< cllgll oo ((o,8),w1) 5
L ([a,B],wo)

€SS SUPa<z<g Wo(T) < 0.
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(iii) w;(x)] [551/(1 + wjt1)| < ¢, almost everywhere in some neigh-

borhood of af, for every 1 < i < my, 0 < j < k-2, and
wy—1(z)| [Jk-1 1/wg| < ¢, almost everywhere in some neighborhood of

affl, for every 1 <i < my_1.

Then the closure of the space of polynomials in W5 (w) is

H, := {f e Wh(w) : f® e P Lo (wy) (’”’“)}.

Remark 3.2. 1. Hypothesis (ii) is not restrictive at all, since if
ess lim sup,_,,w;(x) = oo for an infinite number of points a € R, for
some 0 < j < k, then 0 is the only polynomial in L*(w;), and it is
trivial to find the closure of the space of polynomials in W5 (w).

2. Hypothesis (iii) appears frequently in the applications. It is usual
to consider weights w;(z) = | — a|* in a neighborhood of a (this is
the case of the Jacobi weights or the weights in [15, Part one]). In
this case, hypothesis (iii) at a is equivalent to a; > —1 if aj41 > 0,
aj > ajr1 —1ifajr; <0,for0<j<k—2,and g1 > ar—1. In
fact, it is usual to have a;j = o;41 —1if 0 < j < k.

3. Notice that hypothesis (iii) is much weaker than w;(z)| [ 1/w; 1]
< ¢, appearing in Lemma 3.3, since some w;1; are allowed to be 0.

4. The possibility of some w; to be bounded is, naturally, allowed.
That is to say, {a],... ,a{nj} might be the empty set.

Proof. Whether 0 is the only polynomial in L*°(wy), the result is
obvious (if ) =0, then f is a polynomial). Therefore, without loss
of generality, we can assume that there exists in L*°(wy) a nontrivial
polynomial.

It is obvious that the closure of the space of polynomials in W*:>°(w)
is contained in Hj.

Then, it suffices to prove that every function in H; can be approx-
imated by polynomials in the norm W*>(w). Let us consider, then,
f € Hy and {p,} a sequence of polynomials converging to f*) in the
norm L (wy). From the sequence {py, }, we will construct another one
of the polynomials converging to f in the norm W (w).
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The key idea in order to carry out such a process, is to find, from
Pn, a polynomial ¢, in M, where M is the space of polynomials
which have a primitive of order k in W (w). If P were a Hilbert
space and M a closed subspace, it would suffice to take as g, the
orthogonal projection of p, on M. However, since our norms do not
come from an inner product, the problem is much more complicated;
fortunately, thanks to the three previous lemmas, we will find a finite
set of polynomials B in L (wy,), such that g, can be expressed as a
linear combination of p, and elements of B.

Without loss of generality, we can assume that ess lim sup,, el W) (z) =

00, for every 1 <i<mj,0<j <k, since if esslim sup Jw]( ) < o0,

Tr—ra
for some a?, it is enough to remove it from the list {a 1<i<m;, 0<
Jj < k}. Analogously, such points can be assumed to be ordered, that
is to say, that a] < --- < aJ, . , for every 0 < j < k with m; > 2.

Since 1/wy, € L([a, B]), for every function g € W*>°(w) it follows

that
B B 1
_ k) Wk o)) /_
/a lg™)| = /a lg Iwk < 16" ]| Loo (wy) o < 00,

and therefore g*~1) € AC (|, 8]), and g € C*1([a, A]).

On the other hand, esslim SUp,, _, 41 Wj (x) = oo, for every 1 < i < myj,
0<j<kandg? e L*>(w;), imply that g9 (a j) = 0, for every
1 <3 < “my, 0 < j < k (it makes sense to talk about the value of
g(f) at a since g( 7 is a contlnuous functlon) As a consequence of the
above remarks, we have that f gUt = gU(al, ) — ¢V (al) = 0,
forevery 1 <i<m;, 0<j <k, w1th m; > 2 and every g € W*>(w).

If w; € L*([a, £]), for some 0 < j < k, we define a{ := «. First, we

will construct, from {p,}n, a sequence of polynomials {gn }» which
converges to f(*) in the norm L> (wy), with the additional property

it
(4) / gn,j+1 =0, forall 1<i<m; 0<j <Kk,
where

. (x) :== f9(ad) +/_ Gnj+1, foral 0<j<E.
aJ

1
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Later we will prove that the sequence of polynomials {g¢y ; }» converges
to fU) in the norm L*(w;); the property (4) will exactly guarantee
that gy ; is in L°°(w;). This will be the major advantage of g, over
Pn-

Obviously, in (4) we will only bear in mind the equations related to
those j with m; > 2. These equations could be rewritten as

a{+1 Tjt1 Tr_1
(5) /J_ /j+1 "'/ki1 Gn,k(Tk) dTg - - - dzjiadzjn + Hi(f) =0,
a‘,’ (11 (ll

where Hj is a linear operator like H](f) = Zi-:jl ol £ (al), with o
real numbers just depending on {a},al_ ,, altt o ak

Now we will use Lemmas 3.1 and 3.2 to prove that it is possible to
construct the sequence {gy  }x verifying (4). Let us consider pg := py,,,
the minimal polynomial of L (wg) (pw, is not identically zero, since
L (wy,) contains nontrivial polynomials), the intervals I] := [a],a]_ ]
when m; > 2, and s := Zf;é mj — k (if w; € L*®([a, B]), we define
m; := 1, so that s is the total number of intervals Iij considered). As
aj <--- <aj, , for every 0 < j < k with m; > 2, it follows that the

. J -

intervals I7,.. ., Ifnrl, have disjoint interior, for every 0 < j < k with
m; Z 2.

Let us define now functions g7 if m; > 2. Lemma 3.2 allows us to
ensure that

a£+1 L1 Thk—j—1
F(l‘k,j)dl‘k,j-'- d$2dl‘1
o It ak-1
i 1 1
J

al,, (aj _t)k—j—l
= F)—f 2 gt
/aJ: ) (k—j—1)

+ Zk’;—j—Z(i,j)/F” F) 572t 4
h Jh 7 (ivj)

+> k(i g) / F(t) dt,
3 JR(i,5)

for every F € L'([a,f]), where every sum is finite. For every
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1<i<my;, 0< 5 <k, with m; > 2, we define

j k—j—1
gj(t) = —(ag'H —H
i (k—j—1)
kej—2/. o k—j—
+Zkh J Z(Z,j)tk J 1XJ:_1_2(i,j)(t)+”'
h

+ Z kg(ivj)XJg(i,j)(t)'
I

XIg' (t)

Then, for every F € L'(|a, A]),

“Z+1 z1 Ph—j-1 g j
ol a{+1 alle—l @

Changing F by g i in this equality, we get that (5), and therefore (4),
can be equivalently rewritten as

8 .
(7) / Gnk 9! + H;(f) = 0.

Let us define the functions {g,...,gs} as the functions in the list

k—1 k—1 k—1 1 1 1 0 0 0
{91705 s s Gme s 291093 Iy —1>915 925+ -+ s Imo—11>

in that precise order.

It is obvious that these functions satisfy the hypothesis of Lemma 3.1:
9] € L*([a, B]) \ {0}; besides, for every pair i, jo, the function g/° is
linearly independent of

k-1 k-1 k—1 Jo+1l _jo+1 Jo+1
{g 792 yr agmk 1—1r" "791 792 e angOJrl 1
Jo
91 792 a---agi0_1}a

since g' is equal to X IJO multiplied by a polynomial of degree k —

jo — 1 plus a finite number of characteristic functions multiplied by
polynomials whose degree is lesser than k — jo — 1, g/ (with jo < j < k)
is a finite linear combination of characteristic functions multiplied by
polynomials whose degree is lesser than or equal to k—j—1 < k—jo—1,
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and every interval Iij0 with i # iy intersects IZ;’ at only one point at
most.

Therefore, Lemma 3.1 implies that there exist polynomials Ay, ... , A,
such that the determinant A of the coefficient matrix of the following
linear system on c!,...,c® is not zero:

s 8 '
(8) Zcm/ Puhmgl =0, forall 1<i<mj, 0<j<k.

m=1
Let us define now
. 1 2 s
Qn,k = Pn — cnp’u)khl - cnp’u)khZ ottt cnp’wkh57

where ¢, c2 cs, must verify (7). These coefficients can be chosen

mn»***r-n?

as the only solution of the linear system

s B ) B )
St [ pubngl = [ pagl + Hi(1),
m=1 @ @

forall 1<i<m;, 0<j<Ek,

since the coeflicient matrix is the same as the one of the system (8).
Hence, those g, 1 so defined verify (4).

Notice that our argument allows us to construct g, as a linear
combination of p,,pw, i1, --,Pw, s, so that the dependence on n of
n.k is just shown through p, and the coeflicients of py, h1, ..., Pw;Ps-
Therefore, the functions py, h1,...,Pw, s, Play the same role in our
normed space as the one that a basis of the orthogonal space to M
would play in a Hilbert space. That is the thorough reason why the
effort to guarantee their existence is worth it.

At sight of (iii), it turns out to be natural to define the weights
v; == 14+ w; for 0 < j < k and v; := wy. These weights have an
advantage over w; since they verify:

(i") faﬁ 1/vj < oo, for every 0 < j < k.
(iii") v;(x) ‘faz] 1/vj+1‘ < ¢, almost everywhere in some neighborhood

ofag,foreverylSigmj,0§j<k.



WEIERSTRASS-SOBOLEV THEOREMS 2005

Let us show that the polynomials {g,o}» converge to f in the
norm W% (vy, ..., v;) and, therefore, they converge to f in the norm
WH (w).

Let us define E,, ; := fU) — g, ; for every 0 < j < k. Thus,

9) ,
Enj(z) = f9(2) = gn j(x)

= / (f(j+1) — Qn,j+1) = / En,j+17 fOI‘ all 0 S _] < k
a

J
a3

a? . N . . a?
Since fa;ﬂ FUtD = f(])(ag-l—l) — f9(a]) = 0, and faajzﬂ Inj+1 = 0
from the definition of g, ; it follows that

af+1
(10) /J_ Epjir = 0.

In particular, E, j(a ) =0, for every 1 < i < mj, 0 < j < k, since
E J(al) 0.

The equalities (6), (9) and (10) allow to deduce ff E,xg) =0, for
every 1 <i <mj, 0 <j <k, and thus the coefficients {c},...,c3} are
themselves the only solution of the linear system

s B . &) Ny
Z C:Ln/ pwkhmgg :/ (pn 7f( ))Qf,
m=1 o o

forall 1<i<m;, 0<j<Ek.

As the right terms of this system verify,

(k) )
‘/ -f L ([a,8])
B
g) SOl -
L‘X’(wk) o Wi

as n tends to infinity, and the coefficient matrix is independent of n,

e )

gi

Loo [a7ﬁ

g

p
Le([a,]) ‘
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then, applying Cramer’s rule lim,,_,. ¢;' =0, for every 1 <m < s,

En ) :H (k) _ n
iy = |70~ ani]

(11) < Hf(k) — Pn

L (wr)
+ Z len'| ||pwkhm||L°°(u)k) — 0,
m=1

as n tends to infinity. Hence, {gy, k }rn, converges to f®) in L®(vg). Let
us see now that {g, 0}, converges to f in W* (v, ..., vg).

Next, let us see that
HE"aj||L°°(vj) S Cj HE"J'+1||L°°(1)J-+1) , fOI‘ all 0 S ] < k
This inequality and (11) give that {g, o}, converges to f in Wk x
(vo, - - -, Vk), which finishes the proof of the theorem.

First, let us assume that w; ¢ L*>([a, f]). Let us choose a partition
of [a, 8] by means of m; compact intervals Hy, ... ,H,le, such that af

belongs just to H?, for 1 < i < m;. The hypotheses (i'), (ii) and (iii')

guarantee that v;(z)| [ 1/vj41] < c; for almost every z € H}, for

every 1 <i < mj.

If wj € L*([a,A]), then we define H? := [a,] (remember that
ai := ). The hypothesis (i') and w; € L*([e, 3]) guarantee as well

that v;(z)| faw; 1/vj41| < ¢} for almost every = € Hj.
Therefore, whether or not w; is bounded, Lemma 3.3 implies that
1B ill Lo (57 0;) < CillBnyitall Lo (19 0,00
since E, ; (af) =0 for every 1 < i < mj. Then
HE"J”LOO(Uj) S Cj ‘|E"=j+1||L°°(Uj+1) , fOI‘ all 0 S ] < k
This finishes the proof. ]

4. Approximation by smooth functions.

Definition 4.1. We say that a vectorial weight w = (wo, ... ,wg) in
[a,b] is of type 1 if 1/wy, € L*([a,b]) and wo, ... ,wx_1 € L>([a,b]).
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We say that u, v are comparable functions in the set A if there exists
a positive constant ¢ such that ¢ 'u < v < cu almost everywhere in
A. Tt is clear that L°°(u) and L*°(v) are the same space and have
equivalent norms if v and v are comparable weights.

Definition 4.2. We say that a vectorial weight w = (wy, ... ,w) in
[a,b] is of type 2 if there exist real numbers a < a1 < ay < az < aq <b
such that

(1) 1/wy, € L*([a1,a4]), and wo, ..., wr—1 € L>([a,d]),

(2) if @ < a1, then w; is comparable to a finite nondecreasing weight
in [a, ag), for 0 < j <k,

(3) if a4 < b, then w; is comparable to a finite nonincreasing weight
in [as,b], for 0 < j < k.

Observe that the weights of type 1 are also of type 2.

In the following theorems we describe the closure of smooth functions
in Sobolev spaces with weights of types 1 and 2 in compact intervals.

Theorem 4.1. Let us consider a vectorial weight w = (wy, ..., w)
of type 1 in a compact interval I = [a,b]. Then the closure of
P N Wk (I,w), C®(R) N Wk>(I,w) and C*(R) N Wk (I, w) in
Wk (I,w) are, respectively,

fewr=(Iw): f* e Pme(I,wk)Lw(I’w’“)},

=1
{f e Wk (I,w): f® e C=(I) mLOO(I,wk)LC"’(I,wk)},
=1

Fewr=(Lw): f% ¢ G N L=, wk)Lw(”w’“)}.

Remark 4.1. 1. Let us observe that Theorem 4.1 characterizes the clo-
sure of CK(R)NWH (I, w), C*°(R)NWH°(I,w) and PNWH (I, w)
in W*°°(I,w), in terms of the similar problem in L*(I,wy). This
question is completely solved by Theorems 2.1 and 2.2 for the closure
of C(R) N L*>°(I,wy) and P N L*°(I,wy). Theorem 2.3 in [24] also
characterizes the closure of C*°(R) N L (I, wy), for many weights wy,.
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2. If wy € L*(I), then the closure of C*¥(R), P and C*°(R) are
the same. This is a consequence of Bernstein’s proof of Weierstrass’s
theorem (see, e.g,. [5, page 113]), which gives a sequence of polynomials
converging uniformly up to the kth derivative for any function in C*(I).

Proof. First of all, let us prove that

Hs = CF(R) N Wk (I,w) V"™ Tw),

The inclusion

Froe (

CF(R) N Wkeo(I,w) V""" Uw) C Hy

is obvious. Let us consider now a function f € Hjs, and let us show
that it can be approximated by functions in C*(R) N W#* (I, w) with
the norm of W (I, w).

Let g € C(R) be a function which approximates f®*) in L% (I, wy)
norm. We consider the function

k—1 ;

. o J x o t)k71
hiz) e <a)au+/ pE=t"
@ = L@+ [0y
Obviously, we have that
) ) x T —t k—j—1
1) - 10w = [ (190 - o) F=I " ae
for 7=0,...,k—1.
This gives the inequalities
. ) T r—t k—j—1
1@ - 1@ < [ |90 - ao]
b
w (T
<o [ |00 - go] 2 a
k
S Cl||1/wk||L1(I) Hf( ) - gHLOO(I7wk) ’

for j =0,...,k — 1, since 1/wy, € L*(I).
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Consequently,

— hllysoe i) < €2 [ 19 = g , with &€ CH(R).
1 = Ml < c2 79 =] (R)

In the other cases the proof is similar. Notice that the nature of the
function h depends on the choice of the function g, that is to say, if
g € C°(R) (respectively, g € P) approximates f in L°(I,wy), then
h € C*(R) (respectively, h € P). o

Cut and paste functions is a useful method to decompose complicated
functions into several simpler ones. In order to do this the partitions
of unity are natural tools. The following result guarantees that this
technical device preserves the Sobolev spaces. To state this result in
an abstract and independent way will allow to simplify the proofs of
Theorems 4.2, 4.3 and 5.1.

Proposition 4.1. Let us consider a vectorial weight w= (wo, . . ., W)
Assume that K is a finite union of compact intervals Jy, ..., J, and that
for every Jp, there is an integer 0 < ky, < k verifying 1/wy,, € L*(Jm),
if km > 0, and w; = 0 almost everywhere in Jp, for k, < j <k, if
km < k.

(a) If wi,...,wx € L®(K), then fg € Wk>(w) for every f €
Wk (w) and g € C*(R) with suppg’ C K.

(b) If furthermore f*m) belongs to the closure of C(Jp )L™ (Jpm Wi,
in L®(Jpm, wy,,) for some 1 < m < n, then (fg)U) belongs to the clo-
sure of C(Jy) N L® (I, wj) i L®(Jp, w;) for every 0 < j < ky,.

Proof. Let us fix f € W5 (w) and g € C*(R) with suppg’ C K.

First, let us show that fg belongs to W (w). It is clear that fg
belongs to L™ (wy), since g € L>°(R): it is constant in each connected
component of R\ K and it is bounded in the compact set K. The
same argument allows to deduce that fg belongs to W (I,w) for
each connected component I of R\ K. Then we only need to prove
that fg belongs to W (J,,,w) for each m. If k,, = 0, we have the
result, since W5 (J,,, w) = L*®(Jp,, wo).

Let us fix now m with k,, > 0. Then 1/wg, € L'(J,) and
w; = 0 almost everywhere in J,, for k,, < 7 < k, if kp, < k.
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Since f € Wk (J,,, w) = Wk (J,, wo,...,ws, ), the definition
of weighted Sobolev space allows to conclude that f and fg belongs
to C*=~1(J,,). Consequently, for each 0 < j < k,,, we have that
(fg)\9) is the sum of a continuous function and fU)g in J,,. Then, we
conclude that (fg)¥) belongs to L>®(J,,,w;), since wj, g € L®(J,,).
This finishes the proof of (a).

Let us assume now that f(=) belongs to the closure of C(J,,) N
L (Jpm, wg,, ) in L (Jp, wg,, ) for some 1 < m < n. We prove now that
(£9)\9) belongs to the closure of C(J,,) N L% (T, w;) in L (T, w;)
for every 0 < j < kyp,.

The result is direct if k,, = 0, using Theorem 2.1. Let us fix now m
with k., > 0.

As we have seen, (fg)¥) is continuous in Jy, if 0 < j < k.
We also have that (fg)®*=) is the sum of a continuous function and
f%m)g in J,,. Using Theorem 2.1, it is easy to check that (fg)(*=)
verifies the properties that guarantee that it belongs to the closure of
C(Jm) NL®(Jp, wg,,) in L (Jpm, wg,, ): the continuity properties hold
directly, and the limits are 0 since wy,,,g € L°(J,,). This finishes the
proof. a

Theorem 4.2. Let us consider a vectorial weight w = (wo, ... , W)
of type 2 in a compact interval I = [a,b]. Then the closure of
CHR) N Wk (I, w) in WF>(I,w) is

Hyi={f € Wh(L,w): {9 € ) N L=(T,wy) =~ 0
for 0<5< k}

Proof. It is clear that the closure of C*(R) N Wk*°(I,w) in
Wk (I,w) is contained in Hy. Let us consider now a function
f € Hy; we want to see that it can be approximated by functions
in C*(R) N Wk (I, w) with the norm of W (I, w).

Let us consider a partition of unity {t1,v¥2,¢3} C CP(R) in I
SatiSfying: ¢1 +¢2 +1/13 =1lin Ia w1|[a,a1] = ]-7 wZ‘[a‘;,b] = la w3|[a2,a3] =
1, supp ¢y C [a, ay — 6], supp ¥z C [az +6,b], supp ¢3 € [ay + 6, a4 — 4],
for some d > 0. We consider also the functions f; = fi; for i =1,2,3.
If a =a; and ag < b (or ay = b and a < a;), we consider a partition of
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unity with only two functions. If a = a; and a4 = b, then w is a weight
of type 1 in I, and we can apply Theorem 4.1. Then we only consider
the case a < a; and a4 < b, since the other cases are easier.

Without loss of generality, we can assume that w; is a finite nonde-
creasing weight in [a, az], and a finite nonincreasing weight in [as, b],
for 0 <j<k.

Observe that each f; belongs to W*°°(I,w) by Proposition 4.1, since
1/wy € L'(la1,a4]), supp®) C [a1,az2] U [as,aq4] and wy,... ,wp €
L*>([a1, a2] U]as, a4]), because the weights w; are monotonic functions.

Since f(*) belongs to the closure of C([a1, az]Ulas, as]) NL>®([ay, as]U
[as,aq],wr) in L*([a1,as2] U [as,as], wr), then Proposition 4.1 also
implies that fi(J) belongs to the closure of C([a1,az] U [as,a4]) N
L*>([a1, az2]U[as, as], w;) in L™ ([a1, az]U[as, as], w;) for every 0 < j < k
and 1 <¢<3.

Let us observe that fi(j ) is equal either to f() or to 0 in each interval
[a,a1], [az, as], [as, ], for any 0 < j < k. Then Corollary 2.1 allows to
deduce that fi(]) belongs to the closure of C'(I)NL>(I,w;) in L= (I, w;)
for every 0 < j < k.

It is enough to show that each f; can be approximated in W*>° (I, w)
by functions belonging to C*(I), since f = fi + fo + f3 in 1.

(1) Approximation of f;.

For fixed 0 < j < k, let us consider the functions gy (z) := fl(j) (z+ M)
with 0 < A < . It is clear that gy also belongs to L>([a, ], w;), since
W;|[q,q,] is Nondecreasing for 0 < j < k and supp fl(]) C [a,a2 — 4]

Next, we show that g, tends to fl(j) in L>(I,w;) as A — 07. We
need to estimate

T\ = Hfl(j) _ g*H (9)

Lo (1,wy) = 55 5UPagla 0] fl (CC) 79)‘(x) wj(x)a

since fl(j)(x) =ga(z) =0for x > az and 0 < X\ < 4.

We define o; := max{z € [a,b] : w;(t) = 0 for almost every
t € [a,x]}.
If oj > ag, we obtain J(A) = 0.We deal now with the case o < as.

Theorem 2.1 guarantees that f() € C((«aj,az]) and then fl(j) €
C((ej, b))-
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Let us assume that limmﬁa;r w;(z) > 0. Hence, Theorem 2.1 implies

that fl(j) € C([aj,b]) and, consequently, limy_,o+ J(A) = 0, since fl(j)
is uniformly continuous in C([e;,b]) and w; < w;(az2)X[a;,q,) in [a; az].
If we do not have lim,_, + w;(x) > 0, then lim _, _+ w;(z) = 0, since
wj is a nondecreasing weight in [a, as].

Since ffj) belongs to the closure of C(I)NL>(I,w;) in L*(I,w;) and
lim, ., +wj(z) =0, Theorem 2.1 implies that esslim_, + fl(])(x)wj(m)

J . J
= 0. In fact, we can deduce lim,_, -+ fl(J)(x)wj(x) = 0, since wj is
J .

a finite nondecreasing weight in [a,as] and fl(J) € C((ey,b]). As a
consequence, there exists 0 < §; < § such that |f1(7)(m)|wj(w) < g/3,
whenever z € (a;, a; + 261]. Then

£7(@) = 9r(@) | wi(@) < | A7 @) (@) = ga@)w; (@ + )
+ |ga(@)wj(z + A) — ga(z)w;(z)] < e,

for any = € (aj,; +d1] and 0 < A < 41, since
|7 @)ws(2) = gr (2w (@ + )|
< |+ 2
< 19 @)|wi(@) + lr(@) | wi(z + ) < 5,
and

g (2)wj(z + A) = gr(2)w;j ()] < [ga(@)| wi(z +A) < %

because the weight w; is nondecreasing.
Using the uniform continuity of fl(j ) in [aj + d1,az], there exists
0 < §2 < 61 such that
G) () () < G) ()
1 (@) = gale)| wi(z) < wjlaz) | /17 (z) — gr(z)| <&,
for every © € [oj + d1,a2] if 0 < A < Jo; that is to say, J(A) =

Hfl(J) - gAHL‘”([ajvaz],wj) <e

Then, it is enough to approximate (f1)x(z) := f1(z+X) in W* (I, w)
for A > 0 small enough.
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Without loss of generality, we can assume that a = min; a;, since in
the other case we can consider the interval [min; a;, b] instead of [a, b].

Then, f is continuous in (a, as] and, consequently, f; is continuous in
(a,b].

Let {¢+}t>0 be an usual approximation of the identity: ¢(z) =
t~1p(t tz) for all z € R, t > 0, with ¢ € C°((—1,1)) verifying ¢ > 0
and [ ¢ = 1. Set u; the convolution u; := (f1)rx*¢¢, with 0 < t < A\/2 <
§/2. Then u;, € C*°(I), since (f1)x € C([a—A/2,b]) C L' ([a — A/2,b)).
We have to use (f1), instead of f; because of this good property. We
define vy := ugj) = g * ¢4 for some fixed 0 < j < k. We only need to
check that v; approximates gy in L>(I,w;) as t — 07. But

l|lve — 9A||L°°(I,w,-)

[ ne-vawa- [ n@aw e

—t —t

= eSS SUPgcy

< / ess supaer 9r(2 — y) — gx ()] w; () e(y) dy

—t

< sup jyj<¢ {ess SUpzcr ‘fl(j)(:v) — gx(z — y)‘ w;(zx)

' t
resssuper 17 (0) = 0r(a)|w,@)} [ oy
= sup <o IO = 1) + TN} < 2supcocand(5),

and this last term tends to zero since J(A) — 0 as A — 0T. Therefore,
given ¢ > 0, there is a function f;. € C°(I) such that ||f; —
frellwrso 1wy <€

(2) Approximation of f.

We obtain the result applying a symmetric argument to (1).

(3) Approximation of fs.

It is a consequence of Theorem 4.1:

We define wj, := wg +X[q 4, +5]U[as—5,6) and w* := (wo, ... ,wr_1,W});
since 1/w; € LY(I), we have that w* is a weight of type 1 in I.
Let us observe that f; € W, (I,w*), since supp f3 C [a; + J, a4

— 4]. Then fék) belongs to the closure of C(I) N L (wj) in L (w;)

)

by Corollary 2.1: we have seen that f3(k belongs to the closure of
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C(la1 +6,as—98])NL>([a1 + 6, as — 6], w}) in L= (Ja1 + 9, as — 0], wy) =
L>*([a1 + 9, as — 4], wg), and fék) =01in [a,a1 + 6] U [as — 4,].

Hence, Theorem 4.1 implies that f3 can be approximated by functions
in C*(R) N Wk (I,w*) with the norm of W*>°(I,w*). Therefore, f3
can be approximated by functions in C*(R) N W*°(I,w) with the
norm of W% (I, w), since w; < w} for every 0 < j < k. o

The following result allows to deal with weights which can be obtained
by “gluing” simpler ones.

Theorem 4.3. Let us consider strictly increasing sequences of real
numbers {an}, {bn} (n belonging to a finite set, to Z, Z+ or Z™) with
bp-1 < Apy1 < by for every n. Let w = (wo,...,wg) be a vectorial
weight in the interval I := Uy[an,by,]. Let us assume also that for each
n we have either w s of type 1 in [an,by], or 1/wr € L°([an,by)]).
Then the closure of C*(I) N Wk (I,w) in Wk (I,w) is

Hy = { f e Wh(Iw): f¥) e )N L= (1, w,c)””(”w”}.

Remark 4.2. 1. The hypothesis 1/wy € L*([ay,b,]) is stronger
than 1/wy, € L'([ay, b,]); however, here we do not have the hypothesis
wo, ..., Wg—1 € L*®([an, by,]) which is required for weights of type 1.

2. The hypothesis 1/wy € L*([ay, b,]) is very restrictive, but we only
need it in a subset of the interval I. Notice that we are considering also
weights of type 1 in other subintervals, so in this way Theorem 4.3 gives
a general enough criterion.

3. Let us observe that we do not require any technical hypothesis
which is usual in this kind of theorem (see, for example, Theorem 5.3).

Proof. We prove the nontrivial implication. Given any fixed f € Hg,
we will find functions in C*([ay, b,]) NW**°([a,, b,], w) approximating
f; next, we will paste them in an appropriate way.

Without loss of generality we can assume that wg > ¢, > 0 in [ay, by],

since in other case we can change wo by wg := wo + >, ¢aXa,,bu]>
where {c, }, are chosen such that (c,_1+cn + cny1) ||l ((an,bn)) <1
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(recall that f*) € L'([an,b,]), since 1/wy, € L'([an,by]), and hence
f € C([an,bs])). Then f € Wh(I,w*) if wi = w; for 1 < j <k,
since || fllwko(rwe) < [[fllwroo(r,wy + 1. It is clear that it is more
difficult to approximate f in W*°°(I,w*) than in W% (I, w).

If for some n we have 1/wy, € L*([an, b,]), then there is no singularity
of wy in [an,by); consequently, f*) € C([an,b,]) by Theorem 2.1,
and therefore f € C*([an,bn]). Hence, we can choose f as its own
approximating function in this interval.

We consider now an interval [a,,b,] with w of type 1 in [an, by,].
Next, we prove that if esslimsup;,,wi(t) = oo for every z €
[@n,bp—1] U [ant1,bn], then we can choose approximating functions to
f in Wk°([a,, b,],w) which are equal to f in [an,bn_1] U [ant1,bn]:

If ess lim sup;_, , wg (t) = oo for every z € [ay, by], then any continuous
function in L°°([ay,by], wr) is zero in this interval. Consequently,
f®) =0 in [a,,by], since f € Hz. Hence, f is a polynomial in this
interval and we can choose f as its own approximating function in

[an, bn].

If ess lim sup;_, 5., wi (t) < oo for some zg € [by, 1, apn+1], we can choose
some interval J, with g € J, C [by_1,an+1] and w, € L*(J,). Let
us consider approximating functions {f;}; to f*) in L>([a,, by], w)-

Let us choose a function py € C,(J,) such that pg > 0 in the interior
of J,. Since wy € L*°(J,,), we deduce that py € L (wy,). We define

v = fi — Cllpohl — Cfpohk,

where the functions Ay, ..., hx and the constants cll, ... ,c{“ are chosen
as follows. If g;(t) := (b, —t)*~! for 1 <i < k, Lemma 3.1 guarantees
that there exist polynomials hq, ..., hg, such that the determinant of
the coefficient matrix of the following linear system on {c]"}1<m<s is
not zero (since supppy = J,, the interval [a,, b,] in the lefthand side
of (12) can be substituted by J,, in order to apply Lemma 3.1):

k b b

(12) > e / Pogilun = / (fi— f®)gi, forall 1<i<k.
m=1 an n

a

Hence, we can compute {c¢" }1<m<s verifying this linear system, using
Cramer’s rule. We consider the functions {v;}; with this choice of
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Bi,... hg, and c},...,cf. It is clear that {u;}; C C([an,bn]) N
L ([an, by, wg), since pg € C([an,br]) N L ([an, by, wg)-

Therefore, f;" vg; = f;” f®)g; for all 1 < i < k. Let us define

(@t

oY e (g
Z f —an) +/% ) T

It is clear that Vl(j)(an) = fYW(a,), for all 0 < j < k. Since
ess lim sup;_,, w (t) = oo for every © € [ay,, b,—1], we have v} = f*) =0
in [an,bn—1], and consequently V; = f in [an, bp—1]-

We have, for 0 < j < k,

k=1 n(;
V}(])(bn) _ Z f( )(a’n) (bn _ an)ifj

— (=)

by  p\k—j—1
A==

EL ) (g -
:Zf. (@) _ g,y

= (=)

bn _ pyk—i—1 ,
s [ oG a = 196,

n

Since esslimsup;,wi(t) = oo for every z € [any1,bn], we have
v; = f*) = 0 in this interval, and consequently Vi = f in [an 41, bp).

In order to see that V; converges to f in W*([a,, b,], w), we prove
first that v; converges to f*) in L*([a,, by, ws) and in L'([an, b,])-

We get
bn
— (k) _ ‘%
L' ([an,bn]) /a ‘f fl Wg

bn 1
S N
L ([an,bn],wk) an Wk

as [ tends to infinity. Since f; converges to f*) in L'([a,,b,]), we
deduce that the righthand side of (12) tends to zero when [ tends to

|54
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infinity. Since the coefficient matrix of (12) does not depend on [, this
fact implies that lim; ., ¢j* = 0, for all 1 < m < k. Consequently,
v; converges to f*) in L*®([ay,by],wy) and in L'([an,b,]), since f;
converges to f*) in L>®([a,,b,], wx) and in L' ([a,, b,))-

Then, for any 0 < j < k and z € [ay, b,], we deduce

1@ v =| [ (190 - u0) I
< /a”" f(k)(t)v,(t)‘%dt

<a Hf(k) — vz)

Ll([anvbn])

< (k) _ H .
= Hf ] oo (far b )

Since wy, ... ,wg—1 € L®([an, by]) (recall that w is of type 1 in [ay, by)),
V; converges to f in W ([a,,b,],w), and this fact finishes this part
of the proof.

In a similar way, a simpler argument shows the following: If w is of
type 1 in [ay, b,] and esslim sup;_,,wy(t) = oo for every = € [an, by 1]
(respectively [an41,bn]), then we can choose approximating functions
to f in W ([a,, b,], w) which are equal to f in [a,, b, 1] (respectively
[@n+1,bn])-

We have described how to choose the approximating functions to f
in W*([ay,bs],w) for each n. Now we proceed to paste them. If
we have either (a) 1/wy € L ([an, b,]) and 1/wg € L™ ([an+1,bn+1]),
or (b) esslimsup;,,wk(t) = oo for every & € [anyi1,by], it is triv-
ial to paste the approximations to f in W**([a,,b,],w) and in
W ([ant1,bni1],w), since both are equal to f in [ani1,bnl.

Therefore, we only need to paste functions on [a, 11, b,] with w of type
1in [ap41, by) such that wy, € L°(1,) for some interval I, C [ap41, bn)-
Then we have w € L®(I,,), [; wo > 0 and 1/wy, € L'(I,). Without
loss of generality, we can assume that this fact holds for every n, since
if we have either (a) or (b), we can join [an,b,] and [ant1,bnt+1] in a
single interval. Then the statement follows from Theorems 4.1 and 5.3
(the intervals {I,}, satisfy the technical hypotheses of Theorem 5.3,
by the remark to Theorem 5.3). o
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We can deduce the following consequence.

Theorem 4.4. Let us consider a vectorial weight w = (wy, ..., wg)
in the interval I, with wy,...,wx—1 € L.(I) and 1/wy € L (I).

Then the closure of C(I) N Wk (I,w) and C*(I) N Wk°(I,w) in
Wk (I, w) are, respectively,

Hy o= {f € Wh(Lw) : ) € G=() 1 LT, w)

)

L= (Iwy) }

Hy = {f e Wh>(I,w) : {*) e O N I=(1, wk)Lm(”’”’“)} .

Proof. The second equality is a direct consequence of Theorem 4.3. It
is enough to split I as a union of compact intervals [ay, b,] (n belonging
to a finite set, to Z, ZT or Z7), with b,_1 < any1 < b, for every n.
We have that w is of type 1 in each [an, by,], since w € L™ ([ay, b,]) and
1/wy € L*([an,by,]) for every n.

The first equality is similar. We only need to change C' and C* by
C* everywhere in the proof of Theorem 4.3 (in this case, w is of type 1
in every interval). o

5. Some more technical results. We collect in this section some
complementary results, which require more background. We refer to
[28] for the precise definitions that we need; we do not explain these
definitions in a rigorous way here since it would require several pages
with many technical details, and the results in this section are not the
main theorems of the paper. However, we present here an heuristic
explanation of the more important concepts that we need.

A point a € I is right (respectively, left) m-regular if every function
f in Wk (I,w) verifies that f(") is absolutely continuous in a right
(respectively, left) neighborhood of a (it can be granted by the iterated
use of Muckenhoupt inequality). A point is m-regular if it is right m-
regular and left m-regular. We denote by Q("™) the set of m-regular
points (or half-points). (If [a,b] € Q™) then f(™ € AC([a,b]) for
every function f € W (I, w).) It is clear that Q,, 1 U---UQ, C Q™)
(see the definition of Q; at the end of Section 2).

We denote by K (I,w) the set of functions f in W**(I,w) with
| fllw.oe(1,w) = 0. It is convenient that K (I, w) = {0}, but there are
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vectorial weights, as (wg,w;) = (0, 1), that do not satisfy this property.
The condition (I,w) € Cy is a technical requirement a little stronger
than K (I,w) = {0}; it is satisfied if, for example, K (I,w) = {0}
and Q) \ (Q; U--- U Q) has only a finite number of points in each
connected component of Q(®) (see Remark 1 to Definition 3.10 in [28]
or the proof of [26, Theorem 4.3]). This is a weak condition, since
Qi1 U - U Qg C Qim C Q1 U UQ (see the remark before
Definition 3.7 in [28] or the remark before Definition 7 in [26]).

If (I,wm,...,w;) € Co and J is a compact interval contained in
Q(m=1 we have that there exists a constant ¢ = ¢(J, Wy, . .. ,wy) with
||f(m)||L1(J) < CHf(m)”Wk*m’w(I,wm,... W)
for every f € W*=™°(I,w,,... ,w;) which can be approximated
by functions in C*~™(I) N Wk=™%([ w,y,... ,wy) with the norm of
Wk=m([ w,,,... ,wg) (see Corollary B in [28] or Corollary 4.3 in
[26]). In fact, these corollaries are stronger, but this statement is good

enough for our applications in this section.

We need a specific definition.

Definition 5.1. We say that a vectorial weight w = (wo, ... ,wg) in
[a,b] is of type 3 if there exist real numbers a < a1 < az < az < as <b
and integers ki, ko > 0 such that

(1) 1/wy € L*([a1, a4)), and wy, ..., wx_1 € L>([a,b]),

(2) if @ < a1, then w; is comparable to a finite nondecreasing weight
in [a, as), for k1 < j <k, and a is right (k; — 1)-regular if k; > 0,

(3) if a4 < b, then w; is comparable to a finite nonincreasing weight
in [ag,b], for ky < j <k, and b is left (ks — 1)-regular if ko > 0.

Observe that the weights of types 1 or 2 are also of type 3.

Theorem 5.1. Let us consider a vectorial weight w = (wo, ... , W)
of type 3 in a compact interval I = [a,b]. Then the closure of
CHR) N Wk (I, w) in WF>(I,w) is

Hy = {f e Wh(I,w) : f9 e C(I) N L>(I,w;)

L (I,w;)

for ogjgk}.
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Proof. Consider f € Hy and f; = fi; for i = 1,2, 3, as in the proof of
Theorem 4.2. It is enough to show that each f; can be approximated
by functions in C*(R) N W (I, w) with the norm of W* (I, w).

(1) Approximation of f;. If k; = 0, we can approximate f; as in the
case of weights of type 2. Assume now k; > 0.

Let us define w; = w; + Xja,p) for 0 < j < k, and w =
(Wg, W1, ... ,Wy), which is also a weight of type 3. Then f; belongs
to Wk (I, w), since f; = 0 in [ag, b]. It is obvious that it is more com-
plicated to approximate f; in W*°°(I,@) than in W*>°(I,w). Let
us observe that K (I, wk,,...,w;) = {0}. We have that [a,a1] C
supp wg, U --- U supp wg, since w; is comparable to a finite nonde-
creasing weight in [a,as], for k1 < j < k, and a is right (k3 — 1)-
regular. Then we conclude that (a,b] C Qp, U--- U Q. This im-
plies that (a,b] € Q¥*1—Y = [a,b] = I, since a is right (k, — 1)-
regular; consequently, Q1= \ (Qg, U---U Q) C {a}. This fact and
K(I,wg,, ... ,wx) = {0} allows to deduce that (I, wy,, ..., W) € Co.

Therefore, without loss of generality we can assume that (I, wg,,... ,
wy,) € Cp in order to approximate f; by functions in C*(I).

By Theorem 4.2, it is possible to approximate fl(kl) by functions in

Ck=F1(R) in the norm of W*=F1o0([ wy, ...  wg).
If g € C*F1(R) approximates ffkl) in Wk=Fuoo (T, ... wy), we
can consider the function

k1—1

j T —a)l w z—t)kt
)= Y A0 [ G e
i=0 o s

since there exists fl(klfl)(a), because a is right (k; — 1)-regular. Then
we have

. z _ $\k1—i-1
(4) _p@ — (k1) (1) — a(t wdt
1@ =19 = [ (#4"0 - a0) G
for 0<j<ki.
Now, by Corollary B in [28], we have for 0 < j < ky,
@ _ h(j)H < H (k1) _ ‘
Hf1 Loo(r) = c||fi g

Flk) ,gH

L(1)

<c

?

Wh=k1:0(Lawg, ..., wy,)
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since (I,wy,,... ,wy) € Co and I = Q*1=D_ Hence, we have for
0 S .7 < kla
IR
Hfl Leo(ILwj) ~ / I WH=RL20 (L, o yw) |

since wo, ..., wk, —1 € L=(I).
(2) Approximation of fo. We use the same proof with the appropriate
symmetry.
(3) Approximation of f3. We proceed as in the proof of Theorem 4.2.
This finishes the proof of Theorem 5.1. O

The ideas in the proof of Theorem 5.1 can be generalized in order to
obtain the following result, which is very useful since, in [25], there are
theorems which characterize the closure of C'(R) in W1°° (I, wg,w;),
for very general weights wg, w;.

Theorem 5.2. Let us consider a vectorial weight w = (woq, ... ,wg)
in a compact interval I = [a,b], verifying I = Q™Y and wy,...,
Wm—1 € L>®(I), for some 0 < m < k. Let us assume that
(I, Wy, - - ., wy) € Co. If the closure of C*~™(R)NWkE=™2 (T w,,, ...,
wy) in WE=™( w,,,... ,wy) is H, then the closure of C*(R) N
Wk (I, w) in Wk (I, w) is

Hs = {f e Wh(I,w): f™ ¢ H}

Proof. If g € C*~™(R) approximates f(™) in W*="(I, wy,, ..., wy),
we can consider the function

fi( @2 /j g(t)% dt,

since there exists (™~ (a), because a € I = Q™. Then we have

(x —t)ym=i-1

—dt
(m—j—=1) 7

P9 =) = [ (570 - 900)

for 0<j<m.
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Now, by Corollary B in [28], we have for 0 < j < m,

TR I
Lo (1)

L(I)
<ec|fm - H ;
=¢ Hf g Wh=1:00 ([ Wp,,... W)
since I = QY and (I,wp,...,w) € Co. Hence, we have for
0<j<m,
R
Hf L (I,wy) ¢ f g Wh=m:%0 (Lwp . ywi)

since wy, ... ,wm—1 € L=(I). O

The results of this paper are more valuable thanks to the following
theorem. It allows to deal with weights which can be obtained by
“gluing” simpler ones. Consequently, the theorems in this paper can
be used together with the results in [25, 28].

Theorem 5.3 [28, Theorem 5.2]. Let us consider strictly increasing
sequences of real numbers {a,}, {b,} (n belonging to a finite set, to
Z, Z" or Z7) with a,y1 < b, for every n. Let w = (wo,...,w)
be a vectorial weight in the interval I := Uplan,b,]. Assume that
for each n there exists an interval I,, C [any1,bn] with w € L>(I,)
and (I,,w) € Cy. Then f can be approximated by functions of C*°(I)
in Wk°(I,w) if and only if it can be approvimated by functions of
C>®([an,bn]) in Wk ([a,, b,],w) for each n. The same result is true
if we replace C> by C* in both cases.

Remark 5.1. Condition (I,,w) € Cy is satisfied in many cases; it
holds, for example, if [, wo > 0 and 1/wy € L'(I,).
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