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ON THE PERMANENTS OF SOME
TRIDIAGONAL MATRICES WITH APPLICATIONS
TO THE FIBONACCI AND LUCAS NUMBERS

EMRAH KILIC AND DURSUN TASCI

ABSTRACT. In this paper, we derive some interesting
relationships between the permanents of some tridiagonal
matrices with applications to the negatively and positively
subscripted usual Fibonacci and Lucas numbers. Also, we give
a relation involving the generalized order-k Lucas number and
permanent of a matrix.

1. Introduction. The Fibonacci sequence, {F},}, is defined by the
recurrence relation, for n > 1

(1.1) Fpi1=Fy+ Foy

where Fy = 0, F; = 1. The Lucas sequence, {L,}, is defined by the
recurrence relation, for n > 1

(1.2) Lns1=1Lyp+ Lo

where LO = 2, L1 =1.
Rules (1.1) and (1.2) can be used to extend the sequences backward,
respectively, thus
F_ =F - Fy, F o=F—F_
Loy=L—Ly Loa=Lo—L_q,..

*

and so on. Clearly,

(1.3) Fp=F pis—F o= (-1)""F,
(1.4) Lep=L_pts—L_ps1=(-1)"Ly.
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In [2] Er defined k sequences of the generalized order-k Fibonacci
numbers as shown:

k
(1.5) g;:ngl_j, for n>0 and 1<i<Ek,
j=1

with boundary conditions for 1 — k <n <0,

{1 ifn=1-1i

0 otherwise,

%

In =

where g% is the nth term of the ith sequence. For example, if k = 2,
then {g2} is the usual Fibonacci sequence, {F,}, and, if k = 4, then
the fourth sequence of the generalized order-4 Fibonacci number is

1,1,2,4,8,15,29, 56, 108, 208, 401, 773, 1490, . . . .

In [6] the authors defined k sequences of the generalized order-k Lucas
numbers as shown:

n—j’

k
=Y li_; for n>0 and 1<i<k,
j=1

with boundary conditions for 1 — k <n <0,
-1 ifn=1-4,
=<2 ifn=2-4
0 otherwise,
where [/, is the nth term of the ith sequence. For example, if k = 2,

then {l,zl} is the usual Lucas sequence, {L,}, and, if ¥ = 4, then the
fourth sequence of the generalized order-4 Lucas numbers is

1,3,4,8,16,31,59, 114, 220, 424, 817, 1575, 30636, . . . .

In [3], we gave the generalized Binet formula, the combinatorial
representations and some relations involving the generalized order-k
Fibonacci and Lucas numbers. In particular, we showed that, for k& > 2

(1.6) Iy =gk +2gk_,
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where [ and gF are the generalized order-k Lucas and Fibonacci
numbers, respectively, for ¢ = k. The above result is a well-known
relation that, for k£ = 2,

L,=F,+2F, 1 (see|7, page 176]).

The permanent of an n-square matrix A = (a;;) is defined by

per A = Z Haig(i)

ocES, i=1

where the summation extends over all permutations o of the symmetric
group Sy,.

The permanent of a matrix is analogous to the determinant, where
all of the signs used in the Laplace expansion of minors are positive.

A matrix is said to be a (0, 1)-matriz if each of its entries is either 0
or 1.

In [5], Minc constructed the n x n (0, 1)-matriz F (n, k) as follows:

r1 1 ... 1 0 0 0 0 1
1 1 ... 1 1 0 0 0
o 1 ... 1 1 1 0 0
(1.7) F(nk)=| 0 0 1 1 1 0
0 0 0 1 11
0 0 0 1 1 1

L o 0 o o0 1 1.

where, £ < n+ 1, F(n,k) denote the n-square (0, 1)-matriz with 1 in
the (i, 7) position for i —1 < j < i+ k — 1 and 0 otherwise. Also, he
showed that

(1.8) per F (n,k) = g,

where gF is the nth generalized order-k Fibonacci number, for i = k.
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Also, Lee defined the matrix £,, as follows [4]:

rl 0 1 1
1 1 1
0 1 1 0
L, = ' 0 0
0 1 1 1 00
0 1 1 10
0 1 1 1
| 0 1 1]
and showed that
perﬁn:Ln—l

where L, is the nth usual Lucas number.

A matrix is said to be a (—1,0,1)-matriz if each of its entries are
—1,0 or 1.

The purpose of this paper is to develop relations involving the
positively and negatively subscripted Fibonacci and Lucas numbers
and the permanents of some (—1,0, 1)-tridiagonal matrices.

Let A = [a;;] be an m x n real matrix row vectors oy, g, ... ,Qm.
We say A is contractible on column, respectively row, k if column,
respectively row, k contains exactly two nonzero entries. Suppose A
is contractible on column k with a;; # 0 # aji and ¢ # j. Then the
(m — 1) x (n — 1) matrix A;;.;, obtained from A by replacing row ¢ with
ajr0o; +azpa; and deleting row j and column £ is called the contraction
of A on column k relative to rows i and j. If A is contractible on row

T
k with ag; # 0 # ag; and ¢ # j, then the matrix Ag.;; = [Ag;-:k} is
called the contraction of A on row k relative to columns i and j. Every

contraction used in this paper will be on the first column using the first
and second rows.

We say that A can be contracted to a matrix B if either B = A or
there exist matrices Ag, A1,... Ag, t > 1, such that 49 = A, A, = B
and A, is a contraction of A,_; forr =1,2,... ,t.

2. On the contraction of some tridiagonal matrices. Let us
consider the following Lemma, see [1].



ON THE PERMANENTS OF SOME TRIDIAGONAL MATRICES 1957

Lemma 1. Let A be a nonnegative integral matriz of order n > 1,
and let B be a contraction of A. Then

per A = per B.

Let C' = [¢;;] be an n x n tridiagonal matrix as follows:
(2.1)

[c1i1 —ci2 0 T
—C21 C22 —C23
0 —c32 c33
C =
Cn—2,n—2 —Cpn—2n—1 0
—Cn—1,n—2 Cn—1,n—1 —Cn—1,n
L 0 —Cn,n—1 Cnpn J

where the c;;s are arbitrary integers and c;; # 0.

So give an extension of Lemma 1 for the matrix C, by the following
Theorem.

Theorem 1. Let C be as in (2.1), and let B be a contraction of C.
Then
per C = per B.

Proof. It suffices to consider the case where B is the contraction of
C on column 1 relative to rows 1 and 2. Thus, C' and B have the form

C11 —C12
C11C22 + C12C21
C=|—-ca c2 |, B = [ D
0 D

where ¢;; # 0.
Using the Laplace expansion of the permanent with respect to col-

umn 1, we obtain

c c
per C = cqiper [52} + co1per [132]
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Hence, by linearity of the permanent, per C' = per B. o

Now we give an application of the above result. We introduce an
n-square (—1,0,1)-tridiagonal Toeplitz matrix whose permanent and
principal subpermanents are Fibonacci numbers of prescribed order.

Let A, denote an n x n (—1,0,1)-tridiagonal Toeplitz matrix as
follows: for n > 3

1 -1 0 7

Corollary 1. Let A, be the n x n (—1,0,1)-tridiagonal Toeplitz
matriz as in (2.2). Then, for n > 3

perA, = F, 1

where F,, is the nth Fibonacci number.

Proof. If n = 3, then we have

and hence per A3 = 3 = Fj.

Let AP be the pth contraction of A,, 1 < p < n — 2. From the
definition of A,,, the matrix A,, can be contracted on column 1 so that

9 1 -
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Since the matrix A} can be contracted on column 1 and Fy = 3, F3 = 2,

e ]
101 -1
e 11
" 1
101 -1
| -1 1]
r_p, )
11 -1
B 11
R
11 -1
| -1 1]

-5 _3 -

.-l
-1 1 -1
-1 1

where F5 = 5, F, = 3. Continuing this process, we obtain

[Fry2 —Frpa
-1 1 -1

-1 1

N
R
Il

for 3 <r < n —4. Hence,
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which, by contraction of A" % on column 1, gives

An—2 _ Fn72+Fn71 _Fn1:| _ [Fn _Fn1:|
n -1 1

By applying Theorem 1, we obtain
per A,, = per AZ_2 =Foi1-

So the proof is complete. o

As a different application of the contraction, we give the following
Lemma for negatively subscripted Lucas numbers.

Lemma 2. Let V,, be an n X n matriz of the form:

-1 2 0 1
1 -1 1 0
0 1 -1 1 0

and let V" denote the mth contraction of the matriz V,,. Then
perVi?=1_,
where L_,, is the nth negatively subscripted Lucas number.

Proof. From the definition of the matrix V,,, the matrix V,, can be
contracted on column 1, so that

3 -1 0
1 -1 1
Vl — 0 1 -1 . 0
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Since the matrix V,! can be contracted on column 1 and L_3 = —4,
L*Z = 3,
(-4 3 0 i
1 -1 1
vz 0 1 -1 0
.10
0 1 -1 1
| 0 1 -1}
[L_s L_o 0 i
1 -1 1 0
10 1 -1 1
- 0
0 1 -1 1
i 0 1 -1}

Furthermore, the matrix V,2 can be contracted on column 1 and
L_4 =7 so that

7 -4 0
1 -1 1
vi_lo 1 -1 0
.10
0 1 -1 1
i 0 1 -1}
Ly L_s O 1
1 -1 1
~lo 1 -1 0
.o 10
0 1 -1 1
i 0 1 -1,
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Continuing this process, we reach

_L,(kJrl) L g 0 ]
1 -1 1
vk = 0 1 -1 . 0
. . 1 0
0 1 -1 1
L 0 1 —1]

for 3 <k < n — 4. Hence,

L 2 L_n3 O
Vi = 1 -1

n

0 1 -1
which, by contraction of V,*=%, gives

n—2_ | Lon-1) L_(n_2
Va o 1 -1

Then we calculate
perV' 2 =L ,.10—L_ .41
and, using formula (1.4), we obtain
per V' 2 =1_,.
So the proof is complete. o
3. On the permanents relations of some tridiagonal matrices.
In this section, we introduce the sequences of n X n tridiagonal matrices

{C;i(n), n=1,2,...} and {C2(n), n=1,2,...}, where C;(n) and
C> (n) matrices of the forms:

C1,1 C1.2
2,1 C22 C23

(3.1) C1(n) = G2 a8

Chn—1,n—1 Cn—-1n

Cn,n—1 Cn,n
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and
_—61,1 C1,2 T
C21 —C2.2 C23
(32) Ca(n)= B2 T

—Cn—1n—-1 Cn—-1n

L Cn,n—1 —Cn,n

where the signs of the main diagonals of the matrices C; (n) and Cs (n)
are positive and negative, respectively.

Now we give some recursive formula for the permanents of the
matrices C (n) and Cs (n). We start with the following Lemma.

Lemma 3. Let the sequence {C1 (n), n=1,2,...} be as in (3.1).
Then the successive permanents of Cq(n) are given by the recursive
formula

perCy (1) =¢1,1,
(3.3) perCy(2) =ciic22 + 122,
per C1 (n) = ¢ nperCi (n — 1) + cp—1,nCnn—1perCi (n — 2).

Proof. We prove Lemma 3 by the second principle of finite induction,
computing all permanents by the Laplace expansion of the permanent
with respect to the last column. For the basis step, we have:

per Cl (1) = 6111,
C1,1 C1,2

per C4 (2) = per =c1,1C2,2 tC1 2021,
C2,1 C22
cii c2 O

perCi (3) =per [ca1 c22 cC23
0 «c32 c33

C C
= C3 3per Cl (2) + Cg 3per [ L1 1’2:|
0 C3.2

= c3,3per (o (2) + c2,3¢3 2per (o (1) .
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For the inductive step, we assume that
per C1 (k) = ci xper C1 (k — 1) + cp—1 k. k—1per Cq (k — 2)
for 3 < k < n. Now we show that the equation is true for £ + 1. Then

perCy (k+1)

C1,1 C1,2
C21 C22 C23

)

€32 C33
= per

Ck—1,k—1 Ck—1,k
Ck,k—1 Ck,k Ck,k+1
Ck+1,k  Ck+1,k+1

= ckt1,k+1per Oy (k)
ci1 ci2 O
C21 C22 C23

0 «c32 c33

+ Ck,k+1P€r
Ck—2,k—1 0
Ck—1,k—1 Ck—1,k
L 0 Cht1,k

= Cit1,k+1Per C1 (k) + ¢k kt1ck+1,kper Cp (k—1).

So the proof is complete. a

If we take ¢;;j; = 1, 1 —1 < j < i+ 1, in the above Lemma,
then per Cy (1) = 1, perCy (2) = 2 and perCy (n) = perCy (n — 1) +
per C (n — 2), which is exactly the Fibonacci recurrence.

Lemma 4. Let the sequence {C2(n), n=1,2,...} be as in (3.2).
Then the successive permanents of Ca(n) is given by the recursive
formula

perCy (1) = —cy 1,
(3.4) perCy(2) =ci1c22 + 1221,
per Cs (n) = —cy nper Cz (n — 1) 4+ ¢p—1,nCnn—1per Ca (n — 2).
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Proof. By the similar method in Lemma 3, the proof is readily seen.
]

If we take ¢;; = 1,4 —1 < j < i+ 1, in the above Lemma, then
perCy (1) = —1, perCy(2) = 2 and perCy(n) = —perCsy (n — 1) +
per Cs2 (n — 2), which is exactly the negatively subscripted Fibonacci
recurrence.

Combining Lemmas 3 and 4, we give the following Theorem.

Theorem 2. Let the sequences
{Ci(n), n=1,2,...} and {Cy(n), n=1,2,...}
be as in (3.1) and (3.2), respectively. Then, for n > 1,

(—1)" per Cy (n) = per C; (n).

Proof. We will use induction method to prove that (—1)" per Cs (n) =
perCy (n). If n =1, then

(—1)' perCy (1) = ¢11 = per Cy (1).
Suppose that the equation holds for n. So we have
(3.5) (—1)" per Cs (n) = per C; (n).

Now we show that the equation is true for n + 1. From equation (3.4),
we write that

(—1)"+1 perCy (n+1)
(*l)m—l (*Cn+1,n+lper Co (n) + Cn,n+1Cn+1,nPeT Co (n - 1))

)" epy1,nt1per Cs (n) + (—1)7hLl Cnn+1Cnt1,nper Cy (n — 1)

and by using equation (3.5), we may write

(fl)"“per Co(n+ 1)=cpt1,nt1per C1(n)+cnnticnt1nper Ci(n —1).
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Also, from Lemma 3, the last equation can be written as
(_1)n+1 perCy (n+1) = perCy(n +1).

So the proof is complete. |

In the above Theorem, we obtain the relation (—1)" "' per Cy (n +1) =
per C (n + 1) which is exactly the relation between the negatively and
positively subscripted Fibonacci numbers.

As a result of Theorem 2, we give following Corollary for the nega-
tively subscripted Fibonacci numbers.

Corollary 2. Let {T'(n), n=1,2,...} be a sequence of n X n
tridiagonal matrices of the form:

-1 1 0 O 1

Then the permanent of the matriz T (n) is F_(,,1) where F_,, is the
nth negatively subscripted Fibonacci number.

Proof. When k =2 in (1.7), then F (n, k) is reduced to the matrix

11 0
1 1 1 0
01 1 1
F(n,2) = e
0 1 1 10
0 1 11
I 0 1 1]

Also, when k£ = 2 in the definition of the k-generalized Fibonacci
sequence {gfl}, then the sequence is reduced to the usual Fibonacci
sequence {F,}. Then by (1.8) we have

(3.7) per F' (n,2) = g2, 1 = Fpy1.
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It is also seen that the matrix T'(n) and F (n,2) are elements of the
sequences {C (n)} and {C4 (n)}, respectively. Using Theorem 2, we
have that

per F (n,2) = (—1)"per T (n)

perT (n) = (—1)" per F (n,2).

From equation (3.7), we write
perT (n) = (=1)" Fyy1.

Thus, we obtain
perT (n) = F,(nJrl).

So the proof is complete. a

4. On generalized order-k Lucas numbers. Let H (n + 1,k) =
[hij] be a (n+1) x (n + 1) matrix as the form:

2 0 ... 0

S ==

(4.1) H(n+1,k) = F (n, k)

where F' (n, k) is the n x n (0, 1)-matriz as in (1.7).

Now we give a relation between the generalized order-k Lucas number,
It for i = k and permanent of the matrix H (n + 1, k) by the following
theorem.

Theorem 3. Let the matrix H (n + 1,k) be as in (4.1). Then
per H (n+1,k) =15,

where I¥ is the nth element of kth sequence of the generalized order-k
Lucas numbers.
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Proof. Using the Laplace expansion of the permanent for the matrix
H (n + 1, k) with respect to row 1, we have

per H (n+1,k)

1 1 ... 1.0 ... 0
0 F(n-—1,k)
= per F (n, k) + 2per | .
0
Let
1 1 10 0
0 F(n-—1,k)

then we may write
perC = per F(n — 1,k).
Thus,
per H (n+ 1,k) = per F (n, k) + 2per F(n — 1, k).
From equations (1.8) and (1.6), we obtain

per H (n+1,k) = gﬁ—l—l + 295 = 124—1-

So the proof is complete. o
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