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THE ASYMPTOTIC
BROWDER HARTMAN STAMPACCHIA CONDITION
AND INTERIOR BANDS OF ¢-SOLUTIONS
FOR NONLINEAR COMPLEMENTARITY PROBLEMS

G. ISAC AND S.Z. NEMETH

ABSTRACT. In this paper we study two remarkable prop-
erties of the interior band of e-solutions of a general nonlin-
ear complementarity problem in the n-dimensional Euclidean
space. The study is based on the notion of scalar derivative,
on the notion of infinitesimal interior point e-exceptional fam-
ily of elements for a function and on the asymptotic Browder
Hartman Stampacchia condition.

1. Introduction. Let (R",(:,-)) be the n-dimensional Euclidean
space ordered by the closed pointed convex cone R’} and f : R — R"
a continuous function. We consider the following nonlinear comple-
mentarity problem:

find z° € R" such that
NCP(f,R"): +
(£, RY) {f(a:o) € R and (2, f(2")) = 0.
It is well known that the NCP(f,R’}) has many applications in

optimization, economics, engineering, game theory and mechanics [6,
10, 14, 16, 17].

We note that there exist several equivalent formulations of the
NCP(f,R%). In particular, several formulations are in the form of
a nonlinear equation of the form F(z) = 0, where F' : R* — R"
is a continuous function. By using such formulations, several tech-
niques proposed by some authors are based on the idea to perturb
F to a certain F(z,e), where ¢ is a positive parameter and to con-
sider the equation F(z,e) = 0. If F(z,¢) = 0 has a unique solution,
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denoted by z(e) and z(e) is continuous in ¢, then the solutions de-
scribe (depending on the properties of F') a short path denoted by
{z(¢) : € €]0,&0]} or a long path {z(g) : € €]0,00[}. We note that, if
a short path {z(¢) : £ €]0,¢]} is bounded, then for any sequence {e}
with {ex} — 0, the sequence {z(e)} has at least one accumulation
point, which by continuity is a solution to the NCP(f,R"). Based
on this fact, several numerical methods for solving the NCP(f,R})
have been developed, as for example the interior point path-following
methods, regularization methods and noninterior path-following meth-
ods among others. About such methods the reader can see the papers
1, 2, 3-5, 8-15, 21-25, 28]. The most common interior point path-
following method is based on the notion of central path. We recall [29]
that the curve {z(g) : £ € ]0,00[} is said to be the central path if for
each € > 0 the vector z(¢) is the unique solution to the system

(1) {x(s) >0, f(z(e)) >0

and X (e)f(z(e)) = ee,
where the inequality ”>” means that the components of the vector
are strictly positive, e = (1,...,1)T, X(¢) = the matrix diag (z(¢))
and z(g) is continuous on ]0,00[. It is well known that, for a general
NCP(f,R"), the system (1) may have multiple solutions for a given
g > 0, and even if the solution is unique it is not necessarily continuous
in €. Therefore, the existence of the central path is not always
guaranteed.

We consider in this paper the multi-valued mapping U : ]0,00[ —
S(R" ) defined by

U)={z e R} : f(z) > 0,Xf(x) = ce},

where X = the matrix diag (z), S(R'.) is the collection of all subsets
of R , and R}, = {z = (21,...,2n) : 21 > 0,...,2, > 0}. We say
that U is the interior band mapping. The multi-valued mapping U was
studied from several points of view in [29].

Now, the main goal of our paper is to study under what conditions
the multi-valued mapping U/ has the following properties:

(a) U(e) # @ for each € €10, 00].
(b) For any fixed 9 > 0, the set U.cjo,c,jU(€) is bounded.
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Conditions (a) and (b) were defined in [29].

Our study is based on the asymptotic Browder Hartman Stampacchia
condition, on the notion of scalar derivative and the notion of infinites-
tmal interior point e-exceptional family of elements for the inversion
of f. By the results presented in this paper we show another utility
of the Browder Hartman Stampacchia condition, never put in evidence
by other authors.

2. Preliminaries

For more details about the notions and the results presented in this
section, the reader is referred to [29].

Definition 2.1. Let f : R™ — R" be a continuous function. Given
a scalar € > 0 we say that a family {z"},~o C R’} is an interior point
e-exceptional family for f if ||x"|] — oo as 7 — oo and for each z" there
exists a positive number 0 < g, < 1 such that

1 1 r :
(2) fi(fvr)=§<,ur;>xf+% forall ¢=1,2,... ,n.

Theorem 2.1. Let f : R® — R" be a continuous function. Then
for each € > 0 there exists either a point x(g) such that
(3) LL‘(E) > Oa f(il?(&')) > 07 ac,(s)fz(m(s)) =5 i = 17 27 PR LS
or an interior point e-exceptional family for f.

Proof. This result is proved in [29]. O

Let K C R"™ be a closed pointed convex cone and f : R® — R" a
continuous function. The following notion was used in [17, 18].

Definition 2.2. We say that a family of elements {z"},~y C K is
an exceptional family of elements, denoted by EFE, for f with respect
to K if ||z"|| — oo as 7 — oo and for every real number r > 0, there
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exists a real number u, > 0 such that the vector u" = p,z" + f(z")
satisfies the following conditions:

(1) u" € K* (the dual of K),
(2) (u", 2"y =0.

If in the definition of the problem NCP(f,R'l) we replace the cone
R’ by the cone K, we obtain the problem NCP(f, K), i.e.,

find z° € K such that

NOP(K): {0 S o e =0

Theorem 2.2. If f : R® — R"™ is a continuous function and
K C R” is a closed pointed conver cone, then there exists either a
solution to the NCP(f,K) or an exceptional family of elements for f
with respect to K.

Proof. A proof of this result is given in [17]. o
The following definition and theorem can be found in [17].

Definition 2.3. Let (H,(-,-)) be a Hilbert space, K C H a closed
convex cone and f : H — H a mapping. We say that the mapping f
satisfies condition © with respect to K if

there exists p > 0 such that for each z € K with ||z|| > p,
(4) there exists p € K with ||p|| < ||z|| such that

(x —p, f(z)) > 0.

Theorem 2.3. Let H be a Hilbert space, K C H a closed convex
cone and f: H — H a mapping. If f satisfies condition © with respect

to K, then it is without exceptional family of elements with respect to
K.

3. The Browder Hartman Stampacchia condition. First we
recall a general classical result. Let (E, ||-||) be a reflexive Banach space
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and f: E — E*. We say that f is hemi-continuous if it is continuous
from the line segment to the weak topology of E*.

We say that f is monotone if for any x,y € E we have that

(x -y, f(z) - f(y)) =20,

and we say that f is strongly monotone if there exists a constant o > 0
such that for any x,y € E we have

(@ =y, fx) = f(y)) = aflz - y|*

Definition 3.1. We say that f satisfies the Browder Hartman
Stampacchia condition, denoted by BHS, on a closed convex cone
K C E if there exists p > 0 such that (z, f(z)) > 0, for any z € K
with ||z|| = p.

The following result is to support the importance of condition (BHS).

Theorem 3.1 (Browder Hartman Stampacchia). Let (E,| -||) be
a reflexive Banach space, f : E — E* a monotone hemi-continuous

mapping and K C E a closed conver cone. If f satisfies condition
BHS on K, then the problem NCP(f,K) has a solution.

Proof. A proof of this result is given in [17, Theorem 4.6]. mi

Proposition 3.1. If f : E — E* is strongly monotone on K, then
f satisfies condition BHS on K.

Proof. Indeed, if we take y = 0, we have
(@, f(z)) > (z, f(0)) + o]

If £(0) = 0 we deduce that (z, f(z)) > af|z||?, for any z € K. If we
take an arbitrary p > 0, we have that (z, f(z)) > 0, for any z € K
with ||z|| = p.
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If £(0) # 0, then in this case we consider the set

p-{se: s < LLOI,

(0%

which is nonempty and bounded. For any z € K \ D we have
allel* > llell - £ )]l = —(z, £(0)),

which implies (z, f(z)) > 0 for any € K \ D. Because D is bounded,
there exists p > 0 such that D C B(0,p) and for any v € K with
|lz]| = p we have (z, f(x)) > 0. o

By the next result we can obtain many functions which satisfy
condition (BHS). Let K C R" be a closed convex cone. We say that
a function T : K — R" satisfies condition (8) if there exists a real
number B(T) > 0 such that for all z € K with ||z|| > 1, we have

1T ()| < B(T)|||-

Examples. (1) Any linear continuous operator T': R™ — R satisfies
condition (5).

(2) If T : K — R™is a k-Lipschitz mapping, then T satisfies condition
(B) with B(T) = k + By, where By = k|[z°|| + ||7(z°)|| and 2° is an
arbitrary element in K.

Theorem 3.2. Let f : K — R™ be a continuous function and
T : K — R" a function satisfying condition (B). If the following
conditions are satisfied:

(2) B(T) < ko,
then there exists p > 0 such that (z, f(z)) > 0, for all x € K with
]l = p-

Proof. Let € > 0 be such that S(T) + ¢ < k. From assumption (1)
we have that there exists pp > 0 such that for all z € K with ||z|| > po

we have
(f(x) —T(z),z)

> ko —
EE oo
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which implies
(f(z) = T(z),z) > (ko — €)|z[|?
and finally,
(f(2),2) > (T(z),2) + (ko — &) |l]]*.

From the last inequality we obtain
(f(2),2) = =BD)||z]|* + (ko — €)llz||* = [l|*(=B(T) — & + ko) > 0,

for all z € K with ||z|| > po. If we take p > po, the proof is complete.
]

Remark 3.1. Theorem 3.2 is applicable in the following cases

(i) f(z) = T(z) + az +b, where a > 0, b € R™ is an arbitrary vector
and T satisfies condition (8) with 8(T) < a.

(ii) f(z) = T(x) + L(x) + b, where b € R™ is an arbitrary vector, L
is a linear operator from R™ into R™ such that (L(z),z) > kol|z||?, for
any z € K and T satisfies condition 3 with 5(T) < ko.

In the n-dimensional Euclidean space Theorem 3.1 has the following
form:

Theorem 3.3. Let K C R"™ be a closed convex cone and f : R" —
R"™ a continuous function. If there exists p > 0 such that (z, f(z)) >0
for any x € K with ||z|| = p, then the problem NCP(f,K) has a
solution x* such that ||z*|| < p.

Proof. Let T, be the radial retraction onto the ball B(0,p) = {z €
R": ||z|| < p}, ie.,
z if [lz]] < p
pa/la|if f[z]| > p.

T,(z) = {

It is known that T}, is continuous. If we denote by K, = B(0,p) N K,
we have that T}, is also a continuous retraction of the cone K onto K,,.

We denote by F : R™ — R"™ the continuous mapping defined by

F(z) = f(Ty(2)) + llz — Tp(z)||=.



1924 G. ISAC AND S.Z. NEMETH

For any = € K with ||z|| > p we have (x, F(z)) > 0. Indeed, we have

(@, F(x)) = (2, f(Tp(2) + |z = Tp(2)|| - |=]*

— (I, @) 13,0 + o = T - el > 0

Because of the fact that (x, F(z)) > 0 for any € K with ||z| > p,
it is easy to show that F satisfies condition ©® with respect to K.
Hence, by Theorem 2.3, F' is without EFE with respect to K. Applying
Theorem 2.2, we have that NCP(F, K) has a solution z* which must
satisfy the inequality ||z*|| < p. Therefore, F(z*) = f(z*) and z* is a
solution to NCP(f, K). o

Remark 3.2. Theorem 3.3 is known in complementarity theory, but
our proof presented here is different than other proofs.

Remark 3.3. If f : R® — R is a continuous function such that there
exists p > 0 with the property that (z, f(z)) > 0 for any z € K with
llz|]| = p, then the function F(z) = f(T,(z)) + ||z — Tp(z)||z is such
that

liminf (z, F(x)) = +o0.

[lz]|—+o0
zeK

Indeed, we have, for any z € K with ||z|| > p,
(@, F(2)) = (@, f(T,(2)) + ll& = Tp(x)|| - |||
= @@p(m), F(Tp(@)) + llz — Tp(a)|] - |||

> |lz = Tp(@)l| - llzl® = p?llz — Tp(2) ]| = p?[llz]| — o).

Computing liminf, |4, we obtain that
zEK

liminf (z, F(x)) = +o0. O
llzl|—+o0
TEK
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4. The asymptotic Browder Hartman Stampacchia condi-
tion. Let (R™,(-,-)) be the n-dimensional Euclidean space, K C R"
a closed pointed convex cone and f : R™ — R" a continuous function.
We introduce the following condition.

Definition 4.1. We say that f satisfies the asymptotic Browder
Hartman Stampacchia condition, denoted by ABHS, with respect to K
if

liminf (z, f(x)) = +o0.

[l]|—+o0
TeEK

The relations between conditions (BHS) and (ABHS) is given by the
following result.

Proposition 4.1. Let K C R"™ be a closed pointed convex cone and
f:R"™ = R" a continuous function. If f satisfies condition (ABHS),
then f satisfies condition (BHS). If f satisfies condition (BHS), then
the function F(x) = f(T,(x)+||x—T,(x)||x satisfies condition (ABHS).

Proof. We suppose that f satisfies condition (ABHS), i.e., we have
that
liminf (z, f(x)) = +o0.

[l]|—+o0
TeEK

In this case, given r > 0, there exists p > 0 such that for any z € K
with ||z|]| = p we have (z, f(z)) > r. Indeed, if this is not true,
then for any n € N, there exists z, € K with ||z,| = n such that
(@n, f(zy)) < r. Therefore, condition (ABHS) is not satisfied. This
contradiction implies that f satisfies condition (BHS). Conversely, if
f satisfies condition (BHS), then by Remark 3.3 F' satisfies condition
(ABHS). o

Corollary 4.1. If K C R"™ is a closed pointed conver cone and
f:R™ = R"™ is a continuous function satisfying condition (ABHS),
then NCP(f,K) has a solution.
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Proof. This corollary is a consequence of Proposition 4.1 and Theo-
rem 3.3. ]

In the following we will show that condition (ABHS) is a good
mathematical tool for the study of properties (a) and (b) of the interior
band mapping U with respect to the cone R’} .

In regards to the existence of a solution to the NCP(f,K) in r" we
cite also the following result.

Proposition 4.2. Let K C R"™ be a closed pointed convex cone and
f:R™ = R" a continuous function. If f satisfies the condition

(5) liminf (z, f(x)) > 0,
s

then NCP(f,K) has a solution.

Proof. 1t is sufficient to prove that f is without EFE with respect to
K. Indeed, if we suppose that f has an EFE, namely, {z"},~0 C K,
then we have

(@, fa") = (@"u" — pra”) = (2" u") - pe (2", ") = —pell2"* <0,

which implies
liminf (2", f(z")) < 0.

llz" || —o0

This relation is impossible because we supposed condition (5). ]

Theorem 4.1. If f : R} — R" is a continuous function, then

liminf(z, f(x)) = +o0
=l —o0
zeRY |

if and only if
liminf(z, f(z)) = +o0.

=00
zeRY



NONLINEAR COMPLEMENTARITY PROBLEMS

Proof. Obviously if

then

liminf(z, f(z)) = +oo,
2l o0
z€RY

liminf(z, f(z)) = +oc0.
llz]| o0
zeRY

The converse follows if we show that if

then

liminf(z, f(z)) = +oo,
2] o0
zeRY |

ﬁirﬁl inf(z, f(z)) = 4o0.
T||—0o0
z€ORY

1927

Let {2"} be a sequence such that ||z"|| — oo as n — oo and for
any n € N, z" € 0R"}. Let n be fixed. Since z" € OR', there
exists {y™} C R}, such that {y™} — z" as m — oo. For any
n € N we select such a sequence {y™}. Let g9 > 0 be an arbitrary
real number. For any n € N we can select the sequence {y™} such that
ly™ — 2™|| < 9, for any m € N. We can suppose that for any n € N,

IIf(z™)|| > 0. Because lim,,_, ||z" — y™|| = 0, there exists m; € N
such that
1
2" = y™ | < 57
£ ()’

for any m > m;.

Because f is continuous, there exists an my € N such that

(") = Fy™)] <

1
g0 + [|lz||”

for any m > mgy. For any m > max{my,ms} we have

g™ [ < lle” =™ [ + llz" ] < o + [l«"]]
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and
1 1

co+ "] = o™l

(") = Fly™)] <

We take an arbitrary m > max{m,m2} and we have

[ pg——
RN ED]]
and
1
1f(z") — fFly™) < o
If we denote by y™* = y™, then we have
o™ — ™| < e
SN TED]
and )
l£(z™) = fF(y™) < T
We have
(™, fy™ ) = [y™", fy™")) — (&, f(@")] + (=", f(z™))
and

1<y™ "5 F(y™)) — (=", f(z")) |
RS ||< Tyt FED I G F@) = F™)

1
W@+ ™ - g = 2
ly™ |l

||f( ol
Therefore,
(6) (™" fly™") <24+ (", f(2")).
Since ||z”|| — |ly™*|| < ||z™ — y™*|| < eo, for any n € N, we have

lz”|| < eo + ||ly™*||, for any n € N, which implies [|y™*| — +oo,
because ||z"| — +o0.
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Computing liminf in (6), we have

lim inf(z", f(2")) = +o0.

n—0o0

Therefore,
liminf (z, f(z)) = 400
llzl|—+o0
z€ORY
and the proof is complete. u]

5. Scalar derivatives. Let C C R" be a set which contains at least
one nonisolated point: F : R” — R"™ and ¢ a nonisolated point of C.
The following definition is an extension of Definition 2.2 [26]:

Definition 5.1. The limit

(F(z) = F(z0), 2z — 20)
[l — o[>

#70 T .
E™"(20) = lim inf
zeC

is called the lower scalar derivative of f at x¢ along C'. Taking lim sup

. o e =0
in place of liminf, we can define the upper scalar derivative F' # (z0)
of F' at xy along C similarly.

Scalar derivatives were studied in [26, 27] and successfully applied
to fixed point theorems in [19, 20].

6. Inversions. The following definition can be found in [7,
Example 5.1, page 169]:

Definition 6.1. The operator

T

i:R"\ {0} — R"\ {0}; i(z)= T2
is called inversion (of pole 0).

It is easy to see that 4 is one to one and i~ ! = 3.
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Let f : R® — R”™ be a mapping. Since R" \ {0} is an invariant set
of i, the following definition makes sense.

Definition 6.2. The inversion (of pole 0) of the mapping f is the
mapping Z(f) : R™ — R" defined by:

ey - { I oe) it 20

It is easy to see that the inversion of mappings Z is a one to one
operator on the set of mappings {f | f : R® — R"; f(0) = 0} and
I =17, ie, Z(Z(f)) = f.

The properties of inversions were studied in detail in [19].
7. Infinitesimal interior point ¢ exceptional families.

Definition 7.1. Let g : R® — R"™ be a function. Given a scalar
e > 0, we say that a sequence {y"},~o C R}, is an infinitesimal
interior point € exceptional family for g if ||y"|| — 0 as r — +oo and
for each y" there exists a positive number 0 < p, < 1 such that

1 1 Elr 4
7 ai(y” =—<ur——>y’"+—r vyl
(7) ¥") =3 AL ylllll
foralll =1,2,...,n.

Proposition 7.1. If f : R® — R"™ is a continuous function and
g = I(f) is the inversion of f, then {z"} C R, is an interior
point e-exceptional family for f if and only if {y"} C R}, is an
infinitesimal interior point e-exceptional family for g, where y™ = i(z")
is the inversion of ", for all r > 0.

Proof. Suppose that {z"},~0 C R’} is an interior point e-exceptional
family for f, and let

(8) y" =i(a"),
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for all r > 0. Since i ! = i, equations (2) and (8) imply that

. 1 1. Eflr

9 fili(y" ——<M——>Hfl+.—

o) (167) = 5 (e = )il + 2

for all I = 1,2,...,n. Multiplying both sides of equation (9) by ||y"||?
we obtain equation (7). Hence, {y"},~o C R'[, is an infinitesimal
interior point e-exceptional family for g. Similarly it can be proved
that if {y"},~0 C R is an infinitesimal interior point e-exceptional
family for g, then {z"},~o C R, is an interior point e-exceptional
family for f. o

Theorem 7.1. Let f : R®™ — R"™ be a continuous function and
e > 0. If there is no infinitesimal interior point c-exceptional family
for g = Z(f), then there exists a point x(e) such that

(10) z(e) >0, f(z(e)) >0, mi(e)fi(x(e)) =¢,
foralll=1,2,...,n.

Proof. Suppose, to the contrary, that there is no point z(¢) which
satisfies relation (10). Then, by Theorem 2.1, the function f has an
interior point e-exceptional family {z"},~o C R’ ,. Hence, Proposi-
tion 7.1 implies that {y"},~o C R’} is an infinitesimal interior point
e-exceptional family for g, where y" = i(z"), for all » > 0. But this is
in contradiction with our assumption. a

By Theorem 7.1 it is interesting to find conditions under which the
inversion of a continuous function does not possess an infinitesimal
interior point e-exceptional family for all € > 0. For such functions
U(e) # 2, for each € > 0.

8. Results related to properties (a) and (b) of the interior
band mapping U.

Theorem 8.1. Let f: R™ — R™ be a continuous function. If

liminf (z, f(z)) = 400,
llzll =00
zeRY |
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then
(1) the problem NCP(f,R’) has a solution,
(2) U(e) # D, for any € > 0,
(3) for any fized eg > 0 the set U.cjo,c,U(€) is bounded.

Proof. (1) By Theorem 4.1 we have that

liminf (z, f(z)) = +o0
llz]| o0
z€RY

and by Proposition 4.1 we have that f satisfies condition (BHS).
Applying Theorem 3.3 we obtain that NCP(f,R) has a solution.

(2) By using Theorem 2.1 it is sufficient to show that f does not have
an interior point e-exceptional family {z"},~o C R’ . Indeed, we
suppose that f has an interior point e-exceptional family {z"},~¢ C
R’ ,. Multiplying formula (2) given in Definition 2.1 by z] and
summing with [ from 1 to n, we obtain

1

(50 = 5 (e = )P+ i

where 0 < p, < 1, for any » > 0. From the last equality we deduce

(", f(z")) + %(i — l~tr> llz"||? < ne.

Let 7o > 0 such that ||z™]| > 0. Because ||z"|| — +o0 as r — 400,
we can consider a subsequence {z"¢} such that [|z™| < |[z"¢|| and
|lz"|| = 400 as i — co. For this subsequence we have

1/ 1
3 (o e I (a7 ) < e

Computing liminf and using the assumption of our Theorem, we
obtain a contradiction. Therefore, by Theorem 2.1, we have that
U(e) # 2, for any € > 0.

(3) We observe that for any z(¢) € U(e) we have (z(¢), f(z(¢))) = ne.
Now, we suppose that there is an & > 0 such that U.¢jo,.,U(€) is not
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bounded. Then, there is a sequence xz(e) € U(ey) with ¢, € ]0,e0]
which is not bounded. Hence, by the assumption of our theorem we
have

liminf(z(ex), f(z(x))) = +oo.
k—o0
On the other hand,

(x(er), f(z(ex))) = ney < neo,

which implies
likminf(:v(sk), f(z(er))) < neg
—00

and we have a contradiction. Therefore, U.c ,jU(¢) is bounded for
all 9 > 0. u]

We remark that in Theorem 8.1 conclusion (1) is (a) of U and
conclusion (2) is property (b).

Theorem 8.2. Let f : R™ — R"™ be a continuous function If

lim inf —<x’f(f)>
lzll++oo ||z
TER

>0,

then the interior band mapping U has properties (a) and (b).
Proof. We denote by

r = liminf 7<I’f(f)>
lell>+o0 |||
acERiJr

and we take rg such that 0 < rg < r. There exists p > 0 such that for
any = € R, with |z|| > p,

(z, f(z))

e > 1.
=z ="
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Indeed if this is not true, then for any n € N, there exists 2 € R’} |
with [|z"|| > n and such that

(x™, f(z™))

Because ||z"|| = +00 as n — oo we have that

timint &I
n—oo |[|lzn|
which is impossible. Therefore, for any = € R’} | with ||z > p we have
(z, f(z)) > 7o||z||* which implies that
liminf (z, f(z)) = +o0.
llzl| =+o0
eC€RY,

Applying Theorem 8.1 we obtain that the interior band mapping U
has properties (a) and (b). o

Theorem 8.3. Let f : R®™ — R"™ be a continuous function and
g =Z(f). If the lower scalar derivative of g in 0 along R | is positive,
then the interior band mapping U has properties (a) and (b).

Proof. We have

(11) ¢#(0) = lim inf M.
= y=0 |yl
yeERY |

Let y = i(z). Then, we have

v20 lyl izl o0 |z
YERT+ e€RY,

Equations (11) and (12) imply

#(0) = liminf /@):2)
lzll—c0 ||l
zER1+

Hence, the result follows by using Theorem 8.1. o
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The following definition extends the notion of copositive functions,
see [17]. We remark that the notion can be introduced along an
arbitrary convex cone in a Hilbert space too, but for our investigation
it is sufficient to consider the case of R™ with the cone R , .

Definition 8.1. The function f : R™ — R" is called asymptotically
copositive along R}, if there is a p > 0 such that

(f(z),2) =0,

for all z € R, with ||z|| > p.

The following definition can be formulated along an arbitrary convex
cone in a Hilbert space too, but for the same reason as above we would
consider the case of R™ with the cone R’ , only.

Definition 8.2. The function f : R™ — R" is called strongly
asymptotically copositive along R} , if there are 3, p > 0 such that

(f(z),z) > Bllz|I?,

for all z € R, with ||z|| > p.

We remark that f is strongly asymptotically copositive along R} ,
if and only if there is a # > 0 such that the function f — (I is
asymptotically copositive along R’ |, where I is the identity function
of R™.

The following theorem follows directly from Theorem 8.1 and Defini-
tion 8.2.

Theorem 8.4. If f : R™ — R"™ is a continuous strongly asymptoti-
cally copositive function along R’} , , then the interior band mapping U
has properties (a) and (b).

Corollary 8.1. Let f: R®™ — R"™ be a continuous function. If there
is a p >0 and B > 0 such that f(xz) — Bz € R, for all x € Ry with
llz]| > p, then the interior band mapping U has properties (a) and (b).
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Proof. We have
(f(z) = Bz,z) 2 0

for all z € R’ with ||z|| > p. Hence,
(f(z),z) > Bll|,
for all z € R, with ||z|| > p. Therefore, f is strongly asymptotically

copositive along R, and the result follows from Theorem 8.4. O

At the end of our paper we present two results: Theorem 8.5 and
Corollary 8.3, which show that the coercivity condition of Theorem 8.2
can be satisfied by a large class of functions. For this we need the
following corollary which is a particularization of Corollary 3.1 [19]:

Corollary 8.2. Let D = {z € R" : ||z]| < 1} and f : R® — R"™;
f(0) = 0. There exists a unique extension f : R™ — R" of f|p such
that f is a fized point of Z, i.e., f = Z(f).

We proved in our paper [19] that this extension has the form

(i@ e <1
fe) = {I(f)(w) if [Jo > 1.

Since f = Z(f) and

timinf )7 _ 7(f)"(0) (by [19, Lemma 4.1]),

[t || O —
we have _
imint L5 — 70) = 10
Hence,
(13) lim inf M >0

lellvoo  [|z[|?

if and only if
F#(0) > 0.
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On the other hand, by using the Cauchy inequality it is easy to see that
if f satisfies condition (13), then for any b € R™, f + b also satisfies
condition (13). Hence, we have the following result:

Theorem 8.5. Let b € R", f : R" — R" with f(0) = 0 and
f#(0) >0, f: R" — R" with

{f(w) if [zl <1

T@)=\2()@) if o] > 1

and F = f—}- b. Then, F satisfies the condition

lim inf M

> 0.
oo |||

Corollary 8.3. Let a,b € R™, f : R" — R"™ with f(0) = a and
f#(0) >0, and F : R" — R™ with

f(@)—a+b if |z <1

E R P

Then, F satisfies the condition

limint & (®):2)

> 0.
lzll—o0 |||

Proof. Let fo(z) = f(z) — a. It is easy to see that fo(0) = 0 and
@# (0) = i# (0) > 0. Hence, we can apply Theorem 8.5 to the function
fo to obtain the desired result. O

For A: R™ — R" a linear operator, we denote by A, the operator
(A+ A*)/2, where A* is the adjoint of A. Let o(A;) be the spectrum
of A;. With these notations we have as follows:

Remark 8.1. If f satisfies supplementary conditions in 0, the paper
[27] provides useful computational formulae for checking the condition
#(0) > o:
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(1) By Theorem 1.1 [27] if f is locally Lipschitz in 0 and the
directional derivative f’(0;h) exists for each h, then

f#(0) = inf (f'(0;h), h)

lAll=1

(2) By Theorem 1.2 [27] if f is Frechét differentiable in 0, with the
differential df (0), then

f#(0) = min (df (0)(h), h),

llAll=1

(3) By Theorem 1.5 [27] if f is Frechét differentiable in 0 with the
differential df (0), then

£#(0) = mino((df(0)))s.

9. Comments. In this paper we studied the interior band of
g-solutions of the nonlinear complementarity problem defined by a
continuous function from R™ to R™ and by the cone R} .

By the results presented in this paper we put in evidence the impor-
tance of the asymptotic Browder Hartman Stampacchia condition. By
using this condition and the scalar derivative, we obtained some new
results related to the interior band of e-solutions.

By our method we do not need to suppose that the mapping f is
uniformly P-mapping or monotone mapping as in several papers cited
in our references.

Our ideas presented in this paper may be a starting point for new
developments.
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