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CONSTRUCTING MAPPINGS ONTO
RADIAL SLIT DOMAINS

PHILIP R. BROWN

ABSTRACT. Formulas are derived for computing a univa-
lent mapping of the unit disc onto a radial slit domain with
threefold circular symmetry. Goodman’s upper bound for the
univalent Bloch constant can be computed to a high degree
of accuracy. A new upper bound is given for the universal
constant which determines the lowest tone a membrane can
produce if it contains no circular membrane with more than
a specified radius.

1. Introduction. A particular construction of a conformal mapping
of the unit disc onto a planar domain with infinitely many radial slits
is used in [5] to obtain an upper bound (Goodman’s constant) for the
univalent Bloch constant, and in [1, 2] to obtain an upper bound for
the universal constant, here named the Makai-Hayman (M-H) constant,
which determines the lowest tone a membrane can produce if it contains
no circular membrane with more than a specified radius. The goal of
this article is to review this construction in order to obtain general
formulas by which Goodman’s constant and an upper bound for the
M-H constant can be computed more easily and accurately than was
done in these two articles.

In Section 2 the univalent Bloch constant is denoted B,, and Good-
man’s constant is denoted B.,. The exact value of B, has not been
determined, see [4]. The best upper bound for B, is the bound de-
termined by Beller and Hummel in [3]. The lower bound for B, is
discussed in [7]. A lower bound 1/900 for the M-H constant was found
by Hayman, see [6], in 1976. Unknown to him at the time, a lower
bound 1/4 had been found by Makai [8] in 1965.

2. Radial slit domains. In this article 7 denotes the complex
number with the property i2 = —1, and j, k,m,n are integer-valued
variables. For n > 1, let r,,0o,[1,...,l, be any positive real numbers,
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FIGURE 1. Radial slit domain with n =2 and r2 < lp < 1 < l3 < Rs.

and let R,, be any positive real number or infinity, with 0 < r,, < R,
and 0 < l; < Ry, for 0 < j < n. A radial slit domain with three-fold
circular symmetry will be denoted

(1) Gn[rnvl()allal%'"7lnaRn]-
If R, < oo this is a disc B(0, R,,) minus linear segments

2 n 291
U e i2km/3 R, 12k7r/3 U ei(2kt1) /(3 2j),Rnei(2k+1)7r/(3-2j)]’

i.e., a simply connected domain, which is a disc of radius R,, centered
at the origin, with radial slits corresponding to the 3 - 2"*1th roots of
unity. (The case n = 0 may also be considered but will not be done
explicitly here.) Such a domain, with n = 2, is shown in Figure 1.
If R, = oo, then G™[ry,lo,l1,la,...,l,,00] is the plane minus infinite
rays

2

n 3291
U [ 26773 o) U U I iR/ (327) o0y,

k=0 j=0 k=0
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Goodman constructed univalent mappings of the unit disc D onto
domains

311,2,¢,1 T T
@) G [, ,C, +CSC<12 ,1+4csc 51 ) |

G3[1,2,¢,1 + csc(m/12), 0],

where the constant 2 < ¢ < 1 + csc(n/12) is chosen so that the first
domain in (2) contains no disc with a radius larger than 1. This domain
is a subset of the simply connected, unbounded domain

o
U Gn |:l, 2, C, 1+CSC (3 7T22 > geeey ].+CSC <3%> 5 1+CSC (3;-—”_’_1>:|,

n=2

which is the plane with an infinite number of radial slits. If F is a
univalent mapping from D onto the domain (3) such that F(0) = 0,
and if Bo := 1/|F. (0)], then B, < B.. Goodman’s analysis of
the mappings onto the domains (2) determined that 0.65646 < B, <
0.65647.

3. Mappings onto radial slit domains. Univalent (conformal)
functions defined on the unit disc D are from here on considered to
be mappings onto domains which are simply connected subsets of the
plane determined by introducing radial slits. Furthermore, all functions
fix the origin, with positive derivative at the origin. In the special case
that a subset of D is determined by making 3 - 27 slits, all having
the same length, and corresponding with the 3 - 27th roots of unity,
for some nonnegative integer j, then this subset of D will be denoted
D;(l), where 0 < ! < 1 determines the slits to be of length 1 — .

The Koebe function h(z) = z/(1 + z)? maps D onto the plane minus
the infinite ray [1/4,00). Thus, for j > 0,

53\ 711/(3-2%) P
(4) HJ(Z) = |:h (23 27>:| — (1 N z3.2]_)1/(3.2j71)

is a univalent mapping of D onto the plane minus infinite radial slits
corresponding to the 3 - 27th roots of unity. Furthermore, for a fixed
j >0, and for any real number 0 < a < 1, the function H;l (a Hj(2))
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is a mapping of D onto a domain D;(l), where 0 < I < 1. The inverse of
this function is H]fl ((1/c) Hj(2)), and the value of a can be expressed
as afl) = H;(1)/H;(1), which is a strictly increasing function of [ on
[0,1] for each j.

A normalization of the radial slit domain defined in (1) above is given

as follows: suppose that n > 1 and numbers 0 < r, <land 0 <[; <1,
for 0 < j < n are fixed. Then let

(5) G? = Gn[’l‘n,lo,ll,lg,...,ln,l],
(6) Ggo = Gn[’f‘n,lo,ll,lg,...,ln,OO].

Now the function H,, ! (o, H,,(z)) determined by setting
(7) oy = Hn(ly)/Hn(1)

is a mapping of D onto D,(l,). For the inverse of this func-
tion, extended to the boundary point z = [, of D,(l,), we have
H,'(1/an Ha(ln)) = 1. To continue, let v; := exp (ir/(3-27)) for
0 < j < n. A rotation by «, of the domain D, (l,,) determines the
(rotated) inverse function:

(@)= B (L7 ).
Qn
The domain of g, is symmetric by reflection across diameters of D
corresponding to the 3-2"1th roots of unity. Thus, if g, (z) is restricted
to G7 (which has slits at the 3-2"*1th roots of unity), then the image
of this restricted mapping is a domain with slits corresponding to the
3 - 2"th roots of unity, contained in D. Specifically, the image of this
restricted mapping is the domain

Gn_l [gn(rn)a 70 gn(’YO l0)7 Y1 gn(’yl ll)a Y2 gn(fY? l2)7 LEEX}
infl gn('Ynfl lnfl)v 1]

This method of reducing the number of slits from 3 - 27*! to 3 - 2"
may now be applied again to reduce the number of slits to 3-2"~!. By
defining ll_l =1 9n(VYn-1ln—1), and setting

(8) _ Hn_l(lIL—l) _ Hy 1 (Y1 9n(Yn—11ln—-1))
Ap_1 = anl(l) - anl(l) )
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the function H, ', (an_1 H,_1(2)) is a mapping of D onto the domain
D, _1(I! ,). The inverse of this function, extended to the boundary

point z = l;rkl of this domain, has the property

H,% ((1/an—1)Hn—1(lIL,1)> =1.

So if
1

gn-1(2) == ym-1 H, 1} <a Hp 1(Fp-1 Z)>,

n—1

then the composition g, 1 o g, can be restricted to a mapping of the
domain G7 onto a domain with slits corresponding to the 3 - 2"~ 'th
roots of unity, contained in D.

In general, for 0 < j < n, let
11 _
(9) g9j(2) = H! (;HJ(% Z)>,
J

where a; is chosen so that the function Hj_1 (aj Hj(z)) maps D onto

the domain D]-(l;[), where l;[ = ¥;9j+1° - 0 Gn1° gn(v;l;). The
corresponding inverse function has (with extension of its domain to the

point z = l;r) the property H{l ((1/ozj)Hj(l;[)> = 1. It follows that

H;(IY)  H;(7; 9541 0 ga(v1;))
W=y T ;1) '

The function go 0 g1 © -+ 0 g, 1 © gn(2) is a mapping of the domain

? onto the domain Do(r]) where rf := googi 00 gu_1 0 gn(rs).
Therefore, let

(1) 51 = 5 (),

O]
where

_ Hy(rl)  Ho(goo g1 gn-10°9gn(rn))
12 e=Tay = (1) '
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Now the function g_10¢90g; * - gn—1°9n(z) is a mapping of the domain
G7 onto D. The inverse of this function, which may be denoted F,,, is a
mapping of D onto the domain GY. Since g;(0) = 1/a; for =1 < j <,
it follows that F},(0) = [[;_ , «;. In Theorem 3.2 it will be shown that
this product can be evaluated in terms of a formula involving nested
square root terms.

Lemma 3.1. If H;(z) is defined as in (4) and ; := exp (im/(3 - 27)),
for 0 < j <n, and the functions T;j(z) for j > 1 and Ty(z) are defined
as follows,

?

1 1/(3-2911)
1- 4z3'2j>

RPN
1 1/3
To(2) := 702<1_7423) ;

then
(1) Hjp1 (3417 H; '(2)) = T;(2), for j > 1 and z € H;(D)

(11) Ho (7o Hy™(2)) = To(2), for 2 € Ho(D).

Proof. For part (1),

[Hj(2)) = - ©

(1 _iz3.2j)1/(3-2f*1) ' (1+Z-Z3.21)1/(3-21*1)'

Therefore,
_ 2
[Hj+1(’7j+17j Z)] = ’732+1 [H](Z)]2 Mj(z)a

14 5329\ /327
where M;(z) := <+7Z> .

1232
Now the left side of (I) can be evaluated by means of
_ _ 2 -
(13) [Hj+1 (’Yj+17jHj 1(2))] = 732+1 2 Mj(Hj l(z))

To continue, let w = M; (Hj_l(z)), then solve for z, getting

329 _ 1\ 1/(327)
2= H;(M: (w)) = <w7> .

432
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Solving for w, substituting in (13), then taking the square root of both
sides of (13), completes part (I) of the lemma. Proving part (II) is
similar. o

Theorem 3.2. Ifn > 1 is specified, and G? is a radial slit domain
as defined in (5), in terms of any real numbers 0 < r, < 1 and
0<l; <1, for 0 < j < mn, then define the following positive numbers,
for0<m<n-1,
(14)

(1= (rp)*2")?

(=) (L @)
()7

Ly = ~—F—55— Ln:= w
’ (1,)32

L_,:= ()32

If F,, is the univalent mapping of the unit disc D onto the domain GT,
which fizes the origin, i.e., F,(0) = 0, with F,,(0) > 0, then F, (0) may
be computed by means of the following system of equations:

1

n = < Ly,
h 4
1

Bn—l = 4 V 4ﬂn + Ln—la
8 -—1\/5 TRNT R ;
n—2 = 2 n—1 4 n n—2,

(15)

1 1 1
ank =g /ankJrl + = Bn7k+2 +- 4+ _\/Bnl + - 4Bn + Lnfka
2\ 2 2 1V

BOIZ%\,Bl-F% Bz-ﬁ—---—f—%\/ﬁnl—i-i\/m,

i.e., for each 1 < k < n the number B,_i is expressed in terms of k
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nested root terms. Finally, we have

(16)

() =i s s i

Proof. The proof follows the construction outlined at the beginning
of this section and makes use of equations (7), (10) for 1 < j < n, and
(12).

Step 1. Determining a_;.
According to (12),
HO(]') a_1 = HO(.gO ©g1°-*Ggn-10° gn(rn))

(17) = Hy (go 0g1 Gnoa <%—1H;_11
(e ).

T an1:=Hy 1(F, 19n(7n))
(18) _ (1 _
- n—1 | Yn-17Tn Hn ! a_Hn(’ann) ?

then this is equivalent to

Hy (Vo ¥n-1 Hy by (2-1,0-1)) = Ho(Farn) /.

Now let

Here, according to part (I) of Lemma 3.1 it follows that

- (; 1)3-2“>2‘4< e () e

T_1,n—-1 T_1,n-1

From (18), arg(z_1,,-1) = arg(¥,,_;) = —7/(3-2""1). We define the
(positive) number u_j ,_1 = —1/(:3,17",1)3'2"71, then (19) becomes

(20) (Urm1)? +4u_g 1 = (an)*? L.
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From (17) and (18) we now have
(21) Hy(1)a-1=Ho(goo g gn-3 (’Yn o H (2 12/ 0n— 2))),

where 2_1,—2 = Hy_2 (Fp_9Vn—1 Hy 'y (T—1,n—1/0n_1)). By repeat-
ing the steps above we get another equation

n—1

(Ue1m—2)®+4u_1 2= (@n_1)*?  U_in_1,

)3-2"*2

where u_q 2 := —1/(x_1 2 is a positive number.

Suppose now that numbers z_; ,—1, T_1,n—2,-.- , T_1,j+1, and pos-
itive numbers u_1 n—1, U—1,n-2,... ,U_1,j4+1 are defined in this way,
then from (21),

Hy(1)a—1 = Hy (go °g1---9gj ('Yj+1 H]H (1'71,]'+1/0‘j+1)))
= Hy (go 0g1---9j—1 (’Yg H' (- LJ/O‘J)))

where @1 ; 1= H; (7,751 Hiy (z-141/@11))-

(22)

Now let u_;; := —1/(ac,1,j)3'24 so that the positive number u_, ;
satisfies
29+t
(23) (wo1)? +4uory = (a542)* wr g

In this way, numbers x_; ; and positive numbers u_; ; can be defined,
for 0 < j < m—2, so that equation (23) is satisfied for these values of j.
Continuing from (22), we have Ho(1) a1 = Hy (yo Hy " (z_1,0/))-
This implies, by part (II) of Lemma 3.1 the equation

Equations (20), (23) for 0 < j < n, together with (24), determine the
constant o_; in terms of the constants «q,... ,a,, and the number
L_1. The next step will be to show how, with similar reasoning as in
Step 1, the constant ay can be determined. The equations are slightly
different.

Step 2. Determining ag. According to (10) with j = 1, we have
Ho(1) g = Ho(Fp 91092~ gn—1° gn(r0l0))
(25) = Hy (70 g1992-gn-2 (77171 HY
(1/an-1)Hn-1(Vp—1 gn(10h0)))))
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and we let

Ton—1 = Hy 1(Yn-19n(v010))
=Hp_ (7n—1'7n Hrjl ((1/en)Hn (Y70 lO))) .

This is equivalent to
(26) (UO,n71)2 +4dupp_1 = (Oln)3'2n Ly,

where we define the positive number ug 1 = —1/(3:0,”,1)3'2"71. As
in Step 1, numbers x ; and positive numbers ug ; can be defined, for
1<j<n-—2,so that

(27)  (uo)® +4uo; = (2j11)*? g1, for 1<j<n-2.
Furthermore, (25) becomes, for 2 < j <n -1,

Ho(1)ao = Ho (Yo 91092+ - 95-1 (v; H; ' (z0,5/;5)))

= Hy (Fo11 Hy " (z0,1/01)) -

Since Hy(1) = 1/(22/3), this implies

B o a
H,y (’Yﬂo Hy't <22%>> =91 /0.

By Lemma 3.1 (I) this is equivalent to

1
28 =16 —= (1 — (a0)?).
(28) 01 = 16 sy (1= (00)°)
Equations (26) and (27), together with (28), determine the constant ag
in terms of the constants « - - a, and the number L.

Step 3 below is skipped in the case that n = 1 or n = 2, and Step 4
below is skipped in the case that n = 1.

Step 3. Determining o, for 0 < m <n—2. Asin Step 1 and Step 2,
any constant a,, for 0 < m < n — 2, can be determined in terms of
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constants 1 ---oy. In other words, the equations (26), (27) and
(28) can be generalized to the equations:

(29) (um,n—1)2 + 4um,n—1 = (an)s.anm,
(30)
(tm)? + 4ty = (@j41)°% U1, for m+1<j<n-—2
31 mmt1 = 16 1— (am)*?"),
B i = 16 o (1 (o))

where 0 < m < n—2. (In the case m = n—2, equation (30) is skipped.)

Step 4. Determining oy,—1. Here (8) determines that

Hp 1(D)an—1=Hn 1(¥p—19n(¥n—1ln-1))
= Hy1 (Voo Hy (1 0n) Ho (Y1 1n1))) -

Since H,_1(1) = 1/(2%/32"7"), this means that

— — Qp—1
H, <%ﬂn—1 Ht, <W>> = Hy(7n ln—l)/an-

Now it follows from Lemma 3.1 (I) that

1 ? 1 1 n
2 — = — (0n)*?" Ly
(3 ) ((an1)3,2n—1 > (an71)3'2n_1 16 (a ) 1

which determines the value of «,,_; in terms of «,, and L,,_1.

Step 5. Determining ay,. This follows from (7):

In
(L (132 /2

Ho(1) ap = Ho(ln) =

Since H, (1) = 1/(21/32"7)), we get

(33) 1/(0n)**" = Ln /4,

which determines «,, in terms of L,,.
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Special case: n = 2. The theorem will now be proved for the case
n = 2. The proof for the general case can be inferred from this. Let
u=1u_1,1,V=1u_10and w = ug,; be the positive numbers occurring in
equations (20) and (23) with j = 0, (24), and (29) and (31) with m = 0.
These equations, together with (32) and (33), can now be expressed as
the following system of equations:

(u + 2)2 = (a2)12 L—l + 47 (U + 2)2 = (a1)6u+ 4)

(w+2)? = (a2)*? Lo + 4, w =16 ﬂ’
(34) (Oéval)6
1 1 1 12
— L
(041)12 (al)ﬁ 16 (O&z) 1,
1 L
()2~ 4~
Also define the following numbers:
(35)
1 1 1 1 1
B2= 115 B1= 5 Bo= -

(042) (041062)6 B 2(0&2) (0100110[2)3 2(0[10[2)3'
It follows from the fifth line of (34) that

Solving the equation in the fourth line of (34) gives

(a11)6 = %(1 +4/1+ —(a2)f Ll).

By factoring a term (az)® from the square root, this becomes

(37) 1 / \/4 Ba + L.

Solving the second equation in the third line of (34) gives

I | (o) w
oF = 2 <1+ 1+T>.
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Factoring (a1)? from the root term, and solving the first equation of
the third line of (34) gives

(a0a1)3 2(&1)3 2

1 Lot )Ly +4-2
(a1)® 4 '

By factoring (az)® from the root terms, this simplifies to

(38) Bo= 2B+ SVIBT TS

This procedure applied to the first and second lines of (34) gives

(39) ;)3:%\/51‘*%\/4524-[/1 + Bo.

(a_1a0a1a2

Thus, the product a1 aig a3 g, which is the derivative of the mapping
Fy of the unit disc D onto the domain G2 = G2[ry,lg,l1,l2,1], is
determined by (36), (37), (38) and (39) together with the definitions
corresponding to (14):

P e Y o R (e ()0

R L
_ (1= ()™)? _ (4 (12)")?
Ly = DE ’ 2 (1" . o

Suppose now that G,, is the mapping of D onto the domain G72, as
defined in (6), then we can write

Gn(2) =7 Ho(vn Fa(2)),

where F,(z) is the mapping of D onto G? := G"[#, lo,l1,1a,. .., 1, 1],
where the numbers 0 < 7, < 1and 0 < l~j < 1for 0 < j < n are defined
by
Y Hn (Yo Fn(Fn)) = 1
for 0<j<n.
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Theorem 3.2 now applies to the mapping F,(z). We get the next
corollary:

Corollary 3.3. Ifn > 1 is specified, and G, is the radial slit
domain as defined in (6), in terms of any real numbers 0 < r, < 1 and
0<!; <1, for 0 < j <n, then define the following numbers:

~ 1 ~ 1
L= —— Lo i= ——
R O

If G,, is the univalent mapping of the unit disc D onto the domain
G2, which fizes the origin, i.e., G,(0) = 0, with G, (0) > 0, then
G..(0) may be computed by means of the system of equations (15) and
(16) with constants E]- replacing constants L; for —1 < j <mn, and G,

replacing F,.

for 0<m<mn.

Suppose that n > 2; then, as in [5], we let

1
T T Y ese (n/(3 - 2nH))

s
lii=rpe, lji=mr, (1+csc (3‘2].>>,

for 2 < j < n. The exact value of the constant c is, see [1, page 588]:

ci= 1/2(1+x/§+b\/§+\/3+b(2\/§—2)>,
where b:= \/2\/_—3.

With these assigned values, the domain G defined in (5) contains
no disc with a radius larger than r,, (compare with (3)). By choosing
n = 3, and by means of Theorem 3.2 and Corollary 3.3 we can compute
B accurately to 24 decimal digits:

lo =2 Tn,

0.656468083606318712155841 < B, < 0.6564680836063187121558412.

4. Computing F,,. The power series expression of F,(z) may be
expressed as F,(2) = 2 f,(2®), where f,(z) is a nonvanishing mapping
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of the unit disc having a power series expansion f,(z) = Y o, ¢ 2%, If
we write Fj,(2) = > o2 bsit1 2%+ then bs; 1, = ¢; for i > 0.

Let functions h(z) and H;(z) for j > 0 be defined as in (4), and let
Tj(z) for j > 0 and Ty(z) be the expressions defined in Lemma 3.1.
Furthermore, define

Now the functions Ty, Hj, T; for j > 0 can be expressed as follows:
(10) H;(2)*” =h(z*), To(x)° =to(z"), T3(2)** =1(z*").
Suppose now that n > 1 is fixed. We obtain from Section 3 that

(41) Fu(2) = g5 ' (9n 21 (- (97 (90 (971(2)))) ),
where g_1(z) is defined in (11), g;(2) is defined in (9), with o, defined
in (7), a1 defined in (12), and «; defined in (10).

We now examine the case n = 3. From (9), (10), (40), (41) and
Lemma 3.1, we get

H (75 F3(2))™" = (a3)* t( (a2) 2 ¢( (1) t( (a0)® to ((a—1)® h(2%))))).

Letting w := 23 gives
(42)
h(—w® f3(w)**) = (03)** t((e2) " t( (1) ® t( (0)® to ((e—1)® h(w)))))-

To simplify this, define terms dy(w) and d;q1(w) for 0 < j < 2 as
follows: 5 5
do(w) = —(aoa—1)* h(w) s((a—1)° h(w)),
9+l
djy1(w) = —(aj41)** dj(w)? s(dj(w)).
Now (42) becomes h(—w® f3(w)**) = ds(w).

We introduce the numbers o; for —1 < i < 3, defined as follows:

0-1= (04—1)3» 0o = (04006—1)3, o1 = (01104004—1)67
)12, 03 = (01201104004—1)24

02 = (06106004—1 3
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and let terms go(w) and g;j41(w) for 0 < j < 2 be defined as follows:
qo(w) = s(o-1 h(w)),  gj1(w) = g;(w)* s(~0; h(w) g;(w));

then (1 4+ w)' h(—wdf3(w)?*) = —o3 w® g3(w). Next define terms
po(w) and pjy1(w) for 0 < j < 2 as follows:

po(w) = (1 +w)?/go(w) = (1 +w)? —4 o_1 w,
2 J
pir1(w) = (L+w)* /g1 (w) = pj(w)? + 4 o5 w? p;(w).
This gives us the following expression for f3(w) in terms of p3(w):

(1- w8f3(w)24)2 = Uis p3(w) f3(w)?.

This proves case n = 3 of Theorem 4.1 stated below. This theorem
states that essentially F,, can be computed on its domain by solving
a quadratic equation which is expressed in terms of a polynomial P,,.
The coefficients of P,, may be expressed in terms of constants o; which
can in turn be expressed in terms of the constants §; introduced in the
statement of Theorem 3.2.

Theorem 4.1. Ifn > 2 and F, is the mapping of the unit disc
onto a radial slit domain as defined in (5), such that F,(0) = 0 and
F!(0) > 0, and f, is the related mapping defined by F,(z) = z fn(23),
then

(43) (1= 0™ fa(w)*?") = - Po(w) fuw)*”",

n
where P, (w) is a polynomial of degree 2! determined by means of

the following system of equations:

n—1
P, (w) = pu(w) = pno1(w)? + 4 o1 w® proi(w),

2n7j—1

(44) Pr—j(w) = Puj-1(w)* +4 op_jrw® " pu_ja(w)

for1<j<n—1,

po(w) =1+ (2—-40_1)w+w?,
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and the constants o; for —1 < j < n are defined in terms of constants
aj for =1 < j < n as follows:

J

3.27
(45) o_1 = (13_1, ;= < H Oék) y fOTO < J <n.

k=—1
732"
Note that o, = (F.(0))" .

The next objective is to obtain explicit expressions for some of the
coefficients of the polynomials P, (w) for n > 2. The next proposition
will show that these expressions may be derived in terms of the following
constants:

(46) 8o :=1-2(0_1)+00, &;:=1-2(0; 1)*+0;, for 1<j<n.

We can obtain from the proof of Theorem 3.2, corresponding to (35) in
the case n = 2, the following general expressions for the constants (;,
for 0 < j < n, defined in the statement of Theorem 3.2:

ﬂ B ( 1 >3-2n ﬂ B ( 1 >3-2j ( 1 >3-2j
(47) " (079 ’ J HZ:j Q. 2 HZ=j+1 (672 ’
for 0<j5<n-—1.
Thus, from (45) we get

(48) §;=1—2F(00%B;, for 0<j<n.

Proposition 4.2. The polynomial P, (w) in Theorem 4.1 may be
expressed, for a fized value of n > 1, as

gn+1

P,(w)=1+ Z apw®,
k=1



1808 PHILIP R. BROWN

for some set of constants {ak}z:rll. Ezxpressions for some of these
constants are:
(49)

a; =2""1 6y, if nm>1,

_on (a1)? ny
as = 2 (51+T(1—1/2), if n>2,

az = a; <1 +(1—-1/2"Y <a2 - % (1— 1/2”))) , if n>2,
(a2)*
2

a4:2"71 52—}—(1—1/2"71) (a1a3+ —(1—1/2")A4> 5

h Ay = 2 (a1)4 n—1 :
where Agq:= | (a1) ang(371/2 )], if n>3.

Proof. We define r;(w) = pj(w)/pj—1(w) — pj—1(w) for 1 < j < n,
then (44) becomes
(50) _
27j(w) —rj_1(w)? =8 wQJ_l(éj —1), for 2<j<n, if n>2,
ri(w) + 2 po(w) =2+ 4§ w+2w? if n>1.

Furthermore P,,(w) is determined by means of the following equations:

P, (w) = pn(w) = pp_1(w)(rn(w) + pp—1(w)), if n>1

(51) P (W) = Pnj1(w)(rn—j(w) + prj1(w)),
for1<j<n-1,ifn>2

The proof continues by comparing coefficients of the polynomials and
rational functions in equations (50) and (51). This is a lengthy, but
reasonably straightforward procedure. ]

By means of (43) the coefficients {c;}?_, of f,, and thus the co-
efficients {b3;11}i_, of F, can be obtained explicitly in terms of the
coefficients {a;}?_; of P,,.
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5. The fundamental frequency of a membrane. In the article
[1], authors Baifiuelos and Carroll applied a lemma, see Lemma 5.1
below, of Pélya and Szegd in order to compute an approximate upper
bound for the first Dirichlet eigenvalue for the Laplacian in the radial
slit domain corresponding to the case n = 3 of Goodman’s construction.
This determines an upper bound for the Makai-Hayman constant. The
authors of [1] encountered computational difficulties which can now be
circumvented by means of the formulas derived in Section 4.

The following lemma, stated in [1], is extracted from [9]. The first
Dirichlet eigenvalue for the Laplacian in a domain D is denoted Ap.

Lemma 5.1. Suppose that D is a simply connected domain. Then

1
Ap < (jo)zinf {oo—} )
Bk [Bel?

where
= k? fol J§(jor) r2* L dr
fol JE(jor) rdr
is expressed in terms of the first Bessel function Jy and its smallest

positive root jo, and the infimum is taken over all conformal maps
F(w) = Y32, bew" from the unit disc onto D.

M

To apply the lemma, we choose D to be

PP S R A

) ) ) I )
T'm Tn Tn 'n Tn

see (1), for some value of n > 2, and constants r,, and [;, for 0 < j <n,
defined at the end of Section 3, i.e., D, is the nth stage of Goodman’s
construction, and F' = F,,/r,, which is the mapping of the unit disc
onto D,,.

If n = 3, we obtain from

1
)‘Dn < (j0)2 9
S o (Bska1)? sk
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with values

by = 1.52330330..., by =0.78064564..., by =0.29710937...,
bio = 0.06702743..., bz = —0.26993984. ..,

computed by means of (14), (15), (43), (49) and (48), that Ap, <
2.11683941. (This is the upper bound given in [1].) A smaller (better)
upper bound can be obtained by using the inequality

(52) Ap, < (jo)? { ! } ;

Zszo(b3k+1)2 H3k+1

for any value n > 1 which is computationally manageable, and K > 1 as
large as computationally possible. The coefficients bgg11 for 0 < k < K
can be computed by means of equation (43), with the coefficients ay,
for 1 < k < K of the polynomial P,, determined by means of equations
(44). The constants o; can be calculated in terms of the constants
Bj, see (47) and (45). The terms pgr41 for 0 < k < K in (52) can
be calculated by means of the following identity derived by repeated
application of integration by parts and taking into account that the
Bessel function Jy(jox) is the solution of the differential equation
zy" +y' +jgzy=0:
2 (m + 1) [m!)* (jo)®
(2m+1)!

y (f4)m N i ' (—4)P" 1 (2m —2p+1)! _

2 (jo)?m+2 (J0)?” (m —p)t[(m —p+ D?

p=1

Hm+1 =

Table 1 shows the upper bounds computed, using MAPLE, for values
n = 3,4,5, with K = 2"*! being the number of coefficients computed
for each value of n. The digital accuracy needed is about 1000 digits.

In 1976 Hayman [6] proved the next theorem relating to the study
of vibrating membranes, as stated in [1]. The constant a is the Makai-
Hayman constant mentioned in Section 1 above.

TABLE 1. Upper bounds for Ap.

value of n | value of K | upper bound
3 16 2.09595
4 32 2.09518
5 64 2.09479
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Theorem 5.2 [6]. Let D be a simply connected domain in the
complex plane. Let Rp be the inradius of D, that is, the radius of the
largest disc contained in D, and let Ap be the first Dirichlet eigenvalue
for the Laplacian in D. There is a universal constant a such that

Ap > )
D= (BRp)?

In [1] the authors prove that 0.6197 < a < 2.13. This is now improved
to

0.6197 < a < 2.095,

(since Rp, =1).

6. Conclusion. This article has been an effort to make calculations
manageable for mappings onto a special family of radial slit domains
with threefold symmetry, which includes Goodman’s domain as a
special case. The method of working backwards from a target domain,
i.e., successively reducing a radial slit domain to another radial slit
domain with fewer slits (the idea behind the proof of Theorem 3.2)
requires some degree of symmetry of the target domain. The target
domain used by Beller and Hummel in their paper [3] for a computation
of an upper bound for the univalent Bloch constant is a domain with
threefold symmetry, having three rings of slits, but with a different
positioning of the third ring of slits. Bafiuelos and Carroll make the
observation at the end of their paper [1] that Goodman’s domain can
be modified, from the third ring onwards, by replacing radial slits with
slits along geodesics, and they conjecture that this may be the optimal
domain for computing an upper bound for the univalent Bloch constant.
Further investigation will show if, and how, the methods used in this
article can be applied to these and other target domains.
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