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OSCILLATION THEOREMS RELATED TO
AVERAGING TECHNIQUE FOR DAMPED

PDE WITH p−LAPLACIAN

ZHITING XU

ABSTRACT. We present some oscillation theorems related
to integral averaging technique for damped PDEs with p-
Laplacian

(E)

N∑
i, j=1

Di[aij(x)‖Dy‖p−2Djy]

+ 〈b(x), ‖Dy‖p−2Dy〉 + c(x)f(y) = 0.

The results obtained extend the criteria for the Sturm-
Liouville linear equation due to Kamenev, Kong, Philos and
Wong to equation (E).

1. Introduction. We consider the second order damped partial
differential equation (PDE) with p-Laplacian

(1.1)
N∑

i, j=1

Di[aij(x)‖Dy‖p−2Djy]+〈b(x), ‖Dy‖p−2Dy〉+c(x)f(y) = 0

in an exterior domain Ω(r0) := {x ∈ RN : ‖x‖ ≥ r0}, where r0 > 0,
x = (xi)N

i=1 ∈ RN , N ≥ 2, p > 1, Diy = ∂y/∂xi, Dy = (Diy)N
i=1,

‖ · ‖ and 〈 ·, · 〉 denote the usual Euclidean norm and the usual scalar
product in RN , respectively.

Throughout this paper, we assume that the following conditions hold.

(A1) A = (aij(x))N×N is a real symmetric positive define matrix
function with aij ∈ C1+μ

loc (Ω(r0), R), 0 < μ < 1.
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Denote by λmin(x) the smallest eigenvalue of the matrix A. We
assume that there exists a function λ ∈ C([r0,∞), R+) such that

min
‖x‖=r

λmin(x)
‖A‖p/(p−1)

≥ λ(r) for r ≥ r0,

where ‖A‖ means the norm of the matrix A, i.e.,

‖A‖ =
[ N∑

i,j=1

a2
ij(x)

]1/2

;

(A2) b(x) = (bi(x))N
i=1, bi, c ∈ Cμ

loc(Ω(r0), R), 0 < μ < 1;

(A3) f ∈ C(R, R) ∪ C1(R − {0}, R) with yf(y) > 0 and

f ′(y)
|f(y)|(p−2)/(p−1)

≥ ε > 0 for y 	= 0.

By a solution of (1.1) is meant a function y ∈ C2+μ(Ω(r0), R), 0 < μ <
1, which has the property aij(x)‖Dy‖p−2Djy ∈ C1+μ(Ω(r0), R) and
satisfies (1.1) at each x ∈ Ω(r0). Regarding the question of existence
of solution of (1.1), we refer the reader to the monograph [1]. In what
follows, our attention is restricted to these solutions which don’t vanish
identically in any neighborhood of ∞. The oscillation is considered in
the usual sense, that is, a solution y(x) of (1.1) is said to be oscillatory
if it has arbitrarily large zeros, i.e., the set {x ∈ RN : y(x) = 0}
is unbounded, otherwise it is called nonoscillatory. Equation (1.1) is
called oscillatory if all its solutions are oscillatory. Conversely, (1.1) is
nonoscillatory if there exists a solution which is not oscillatory.

The PDEs with p-Laplacian have applications in various physical and
biological problems, in the study of non-Newtonian fluids, in glaciology
and slow diffusion problems. For a more detailed discussion about
applications of PDE with p-Laplacian, the reader is referred to [1] and
the references cited therein. In the qualitative theory of nonlinear PDE,
one of the important themes is to determine whether or not solutions
of the equation under consideration are oscillatory. In the last decade,
oscillation or nonoscillation of solutions of the half-linear PDE with
p-Laplacian

(1.2) div (‖Dy‖p−2Dy) + c(x)|y|p−2y = 0
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has received much attention and been extensively studied by many
authors, see, e.g., [2, 4, 6 9, 12, 14 16]. These investigations were
mostly based on the so-called Riccati technique, which was developed
by Noussair and Swanson [10], consisting in the fact that if y = y(x)
is a nonoscillatory solution of (1.2) then the N−dimensional vector
function w defined by

(1.3) w(x) =
‖Dy‖p−2Dy

|y|p−2y

satisfies the partial Riccati-type differential equation

(1.4) divw(x) = − c(x) − (p− 1)‖w‖q, q =
p

p− 1
.

Recently, Mař́ık [9], by using Riccati-type inequality and integral
averages, has generalized Kamenev’s criteria [3] to the half-linear PDE
with damping

(1.5) div (‖Dy‖p−2Dy) + 〈b(x), ‖Dy‖p−2Dy〉 + c(x)|y|p−2y = 0,

which seems to be the first paper to study the oscillation of (1.5).
However, his result is not very sharp, because the two-parametric
weighting function H(t, x) introduced by Philos [11], which is used in
the proof, must satisfy some harsh conditions (see [9, Theorem 3.10]),
and the Kamenev-type theorem has not been well-developed for (1.5) in
[9]. Our aim here is motivated by the recent papers [5, 11, 13] dealing
with oscillatory properties of the Sturm-Liouville linear equation

(1.6) (r(t)y′(t))′ + p(t)y(t) = 0,

and is to extend the results of Kamenev [3], Kong [5], Philos [11] and
Wong [13] to general equation (1.1), thereby improving the main results
in [12, 14 16]. Our methodology is somewhat different from that of
previous authors; we believe that our approach is simpler and also
provides a more unified account for study of Kamenev-type oscillation
theorems for (1.1).
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2. Notations and lemmas. The following notations will be used
throughout this paper. Set

Sr = {x ∈ RN : ‖x‖ = r},
Ω(r1, r2) = {x ∈ RN : r1 ≤ ‖x‖ ≤ r2},

Ω1(r1, r2) = {x ∈ RN : r1 ≤ ‖x‖ < r2},
Ω2(r1, r2) = {x ∈ RN : r1 < ‖x‖ ≤ r2},

and

D0 = {(r, s) : r > s ≥ r0} and D = {(r, s) : r ≥ s ≥ r0}.

For l > 1, we define

C(x) = c(x) − 1
p

(
l

εq

)p−1

λ1−p
min (x)‖A‖p‖b(x)A−1‖p,

CM (r) =
∫

Sr

C(x) dσ,

and

g(r) = ωNr
N−1(l∗)p−1λ1−p(r), k = ε1−p(p− 1)p−1p−p,

where ωN =
∫

S1
dσ = 2πN/2/Γ(N/2) denotes the surface measure of

the unit sphere, q and l∗ are conjugate numbers to p and l, respectively,
i.e., 1/p+ 1/q = 1 and 1/l + 1/l∗ = 1.

Definition 2.1. A function H ∈ C(D, R+) is said to belong to a
function set �, denoted by H ∈ �, if

(1) H(r, r) = 0 for r ≥ r0, H(r, s) > 0 on D0;

(2) H(r, s) has continuous and nonpositive partial derivative ∂H/∂s
on D0;

(3) there exists a function h ∈ C(D0, R) such that

− ∂H

∂s
(r, s) = h(r, s)H(r, s) on D0.
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Definition 2.2. A function H ∈ C(D, R+) is said to belong to a
function set �, denoted by H ∈ �, if

(1) H(r, r) = 0 for r ≥ r0, H(r, s) > 0 on D0;

(2)H(r, s) has continuous partial derivatives ∂H(r, s)/∂r and ∂H(r, s)/
∂s on D0;

(3) there exist two functions h1, h2 ∈ C(D0, R) such that

∂H

∂r
(r, s) = h1(r, s)H(r, s) and

∂H

∂s
(r, s) = −h2(r, s)H(r, s) on D0.

Letting ρ ∈ C1([r0,∞),R+), we take two operators Γρ
τ (·; r) and

Θρ
τ (·; r), which are defined in [13] in terms of H and ρ, as follows:

Γρ
τ (φ; r) =

∫ r

τ

H(r, s)φ(s)ρ(s) ds, r ≥ τ(2.1)

and

Θρ
τ (φ; r) =

∫ r

τ

H(s, τ)φ(s)ρ(s) ds, r ≥ τ,(2.2)

where φ ∈ C([r0,∞),R). It is easy to verify that Γρ
τ ( · ; r) and Θρ

τ ( · ; r)
are linear operators and satisfy

Γρ
τ (ψ′; r) = −H(r, τ )ρ(τ )ψ(τ )− Γρ

τ

([
− h2 +

ρ′

ρ

]
ψ; r

)

≥ −H(r, τ )ρ(τ )ψ(τ )− Γρ
τ

(∣∣∣∣h2 − ρ′

ρ

∣∣∣∣|ψ|; r
)
, r ≥ τ(2.3)

and

Θρ
τ (ψ′; r) = H(r, τ )ρ(r)ψ(r)− Θρ

τ

([
h1 +

ρ′

ρ

]
ψ; r

)

≥ H(r, τ )ρ(r)ψ(τ )− Θρ
τ

(∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣|ψ|; r
)
, r ≥ τ,(2.4)

where ψ ∈ C1([r0,∞),R), h1 = h(s, τ) and h2 = h(r, s).

The following Lemma 2.1 plays an important role in our proof, which
is a modified version of Lemma 1 in [10] for the semi-liner elliptic
equation.
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Lemma 2.1. Let l > 1. Suppose that (1.1) has a nonoscillatory
solution y = y(x) 	= 0 for all x ∈ Ω(r1), r1 ≥ r0. Then the N-
dimensional vector function W(x) is well defined on Ω(r1) by

(2.5)

W = W(x) = (Wi(x))N
i=1, Wi(x) =

1
f(y)

( N∑
j=1

aij(x)‖Dy‖p−2Djy

)

and satisfies the following partial Riccati-type inequality

(2.6) divW ≤ −C(x) − ε

l∗
λmin(x)
‖A‖q

‖W‖q.

Proof. Without loss of generality, let us consider that y = y(x) > 0
on Ω(r1). Differentiation of Wi(x) with respect to xi gives

DiWi(x) = − f ′(y)
f2(y)

Diy

( N∑
j=1

aij(x)‖Dy‖p−2Djy

)

+
1

f(y)
Di

( N∑
j=1

aij(x)‖Dy‖p−2Djy

)
,

for i = 1, . . . , N . Summation over i and use of (1.1) lead to
(2.7)

divW = − c(x)− f ′(y)
f2(y)

‖Dy‖p−2(Dy)TA(Dy)−
〈
b(x),

‖Dy‖p−2Dy

f(y)

〉
.

Note that

(Dy)TA(Dy) ≥ λmin(x)‖Dy‖2

and

‖W‖ ≤ 1
f(y)

‖A‖ ‖Dy‖p−1.

This, along with (2.7) as well as (A3), implies that

(2.8)

divW ≤ − c(x) − f ′(y)
|f(y)|(p−2)/(p−1)

λmin(x)
‖A‖q

‖W‖q

− 〈 b(x), A−1W〉
≤ − c(x) − ελmin(x)

‖A‖q
‖W‖q − 〈 b(x)A−1,W〉.
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Application of Young’s inequality yields

(2.9)
ελmin(x)
‖A‖q

‖W‖q + 〈b(x)A−1,W〉

=
εq

l

λmin(x)
‖A‖q

[
1
q
‖W‖q +

l

εq

‖A‖q

λmin(x)
〈b(x)A−1,W〉 +

l

l∗q
‖W‖q

]

≥ − 1
p

(
l

εq

)p−1

‖A‖pλ1−p
min (x)‖b(x)A−1‖p +

ε

l∗
λmin(x)
‖A‖q

‖W‖q.

Combining (2.8) and (2.9), we get that (2.6) holds. This completes the
proof.

Lemma 2.2. Let H ∈ �, ρ ∈ C1([r0,∞),R+) and l > 1. Assume
that y = y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ Ω1(t, v).
Put

(2.10) Z(r) =
∫

Sr

〈W(x), ν(x)〉 dσ.

Then

(2.11)
1

H(v, t)
Γρ

t

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; v
)

≤ ρ(t)Z(t).

where W(x) is defined by (2.5), ν(x) is the normal unit vector and
h2 = h(v, s).

Proof. In view of Lemma 2.1, then (2.6) holds. By the Green formula
in (2.10), observing that (2.6), we have

(2.12) Z ′(r) =
∫

Sr

divW dσ ≤ −
∫

Sr

C(x) dσ − ε

l∗
λ(r)

∫
Sr

‖W‖q dσ.

Hölder’s inequality shows that

|Z(r)| ≤
∫

Sr

‖W(x)‖ ‖ν(x)‖ dσ ≤
( ∫

Sr

dσ

)1/p(∫
Sr

‖W‖q dσ

)1/q

=
(
ωNr

N−1
)1/p

( ∫
Sr

‖W‖q dσ

)1/q

,
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and equivalently,

( ∫
Sr

‖W‖q dσ

)
≥ (ωNr

N−1)1/(1−p)|Z(r)|q,

which, together with (2.12), implies that

(2.13) Z ′(r) + CM (r) + εg1−q(r)|Z(r)|q ≤ 0.

Applying the operator Γρ
t (·, r) to (2.13) for r ∈ [t, v) and using (2.3),

we find

(2.14)
Γρ

t (CM ; r) ≤ H(r, t)ρ(t)Z(t) + Γρ
t

(∣∣∣∣h2 − ρ′

ρ

∣∣∣∣|Z|; r
)

− εΓρ
t (g

1−q|Z|q; r).

The Young’s inequality follows

(2.15)
∣∣∣∣h2 − ρ′

ρ

∣∣∣∣|Z| ≤ kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

+ εg1−q|Z|q.

Substituting (2.15) into (2.14), we conclude

1
H(r, t)

Γρ
t

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; r
)

≤ ρ(t)Z(t),

using r → v− in the above we obtain (2.11).

Similar to the proof of Lemma 2.2, we have

Lemma 2.3. Let H ∈ �, ρ ∈ C1([r0,∞),R+) and l > 1. Assume
that y = y(x) is a solution of (1.1) such that y(x) > 0 for x ∈ Ω2(u, t).
Then

(2.16)
1

H(t, u)
Θρ

u

(
CM − kg

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; t
)

≤ −ρ(t)Z(t),

where Z(r) is defined by (2.10) and h1 = h1(s, u).
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3. Main results. In this section, we will establish some oscillation
theorems for (1.1). The first one is an analogue of Philos’s criteria [11]
for (1.6).

Theorem 3.1. Let H ∈ �, ρ ∈ C1([r0,∞),R+) and l > 1. If

(3.1) lim sup
r→∞

1
H(r, r0)

Γρ
r0

(
CM − kg

∣∣∣∣h− ρ′

ρ

∣∣∣∣
p

; r
)

= ∞,

where h = h(r, s), then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1); without
loss of generality, we may assume that y = y(x) > 0 for Ω(r1) for some
sufficiently large r1 ≥ r0. Replacing r1, r, h by t, v, h2, respectively,
then by Lemma 2.2, we have that for all r > r1 ≥ r0,

Γρ
r1

(
CM − kg

∣∣∣∣h− ρ′

ρ

∣∣∣∣
p

; r
)

≤ ρ(r1)Z(r1)H(r, r1).

Thus, we get that for all r ≥ r0,

Γρ
r0

(
CM − kg

∣∣∣∣h− ρ′

ρ

∣∣∣∣
p

; r
)

= Γρ
r0

(
CM − kg

∣∣∣∣h− ρ′

ρ

∣∣∣∣
p

; r1

)
+ Γρ

r1

(
CM − kg

∣∣∣∣h− ρ′

ρ

∣∣∣∣
p

; r
)

≤ H(r, r0)
[ ∫ r1

r0

ρ(s)|CM (s)| ds+ ρ(r1)|Z(r1)|
]
.

Dividing both sides of the above inequality by H(r, r0) and taking the
superior limit as r → ∞, we obtain a contradiction with (3.1). The
proof is complete.

Remark 3.1. Theorem 3.1 improves Theorem 1 in [16] for (1.2).

Remark 3.2. Comparing Theorem 3.1 with Theorem 3.10 in [9], the
parametric weighting function H(r, s) introduced in this paper seems
more reasonable. Furthermore, we also point out that the technical
assumptions imposed for the function H(r, s) are minimal.
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The next theorems provide some extensions of Kong-type interval
criteria [5] to (1.1).

Theorem 3.2. Let H ∈ �, ρ ∈ C1([r0,∞),R+) and l > 1. If,
for each T ≥ r0, there exist increasing divergent sequences of positive
numbers {un}, {tn}, {vn} with T ≤ un < tn < vn such that

(3.2)
1

H(tn, un)
Θρ

un

(
CM − kg

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; tn

)

+
1

H(vn, tn)
Γρ

tn

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; vn

)
> 0,

where h1 = h1(s, un) and h2 = h(vn, s), then (1.1) is oscillatory.

Proof. Let y = y(x) be a nonoscillatory solution of (1.1); without
loss of generality, we assume that y = y(x) > 0 for Ω(T ) for some
sufficiently large T ≥ r0. For any interval sequence [un, vn] ⊂ [T,∞),
by Lemmas 2.2 and 2.3, we have that for any tn ∈ [un, vn],

1
H(tn, un)

Θρ
un

(
CM − kg

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; tn

)
≤ − ρ(tn)Z(tn)

(3.3)

and

1
H(vn, tn)

Γρ
tn

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; vn

)
≤ ρ(tn)Z(tn).

(3.4)

But (3.2) implies that both (3.3) and (3.4) do not hold for the given
tn, and hence y(x) must have a zero either in Ω1(un, tn) or Ω2(tn, vn).
Thus, y = y(x) has at least one zero in [un, vn]. Note that limn→∞ un =
∞. We can see that y(x) have arbitrary large zeros. Therefore, (1.1) is
oscillatory. The theorem is proved.

Theorem 3.3. Let H ∈ �, ρ ∈ C1([r0,∞),R+) and l > 1. If, for
each τ ≥ r0,

lim sup
r→∞

Θρ
τ

(
CM − kg

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; r
)
> 0(3.5)
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and

lim sup
r→∞

Γρ
τ

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; r
)
> 0,(3.6)

where h1 = h1(s, τ) and h2 = h2(r, s), then (1.1) is oscillatory.

Proof. For any T ≥ r0, let un = T . In (3.5), we choose τ = un. Then
there exists tn > un such that

(3.7) Θρ
un

(
CM − kg

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; tn

)
> 0.

In (3.6) we choose τ = tn. Then there exists vn > tn such that

(3.8) Γρ
tn

(
CM − kg

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; vn

)
> 0.

Combining (3.7) and (3.8), we obtain (3.2). The conclusion is thus
from Theorem 3.2. The proof is complete.

For the case when H := H(r − s) ∈ �, we have that h1(r − s) =
h2(r − s) and denote them by h(r − s). The subclass of � containing
such H(r−s) is denoted by �0. Applying Theorem 3.2 to �0, we obtain

Theorem 3.4. Let H ∈ �0, ρ ∈ C1([r0,∞),R+) and l > 1. If,
for each T ≥ r0, there exist increasing divergent sequences of positive
numbers {un}, {tn} with T < un < tn, such that

(3.9)
∫ tn

un

H(s− un)[ρ(s)CM (s) + ρ(2tn − s)CM (2tn − s)] ds

> k

[ ∫ tn

un

H(s− un)
[
g(s)ρ(s)

∣∣∣∣h(s− un) +
ρ′(s)
ρ(s)

∣∣∣∣
p

+ g(2tn − s)ρ(2tn − s)
∣∣∣∣h(s− un) − ρ′(2tn − s)

ρ(2tn − s)

∣∣∣∣
p]
ds

]
,

then (1.1) is oscillatory.
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Proof. Let vn = 2tn − un. Then H(vn − tn) = H(tn − un) =
H((vn − un)/2), and for any ξ ∈ L[un, vn], we have

∫ vn

tn

H(vn − s)ξ(s) ds =
∫ tn

un

H(s− un)ξ(2tn − s) ds.

Thus that (3.9) holds implies that (3.2) holds for H ∈ �0 and ρ ∈
C1([r0,∞),R+). Therefore (1.1) is oscillatory by Theorem 3.2. The
theorem is proved.

Next, we define

G(r) =
∫ r

r0

g1/(1−p)(s) ds, ρ(r) = 1, r ≥ r0,

and let
H(r, s) = [G(r) −G(s)]α, (r, s) ∈ D,

where α > p− 1 is a constant; then

h1(r, s) =
αg1/(1−p)(r)
G(r) −G(s)

, h2(r, s) =
α g1/(1−p)(s)
G(r) −G(s)

, (r, s) ∈ D0.

Note that

Γρ
τ

(
g

∣∣∣∣h2 − ρ′

ρ

∣∣∣∣
p

; r
)

= αp

∫ r

τ

[G(r) −G(s)]α−p dG(s)

=
αp

α− p+ 1
[G(r) −G(τ )]α−p+1

and

Θρ
τ

(
g

∣∣∣∣h1 +
ρ′

ρ

∣∣∣∣
p

; r
)

= αp

∫ r

τ

[G(s) −G(τ )]α−p dG(s)

=
αp

α− p+ 1
[G(r) −G(τ )]α−p+1.

Therefore, by Theorems 3.1 and 3.3, we can easily show that the
following theorems hold; here we omit the details.
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Theorem 3.5. Let limr→∞G(r) = ∞ and l > 1. If, for some
α > p− 1,

(3.10) lim sup
r→∞

1
Gα(r)

∫ r

r0

[G(r) −G(s)]αCM (s) ds = ∞,

then (1.1) is oscillatory.

Remark 3.3. Theorem 3.5 improves Theorem 4 in [12] and Theorem
3.1 in [14] for (1.2).

Theorem 3.6. Let limr→∞G(r) = ∞ and l > 1. If, for some
α > p− 1,

(3.11) lim sup
r→∞

1
Gα−p+1(r)

∫ r

τ

[G(s) −G(τ )]αCM (s) ds ≥ kαp

α− p+ 1

and

(3.12) lim sup
r→∞

1
Gα−p+1(r)

∫ r

τ

[G(r) −G(s)]αCM (s) ds ≥ kαp

α− p+ 1
,

then (1.1) is oscillatory.

Now we give two examples to illustrate our results. To the best of
our knowledge, no previous oscillation criteria can be applied to these
examples.

Example 3.1. Consider equation (1.1) with

(3.13)
A(x) = diag

(
1

‖x‖ ,
1

‖x‖
)
, b(x) =

(
sin ‖x‖
‖x‖3

,
cos ‖x‖
‖x‖3

)
,

c(x) =
‖x‖ sin ‖x‖ + 2 − cos ‖x‖

‖x‖ ,

where x ∈ Ω(r0), N = 2, p > 3/2. For l > 1, a direct computation
shows

λ(r) = 2−q/2r1/(p−1), g(r) = π(l∗) p−121+p/2
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and

C(x) =
‖x‖ sin ‖x‖ + 2 − cos ‖x‖

‖x‖ − 1
p

(
l

ε q

)p−1

2p/2‖x‖−1−2p.

Then

G(r) = c1(r − r0) and CM (r) = 2π( r sin r + 2 − cos r ) − c2r
−2p,

where

c1 = (l∗)−1π1/(1−p)2(p+2)/(2(1−p)) and c2 =
π

p

(
l

ε q

)p−1

21+p/2.

Now, condition (3.10) leads to

1
G2(r)

∫ r

r0

[G(r) −G(s)]2CM (s) ds

≥ 2π
r2

∫ r

r0

(r − s)2d[ s(2 − cos s)] − c2
r2

∫ r

r0

(r − s)2s−2p ds

=
2π
r2

{
− r0(2 − cos r0)(r − r0)2 + 2

∫ r

r0

s(2 − cos s)(r − s) ds
}

− c2
r2

∫ r

r0

(r − s)2s−2p ds −→ ∞ as r → ∞;

hence, (3.13) is oscillatory by Theorem 3.5.

Example 3.2. Consider equation (1.1) with

(3.14)
A(x) = diag

(
1

‖x‖6
,

1
‖x‖6

,
1

‖x‖6
,

1
‖x‖6

)
,

bi(x) = 0, i = 1, . . . , 4, c(x) =
162π3/2u

‖x‖10
,

where x ∈ Ω(1), N = p = 4, u ≥ (3/4)3. Let ε = 1 and l∗ = π1/2/2−5/3;
then

q =
4
3
, k =

1
4

(
3
4

)3

, λ(r) = 2−4/3r2, ω4 = 2π3/2,
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and

g(r) =
π3

r3
, G(r) =

1
2π

(r2 − 1), CM (r) =
324π3u

r7
.

Now, for α > 3, we have that for all τ ≥ 1,

lim sup
r→∞

1
Gα−3(r)

∫ r

τ

[G(s) −G(τ )]αCM (s) ds

=
81u
2

lim sup
r→∞

1
r2(α−3)

∫ r

τ

(s2 − τ2)α

s7
ds

=
81u

4(α− 3)
lim sup

r→∞
(r2 − τ2)α

r2α
=

81u
4(α− 3)

.

For any u ≥ (3/4)3, there exists α > 3 such that 81u/(4(α − 3)) >
kα4/(α − 3). This means (3.11) holds. By Lemma 3.1 in [5], we find
that (3.12) holds for the same α. Thus, all conditions of Theorem 3.6
are satisfied, so (3.14) is oscillatory.

Remark 3.4. The theorems above are presented in the form of a high
degree of generality. They extend, improve, and complement a number
of existing results in [12, 14 16] and handle some cases not covered by
known criteria even for (1.2). They also give rather wide possibilities of
deriving different explicit oscillation criteria for (1.1) with appropriate
choices of the functions H(r, s) and ρ(r). Though throughout the paper
we have always chosen H ∈ �0, there are interesting possibilities to
apply our results, for instance, with

H(r, s) =
[ ∫ r

s

dz

θ(z)

]α

, r ≥ s ≥ r0,

where α > p − 1 is a constant, θ ∈ C([r0,∞),R+) satisfying∫ ∞
r0

1/θ(z) ds = ∞. In fact, one of the important cases to be considered
is θ(z) = zγ with γ ≤ 1.
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2. O. Dos̆lý and R. Mař́ık, Nonexistence of positive solutions of PDE’s with
p-Laplacian, Acta. Math. Hungar. 90 (2001), 89 107.

3. I.V. Kamenev, An integral criterion for oscillation of linear differential
equations, Math. Z. 23 (1978), 249 251 (in Russian).

4. T. Kusano, J. Javos̆ and N. Yoshida, A Picone-type identity and Sturmian
comparison and oscillation theorems for a class of half-linear partial differential
equations of second order, Nonlinear Anal. 40 (2003), 381 395.

5. Q. Kong, Interval criteria for oscillation of second order linear ordinary
differential equations, J. Math. Anal. Appl. 229 (1999), 258 270.
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