ON CONSTRUCTING ORTHOGONAL IDEMPOTENTS

S. MOUTON

ABSTRACT. Given a finite-dimensional, semi-simple, commutative algebra A over an algebraically closed field K, and n-1 orthogonal idempotents different from 0 and 1, of which at least n-2 are minimal, we construct explicitly n orthogonal idempotents different from 0 and 1, of which at least n-1 are minimal, using the given idempotents, in the case that n is not larger than the dimension of A.

- 1. Introduction. If A is a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, then A is isomorphic to K^n , where $n = \dim A$. This follows, for instance, from the Wedderburn-Artin theorem, see e.g., [2, Theorem 2.1.6]. From this fact it follows immediately that A has a basis of orthogonal idempotents. It is, however, interesting to consider different ways of constructing explicitly such a basis. In this note we consider, in particular, a method to use n-1 given orthogonal idempotents to construct n orthogonal idempotents, for $n \leq \dim A$. For this construction we use the properties of the socle of an algebra.
- **2. Preliminaries.** Throughout, A will be a unital algebra over a field K. We recall the following definitions and basic facts. A minimal left ideal of A is a nonzero left ideal L such that $\{0\}$ and L are the only left ideals contained in L. An element $p \in A$ is called idempotent if $p^2 = p$, and $p \neq 0$ is a minimal idempotent if the algebra pAp (with unit p) is a division algebra. If A is finite-dimensional and commutative, and K is algebraically closed, then a nonzero idempotent p is minimal if and only if Ap = Kp. If A is semi-simple, then L is a minimal left ideal in A if and only if L = Ap where p is a minimal idempotent in A, [1, Proposition 30.6].

If A is semi-simple, then its socle Soc A is defined as the sum of the minimal left ideals in A. (It is also equal to the sum of the minimal

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 16B99, 46H05, 46J05. $Key\ words$ and phrases. Semi-simple algebra, orthogonal idempotent. Received by the editors on January 3, 2005.

right ideals, so it is a two-sided ideal.) If A is semi-simple and finite-dimensional, then $A = \operatorname{Soc} A$, [1, Corollary 32.6].

3. Construction of orthogonal idempotents. The following properties of idempotents are well known and very easy to prove. We supply these properties in the interest of self-containedness.

Lemma 3.1. Let A be an algebra.

- 1. If $p \in A$ is an idempotent, then 1 p is an idempotent.
- 2. The sum of any finite number of orthogonal idempotents in A is an idempotent.
- 3. The sum of any finite number of orthogonal idempotents is non-zero, if at least one of them is nonzero.
- **Lemma 3.2.** Let A be an m-dimensional algebra. If p_1, \ldots, p_m are linearly independent idempotents and e is a nonzero idempotent in A, then there exists an $N \in \{1, \ldots, m\}$ such that $p_N e \neq 0$.
- **Lemma 3.3.** Let A be a finite-dimensional algebra over an algebraically closed field K.
 - 1. If dim $A \geq 2$, then 1 is not a minimal idempotent.
- 2. Suppose, in addition, that A is commutative. If dim A = m, n < m and p_1, \ldots, p_n are minimal idempotents, then $\sum_{k=1}^{n} p_k \neq 1$.
- **Lemma 3.4.** Let A be a commutative algebra. Then the following holds:
- 1. If p and q are idempotents, then pq is an idempotent, and if $p \neq 1$, then $pq \neq 1$.
- 2. If p is a minimal idempotent and q an idempotent in A such that $pq \neq 0$, then pq is a minimal idempotent.

Using the properties of the socle, we now prove that a finitedimensional, semi-simple, commutative algebra over an algebraically closed field has a basis consisting of minimal idempotents. **Proposition 3.5.** Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K. Then A has a basis consisting of minimal idempotents.

Proof. Since A is semi-simple and finite-dimensional, $A = \operatorname{Soc} A$, and each element of $\operatorname{Soc} A$ is a finite sum of elements of the form yp, with p a minimal idempotent and $y \in A$. Let $\dim A = m$, and let $\{a_1, \ldots, a_m\}$ be a basis for A with $a_i = \sum_{j=1}^{N_i} y_{ij} p_{ij}$ for all $i = 1, \ldots, m$. Since A is finite-dimensional and commutative, K is algebraically closed and each p_{ij} is a minimal idempotent, $Ap_{ij} = Kp_{ij}$, so that $a_i = \sum_{j=1}^{N_i} \lambda_{ij} p_{ij}$ with $\lambda_{ij} \in K$ for all $i = 1, \ldots, m$. Therefore, $\{p_{ij}: i = 1, \ldots, m, \ j = 1, \ldots, N_i\}$ forms a generating set for A, so that a basis p_1, \ldots, p_m for A can be chosen from this set.

We now formulate our main theorem. In this theorem we use n-1 given orthogonal idempotents different from 0 and 1, of which at least n-2 are minimal, to construct n orthogonal idempotents different from 0 and 1, of which at least n-1 are minimal, in the case that n is not larger than the dimension of A.

Theorem 3.6. Let A be a semi-simple commutative algebra over an algebraically closed field K, with $\dim A = m \geq 2$, and let $3 \leq n \leq m$. If e_1, \ldots, e_{n-1} are orthogonal idempotents different from 0 and 1 with e_1, \ldots, e_{n-2} minimal idempotents, then there exist orthogonal idempotents q_1, \ldots, q_n different from 0 and 1 with q_1, \ldots, q_{n-1} minimal idempotents.

Proof. Let $\{p_1, \ldots, p_m\}$ be a basis of minimal idempotents of A, see Proposition 3.5. By Lemma 3.2 there exists an $N \in \{1, \ldots, m\}$ such that $e_{n-1}p_N \neq 0$. Let $k \in \{1, \ldots, n-1\}$ be such that

$$e_{n-j}p_N \neq 0$$
 for all $j = 1, \dots, k$

and

(3.7)
$$e_{n-j}p_N = 0 \text{ for } j = k+1, \dots, n-1,$$

if k < n-1. Choose $q_j = e_{n-j}p_N$ for j = 1, ..., k. If k < n-1, choose $q_{k+1} = e_{n-(k+1)}, ..., q_{n-1} = e_{n-(n-1)} = e_1$ and $q_n = 1$

 $\sum_{i=k+1}^{n-1} e_{n-i} - p_N$, and if k = n-1, choose $q_n = 1 - p_N$. We prove that q_1, \ldots, q_n are orthogonal idempotents different from 0 and 1 with q_1, \ldots, q_{n-1} minimal.

First consider the case k < n - 1, i.e.,

$$\{q_1, \dots, q_n\} = \left\{ e_{n-1}p_N, \dots, e_{n-k}p_N, e_{n-(k+1)}, \dots, e_1, 1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_N \right\}.$$

Clearly $q_1, \ldots, q_{n-1} \neq 0$. If $q_n = 0$, then $\sum_{i=k+1}^{n-1} e_{n-i} + p_N = 1$. But there are at most n-1 terms in this sum and all of them are minimal idempotents, so that this contradicts Lemma 3.3.2. So $q_n \neq 0$.

It follows from Lemma 3.4.1 that $q_j \neq 1$ for $j = 1, \ldots, k$. It is clear that $q_{k+1}, \ldots, q_{n-1} \neq 1$. Since $e_{n-(k+1)}, \ldots, e_1$ and p_N are orthogonal, by (3.7), it follows from Lemma 3.1.3 that $\sum_{i=k+1}^{n-1} e_{n-i} + p_N \neq 0$, so that $q_n \neq 1$.

Clearly, q_1, \ldots, q_{n-1} are idempotents. Furthermore,

$$q_n^2 = \left(1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_N\right) \left(1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_N\right)$$

$$= 1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_N - \sum_{i=k+1}^{n-1} e_{n-i}$$

$$+ \left(\sum_{i=k+1}^{n-1} e_{n-i}\right)^2 + \left(\sum_{i=k+1}^{n-1} e_{n-i}\right) p_N$$

$$- p_N + p_N \left(\sum_{i=k+1}^{n-1} e_{n-i}\right) + p_N$$

$$= q_n + 2p_N \left(\sum_{i=k+1}^{n-1} e_{n-i}\right) \quad \text{by Lemma 3.1.2}$$

$$= q_n \quad \text{by (3.7)},$$

so that q_n is idempotent.

To prove orthogonality, let $j_1 \neq j_2 \in \{1, \dots, k\}$. Then

$$q_{j_1}q_{j_2} = e_{n-j_1}e_{n-j_2}p_N = 0.$$

Clearly q_{k+1}, \ldots, q_{n-1} are orthogonal. Now let $j \in \{1, \ldots, k\}$ and $l \in \{k+1, \ldots, n-1\}$. Then $q_j q_l = e_{n-j} p_N e_{n-l} = 0$, since $j \neq l$. Furthermore,

$$q_{j}q_{n} = e_{n-j}p_{N} \left(1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_{N} \right)$$

$$= e_{n-j}p_{N} - e_{n-j} \left(\sum_{i=k+1}^{n-1} e_{n-i} \right) p_{N} - e_{n-j}p_{N}$$

$$= 0,$$

and, by (3.7),

$$q_{l}q_{n} = e_{n-l} \left(1 - \sum_{i=k+1}^{n-1} e_{n-i} - p_{N} \right)$$

$$= e_{n-l} - e_{n-l} \left(\sum_{i=k+1}^{n-1} e_{n-i} \right) - e_{n-l}p_{N}$$

$$= e_{n-l} - e_{n-l}^{2}$$

$$= 0,$$

so that q_1, \ldots, q_n are orthogonal.

Since p_N is minimal, q_1, \ldots, q_k are minimal, by Lemma 3.4.2. If $j \in \{k+1, \ldots, n-1\}$, then $q_j \in \{e_1, \ldots, e_{n-k-1}\}$, and since $k \geq 1$, $n-k-1 \leq n-2$, so that q_j is minimal. This proves the case k < n-1.

Now consider the case k = n - 1, i.e.,

$$\{q_1,\ldots,q_n\}=\{e_{n-1}p_N,e_{n-2}p_N,\ldots,e_1p_N,1-p_N\}.$$

Since, by construction, $e_{n-j}p_N \neq 0$ for $j=1,\ldots,n-1$, it follows that $q_1,\ldots,q_{n-1}\neq 0$. By Lemma 3.3.1 we have that $p_N\neq 1$, so that $q_n\neq 0$. It follows from Lemma 3.4.1 that $q_j\neq 1$ for $j=1,\ldots,n-1$. Since $p_N\neq 0,\ q_n\neq 1$.

Lemma 3.4.1 implies that q_1, \ldots, q_{n-1} are idempotents, and Lemma 3.1.1 implies that q_n is idempotent. If $j_1 \neq j_2 \in \{1, \ldots, n-1\}$, then $q_{j_1}q_{j_2} = e_{n-j_1}e_{n-j_2}p_N = 0$. Also, if $j \in \{1, \ldots, n-1\}$, then

 $q_jq_n=e_{n-j}p_N(1-p_N)=e_{n-j}(p_N-p_N^2)=0$. Finally, since p_N is minimal, it follows from Lemma 3.4.2 that $q_j=e_{n-j}p_N$ is minimal, for $j=1,\ldots,n-1$. This proves the case k=n-1.

If A is finite-dimensional, semi-simple and commutative and K is algebraically closed, then A has a basis of orthogonal idempotents different from 0 and 1. This is a well-known fact, following, for instance, from [2, Theorem 2.1.6]. It can also be obtained as a corollary of Theorem 3.6.

Corollary 3.8. Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, with dim $A = m \ge 2$. Then A has a basis q_1, \ldots, q_m of orthogonal idempotents, different from 0 and 1.

Proof. By Proposition 3.5 and Lemma 3.3.1, A has a basis p_1, \ldots, p_m of minimal idempotents different from (0 and) 1. Then p_1 and $1 - p_1$ are two orthogonal idempotents different from 0 and 1 with p_1 minimal. If m = 2, then we can take $q_1 = p_1$, $q_2 = 1 - p_1$.

Suppose $m \geq 3$. Then it follows from Theorem 3.6 that there exist three orthogonal idempotents different from 0 and 1 with two of them minimal, say e_1, e_2, e_3 . If m = 3, then we can take $q_i = e_i$, i = 1, 2, 3.

Repeating this procedure, after m-2 applications of Theorem 3.6, we obtain m orthogonal idempotents different from 0 and 1 (with m-1 of them minimal)—call them q_1, \ldots, q_m . This is the required basis. \square

The spectrum of an element a in an algebra A over a field K is defined by

$$Sp(a) = \{ \lambda \in K : \lambda 1 - a \text{ is not invertible in } A \}.$$

If K is algebraically closed and dim $A = m < \infty$, then if $a \in A$, a is algebraic of degree $\leq m$, so that Sp(a) contains at most m elements. Let #X denote the number of elements in a set X.

Corollary 3.9. Let A be a finite-dimensional, semi-simple, commutative algebra over an algebraically closed field K, with dim $A = m \ge 2$. Then A contains an element a such that $\#\operatorname{Sp} a = m$. In fact, given

any different $\alpha_1, \ldots, \alpha_m \in K$, there exists an $a \in A$ such that $\operatorname{Sp} a = \{\alpha_1, \ldots, \alpha_m\}$.

Proof. Let q_1, \ldots, q_m be the basis of orthogonal idempotents, different from 0 and 1, which exists by Corollary 3.8, and let $\{\alpha_1, \ldots, \alpha_m\}$ be a set of different elements in K. If $a = \alpha_1 q_1 + \cdots + \alpha_m q_m$, then $(a - \alpha_k)q_k = \alpha_k q_k - \alpha_k q_k = 0$ for all $k \in \{1, \ldots, m\}$. Since $q_k \neq 0$, it follows that $a - \alpha_k$ is not invertible, for all $k \in \{1, \ldots, m\}$. Hence, $\{\alpha_1, \ldots, \alpha_m\} \subset \operatorname{Sp}(a)$. Since $\dim A = m$, we must have $\#\operatorname{Sp}(a) \leq m$. Consequently, $\operatorname{Sp}(a) = \{\alpha_1, \ldots, \alpha_m\}$.

Corollary 3.9 is in particular useful if A is a complex Banach algebra.

REFERENCES

- ${\bf 1.}$ F.F. Bonsall and J. Duncan, $Complete\ normed\ algebras,$ Springer-Verlag, New York, 1973.
- ${\bf 2.}$ I.N. Herstein, $Noncommutative\ rings,$ Math. Assoc. America, Washington, D.C., 1968.

Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa $E\text{-}mail\ address:\ smo@sun.ac.za$