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DISTRIBUTION OF THE ZEROS OF THE
SOLUTIONS OF HYPERBOLIC

DIFFERENTIAL EQUATIONS WITH MAXIMA

D.P. MISHEV AND S.M. MUSA

ABSTRACT. In this paper, the hyperbolic differential equa-
tion with maxima of the form

utt − [Δu + μ(t)Δu(x, t − τ)]

+ c
(
x, t, u(x, t), max

s∈[t−σ,t]
u(x, s)

)
= f(x, t),

where Ω is a bounded domain in Rn and τ, σ = const > 0, are
considered. Sufficient conditions for existence of zeros of the
solutions of the problems considered in bounded domains are
obtained.

1. Introduction. In the last few decades, great attention has been
paid to automatic control systems and their applications to computa-
tional mathematics and modeling [15]. Today, scientists around the
globe are showing an increasing interest in differential equations which
contains the maxima operator. In many applications the maxima can
arise when the control theory corresponds to the maximal deviation of
the regulated quantity. For example, neutral hyperbolic and parabolic
equations with maxima were investigated in [18 20]. Ladas, Gyori,
Bainov and Mishev developed and worked on oscillation theory for the
differential equation with delay as in [4, 14] that led to maxima opera-
tor applications. Differential equations with maxima have appeared in
various systems such as the system

(i) u′(t) = − δu(t) + p max
t−h≤s≤t

u(s) + f(t),

where δ and p are positive constants. This system has appeared in the
theory of automatic control in [15] and the references therein. The
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last equation (i) has been used for studying the stability of differential
systems with delay as in [5, 6, 8]. Other systems such as the Hausrath
equation indicated a more complicated dynamic system as in [10]:

(ii) u′(t) = − δu(t) + δ max
t−h≤s≤t

|u(s)|, δ > 0, t ≥ 0,

Pinto and Trofimchuk investigated the stability and existence of mul-
tiple periodic solutions of the scalar delay differential equation as in
[22]:

(iii) x′ = − δx(t) + p max
u∈[t−h,t]

x(u) + f(t),

where f(t) is a periodic forcing term and δ, p are positive constants.
Other examples could be found in [2, 5, 7, 9, 11, 12, 24]. Hadeler
showed a model describing the vision process in the compound eye using
maxima as in [7]:

(iv) u′(t) = − δu(t) + p max{u(τ (t)), c},

where δ and p are positive constants and c < 0.

The distribution of the zeros of the solutions of some classes of neutral
type hyperbolic differential equations with maxima is under considera-
tion. The problems about ordinary differential equations with maxima
application are found in the theory of automatic control of various
real systems [16, 17, 23]. The necessity of study of differential equa-
tions with “maxima” is also emphasized in the survey of Myshkis [21].
Theorems of existence and uniqueness of the solution of ordinary differ-
ential equations with maxima are obtained in [1, 21]. Oscillation and
asymptotic properties of the solutions of various classes of functional
differential equations with maxima are investigated in [3, 13]. This
paper presents distribution of the zeros of the solutions of hyperbolic
differential equations with maxima. The sufficient conditions for exis-
tence of zeros of the solutions of the problems considered in bounded
domains are obtained. In Section 2, we present the formulation of the
problem and main results.
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2. Formulation of the problem and main results. We consider
neutral type hyperbolic differential equations with maxima of the form

(1)

utt(x, t) − [Δu(x, t) + μ(t)Δu(x, t − τ )]

+ c

(
x, t, u(x, t), max

s∈[t−σ,t]
u(x, s)

)
= f(x, t),

(x, t) ∈ Ω × (0,∞) ≡ G,

where Δu(x, t) =
∑n

i=1 uxixi
(x, t) and Ω is a bounded domain in

Rn with a piecewise smooth boundary. The boundary conditions are
considered of the form:

u(x, t) = g(x, t), (x, t) ∈ ∂Ω × [0,∞),(2)
∂u

∂n
+ γ(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞).(3)

We shall say that the conditions (H) are met if the following conditions
hold:

H1. μ(t) ∈ C([0,∞); [0,∞)).

H2. τ = const > 0, σ = const > 0.

H3. c(x, t, ξ, η) ∈ C(G × R2; R).

H4. c(x, t, ξ, η) ≥ K2
1 ξ + K2

2 η, for (x, t) ∈ G, ξ ≥ 0, η ≥ 0;
c(x, t, ξ, η) ≤ K2

1 ξ + K2
2 η, for (x, t) ∈ G, ξ ≤ 0, η ≤ 0;

where Ki, i = 1, 2, are nonnegative constants.

H5. f(x, t) ∈ C(G; R), f(x, t) �≡ 0.

H6. g(x, t) ∈ C(∂Ω × [0,∞); R).

H7. γ(x, t) ∈ C(∂Ω × [0,∞); [0,∞)).

Definition 1. The solution u(x, t) ∈ C2(G)∩C1(G) of problem (1),
(2), ((1), (3)) is said to oscillate in the domain G if for any positive
number ρ there exists a point (x′, t′) ∈ Ω×[ρ,∞) such that the equality
u(x′, t′) = 0 should hold.

We shall note that theorems on distribution of the zeros of the
solutions of hyperbolic differential equations without “maxima” are
obtained in the papers of Yoshida [25, 26].



1274 D.P. MISHEV AND S.M. MUSA

The following Dirichlet problem is considered in the domain Ω

ΔU(x) + αU(x) = 0, x ∈ Ω,(4)
U(x) = 0, x ∈ ∂Ω,(5)

where α = const. It is well known that the smallest eigenvalue α0 of
problem (4), (5), is positive and the corresponding eigenfunction ϕ(x)
can be chosen so that ϕ(x) > 0 for x ∈ Ω.

The following notation is introduced

(6) T = max(τ, σ), L =
√

α0 + K2
1 + K2

2 .

With each solution u(x, t) ∈ C2(G) ∩ C1(G) of problem (1), (2), we
associate the function

(7) w(t) =
∫

Ω

u(x, t)ϕ(x) dx, t ≥ 0.

Lemma 1. Let conditions (H) hold, and let u(x, t) ∈ C2(G)∩C1(G)
be a solution of problem (1), (2), satisfying the condition

(8) u(x, t) > 0, for (x, t) ∈ Ω × (λ − T, λ + π/L), λ ≥ T.

Then the function w(t) is a positive solution in the interval [λ, λ+π/L)
of the inequality

(9) w′′(t) + L2 w(t) ≤ Φ(t), t ∈ [λ, λ + π/L),

where
(10)

Φ(t) =
∫

Ω

f(x, t)ϕ(x) dx−
∫

∂Ω

g(x, t)
∂ϕ

∂n
ds−μ(t)

∫
∂Ω

g(x, t−τ )
∂ϕ

∂n
ds.

Proof. From condition (8) it follows that u(x, t − τ ) ≥ 0 and
maxs∈[t−σ,t] u(x, s) ≥ 0 for (x, t) ∈ Ω × [λ, λ + π/L). Multiply both
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sides of equation (1) with the function ϕ(x) and integrate with respect
to x over the domain Ω. For t ∈ [λ, λ + π/L), we obtain
(11)
d2

dt2

∫
Ω

u(x, t)ϕ(x) dx−
[∫

Ω

Δu(x, t)ϕ(x) dx+μ(t)
∫

Ω

Δu(x, t−τ )ϕ(x) dx

]

+
∫

Ω

c
(
x, t, u(x, t), max

s∈[t−σ,t]
u(x, s)

)
ϕ(x) dx =

∫
Ω

f(x, t)ϕ(x) dx.

From Green’s formula it follows that

∫
Ω

Δu(x, t)ϕ(x) dx = −
∫

∂Ω

u(x, t)
∂ϕ

∂n
dS+

∫
Ω

u(x, t)Δϕ(x) dx

(12)

= −
∫

∂Ω

g(x, t)
∂ϕ

∂n
dS−α0

∫
Ω

u(x, t)ϕ(x) dx,

∫
Ω

Δu(x, t−τ )ϕ(x) dx = −
∫

∂Ω

u(x, t−τ )
∂ϕ

∂n
ds+

∫
Ω

u(x, t−τ )Δϕ(x) dx

(13)

= −
∫

∂Ω

g(x, t−τ )
∂ϕ

∂n
ds−α0

∫
Ω

u(x, t−τ )ϕ(x) dx.

From condition H4 and the inequality, maxs∈[t−σ,t] u(x, s) ≥ u(x, t), it
follows that

(14)

∫
Ω

c
(
x, t, u(x, t), max

s∈[t−σ,t]
u(x, s)

)
ϕ(x) dx

≥
∫

Ω

[K2
1 u(x, t) + K2

2 u(x, t)]ϕ(x) dx.

Using (12) (14), we obtain that

w′′(t) + α0[w(t) + μ(t) w(t − τ )] + (K2
1 + K2

2 ) w(t)

≤
∫

Ω

f(x, t)ϕ(x) dx−
∫

∂Ω

g(x, t−τ )
∂ϕ

∂n
ds−μ(t)

∫
∂Ω

g(x, t−τ )
∂ϕ

∂n
ds.

In view of

α0 μ(t) w(t − τ ) ≥ 0 for t ∈ [λ, λ + π/L),
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the last inequality implies (9). Analogously to the proof of Lemma 1,
the following lemma is proved.

Lemma 2. Let conditions (H) hold, and let u(x, t) ∈ C2(G)∩C1(G)
be a solution of problem (1), (2), satisfying the condition

(15) u(x, t) < 0 for (x, t) ∈ Ω × (λ − T, λ + π/L), λ ≥ T.

Then the function w1(t) = −w(t) is a positive solution of the inequality

(16) w′′
1 (t) + L2 w1(t) ≤ −Φ(t), t ∈ [λ, λ + π/L),

where the function Φ(t) is defined by (10). In the proof of the subsequent
theorem we shall use the following result of Yoshida [25].

Lemma 3. Suppose that there exists a real number λ ≥ T such that
the following condition holds

∫ λ+π/L

λ

sin L(t − λ) · F (t) dt ≤ 0.

Then the differential inequality

z′′(t) + L2 z(t) ≤ F (t), t ∈ [λ, λ + π/L)

has no positive solutions in the interval [λ, λ + π/L).

Theorem 1. Let conditions (H) hold and a number λ ≥ T exist such
that the following condition should hold

(17) F (λ) ≡
∫ λ+π/L

λ

Φ(t) sinL(t − λ) dt ≡ 0.

Then each solution u(x, t) ∈ C2(G)∩C1(G) of problem (1), (2), has a
zero in the domain Ω × (λ − T, λ + π/L).

Proof. Suppose that this is not true, and let u(x, t) ∈ C2(G)∩C1(G)
be a solution of problem (1), (2), which has no zeros in the domain
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Ω × (λ − T, λ + π/L). If u(x, t) > 0 for (x, t) ∈ Ω × (λ − T, λ + π/L),
then from Lemma 1 it follows that the function w(t), defined by (7), is
a positive solution in the interval [λ, λ + π/L) of inequality (9). But,
from condition (17) and Lemma 3, it follows that inequality (9) has
no positive solutions in this interval. The case when u(x, t) < 0 for
(x, t) ∈ Ω× (λ−T, λ+π/L) is considered analogously. This completes
the proof of Theorem 1.

Definition 2. The function F (λ) ∈ C([t,∞); R) is said to oscillate
if there exists a sequence of zeros {λn}∞n=1 of F (λ) so that the equality
limn→∞ λn = ∞ should hold.

Corollary 1. Let conditions (H) hold, and let the function F (λ)
defined by (17) oscillate. Then each solution u(x, t) ∈ C2(G) ∩ C1(G)
of problem (1), (2), oscillates in G.

In the subsequent theorems we shall investigate the oscillatory prop-
erties of the solutions of problem (1), (3). With each solution u(x, t) ∈
C2(G) ∩ C1(G) of problem (1), (3), we associate the function

(18) v(t) =
∫

Ω

u(x, t) dx, t > 0.

The following notation is introduced

L1 =
√

K2
1 + K2

2 .

Lemma 4. Let conditions (H) hold, L1 > 0, and let u(x, t) ∈
C2(G)∩C1(G) be a solution of problem (1), (3), satisfying the condition

(19) u(x, t) > 0 for (x, t) ∈ Ω × (λ − T, λ + π/L), λ ≥ T.

Then the function v(t) is a positive solution in the interval [λ, λ+π/L)
of the inequality

(20) v′′(t) + L2
1 v(t) ≤ Φ1(t), t ∈ [λ, λ + π/L1),
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where

(21) Φ1(t) =
∫

Ω

f(x, t) dx.

Proof. From condition (19) it follows that u(x, t − τ ) ≥ 0 and
maxs∈[t−σ,t] u(x, s) ≥ 0 for (x, t) ∈ Ω × [λ, λ + π/L1). Integrate
both sides of equation (1) with respect to x over the domain Ω. For
t ∈ [λ, λ + π/L1), we obtain
(22)

d2

dt2

∫
Ω

u(x, t) dx = −
[ ∫

Ω

Δu(x, t) dx + μt

∫
Ω

Δu(x, t−τ ) dx

]

+
∫

Ω

c
(
x, t, u(x), max

s∈[t−σ,t]
u(x, s)

)
dx =

∫
Ω

f(x, t) dx.

From Greens formula and condition H7, it follows that
∫

Ω

Δu(x, t) dx =
∫

∂Ω

∂u

∂n
ds = −

∫
∂Ω

γ(x, t) u ds ≤ 0,(23)

∫
Ω

Δu(x, t−τ ) dx =
∫

∂Ω

∂u

∂n
(x, t−τ ) ds

(24)

= −
∫

∂Ω

γ(x, t−τ ) u(x, t−τ ) ds ≤ 0.

From condition H4 and the inequality,

max
s∈[t,−σ,t]

u(x, s) ≥ u(x, t),

it follows that

(25)
∫

Ω

c
(
x, t, u(x, t), max

s∈[t−σ,t]
u(x, s)

)
dx ≥ (K2

1 + K2
2 )

∫
Ω

u(x, t) dx.

Using (23) (25), from (22) we derive

v′′(t) + (K2
1 + K2

2 ) v(t) ≤
∫ ∫

Ω

f(x, t) dx
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which was to be proved. Analogously to the proof of Lemma 4, the
following lemma is proved:

Lemma 5. Let condition (H) hold, L1 > 0, and let u(x, t) ∈
C2(G)∩C1(G) be a solution of problem (1), (3), satisfying the condition

(26) u(x, t) < 0 for (x, t) ∈ Ω × (λ − T, λ + π/L1), λ ≥ T.

Then the function v1t = − v(t) is a positive solution of the inequality

(27) v′′1 (t) + L2
1 v1(t) ≤ −Φ1(t), t ∈ [λ, λ + π/L1),

where the function Φ1(t) is defined by (21). Analogously to the proof
of Theorem 1, the following theorem is proved.

Theorem 2. Let condition (H) hold, L1 > 0, and let a number
λ ≥ T exist such that the following condition should hold

(28) F1(λ) ≡
∫ λ+π/L1

λ

Φ1(t) · sin L1(t − λ) dt = 0.

Then each solution u(x, t) ∈ C2(G)∩C1(G) of problem (1), (3), has a
zero in the domain Ω × (λ − T, λ + π/L1).

Corollary 2. Let conditions (H) hold, L1 > 0, and let the function
F1(λ) defined by (28) oscillate. Then each solution u(x, t) ∈ C2(G) ∩
C1(G) of problem (1), (3), oscillates in G.
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