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DERIVATIONS FROM SUBALGEBRAS
OF OPERATOR ALGEBRAS: RESULTS

AND PROBLEMS OLD AND NEW

STEVE WRIGHT

1. Introduction. Let B ⊆ A be C∗-algebras. A linear map
δ : B → A is a derivation if δ(ab) = aδ(b) + δ(a)b, for a, b ∈ B. If
there is an element x of A for which δ(b) = (adx)(b) = xb − bx, b ∈ B,
we say that δ is inner in A, and generated by x. We will refer to any
element x of A with this property as a generator of δ. If B = A, i.e., if
δ is defined on all of A and maps A into itself, we will call δ a derivation
of A. Because of its importance for what we will be discussing in the
sequel, we recall that a multiplier of a C∗-algebra A is an element m of
the enveloping von Neumann algebra A∗∗ of A which multiplies A into
itself (mA ∪ Am ⊆ A). The set of all multipliers of A evidently forms
a unital C∗-subalgebra of A∗∗ which contains A as a closed, two-sided
ideal and which is usually referred to as the multiplier algebra of A.

The purpose of this paper is to discuss some results and problems
on derivations of operator algebras, with emphasis on those topics that
have occupied the attention of the author for the past several years. Our
dicussion centers around nine open problems that are posed at various
places in the text. The main goal of the exposition is to discuss ideas
and results that we hope motivate an interest in these problems, and
which place them within the context of previous work on the subjects
with which they deal. Because of this and the usual limitations of
time and space, we have eschewed proofs, preferring instead to indicate
precise references to places in the literature where proofs can be found
by the interested reader.

2. Algebras with only inner derivations. The theory of deriva-
tions began to attract the attention of operator algebraists when I.
Kaplansky proved in 1953 [26, Theorem 9] that all derivations of a
type I von Neumann algebra are inner in the algebra. Thirteen years
later, this was completed when S. Sakai [43], building on important
preliminary work of R.V. Kadison [22], proved that a derivation of
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any von Neumann algebra is inner. This result has become one of
the favorite chestnuts of the subject, and several elegant proofs are
now available (Arveson [4, Theorem 4.1], Kadison [23], Pedersen [38,
Corollary 8.6.6], Ringrose [40, Theorem 3.6]). Thus was initiated an
intensive search for C∗-algebras with only inner derivations. It soon be-
came clear that, in order to obtain a unified and smoothly-functioning
treatment for the nonunital as well as unital case, the correct project
was to find C∗-algebras A all of whose derivations are generated by
elements of the multiplier algebra of A. Sakai ([44; II, Theorem 2,
see also [38, Corollary 8.6.10], made the first advance along these lines
by showing that derivations of a simple C∗-algebra are so generated,
followed by the work of Akemann, Elliott, Pedersen, and Tomiyama
([1, Theorem 3.2], [38, Proposition 8.6.11]), in which all derivations of
continuous-trace C∗-algebras with paracompact spectrum were shown
to be generated by multipliers. Lance ([28, Theorem 2.1]) had proven
this earlier for the C∗-tensor product of a commutative C∗-algebra
and an elementary C∗-algebra, which shows that the paracompactness
assumption is unnecessary when the fiber structure in the associated
operator field is trivial. This gives rise to our first question:

PROBLEM 1. Are all derivations of continuous-trace C∗-algebras
(with arbitrary spectrum) generated by multipliers?

After these results were obtained, attention focused on the separable
case. From what we have just said, all separable C∗-algebras which are
either simple or have continuous trace admit only derivations generated
by multipliers, and it is a fairly simple matter to prove that the same
holds true for restricted direct sums of these algebras. In 1977, G.
Elliott [14] (with a small gap filled in shortly thereafter by Akemann
and Pedersen [3, Theorem 2.4]) proved the following beautiful converse,
which gives a complete solution for separable C∗-algebras:

THEOREM 2.1. ([14, Theorem 1], [3, Theorem 3.9]). Let A be a
separable C∗-algebra. Then every derivation of A is generated by a
multiplier if and only if A = A1 ⊕ A2, where A1 has continuous trace
and A2 is the restricted direct sum of simple C∗-algebras.
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Thus we need to next consider the nonseparable case. Here the results
are much less definitive. D. Olesen [35] proved that every derivation of
an AW ∗-algebra is inner, which gives a very nice generalization of the
von Neumann algebra result, and D. Olesen and G.K. Pedersen [36,
Theorem 3.1] showed that every derivation of a countably generated,
monotone sequentially closed C∗-algebra is inner. Both of these papers
make crucial use of the theory of spectral subspaces for groups of ∗-
automorphisms [4] and semicontinuity in the enveloping von Neumann
algebra of a C∗-algebra. This circle of ideas can no doubt be exploited
further in the hunt for generators, at least when the algebras involved
possess closure properties with respect to a topology weaker than the
norm. A completely different set of techniques, based on convergence
properties of sequences of derivations and the Dixmier property in C∗-
algebras, were used by C. Akemann and B.E. Johnson [2] to prove that
a derivation of the C∗-tensor product of a commutative C∗-algebra and
a von Neumann algebra is inner. It is thus natural to next consider the
case of the (minimal) C∗-tensor product of two von Neumann algebras,
and we hence pose

PROBLEM 2. Is every derivation of the minimal C∗-tensor product of
two von Neumann algebras inner?

An affirmative answer to Problem 2 has been conjectured by Ake-
mann and Johnson ([2], beginning of §4), and some partial results on
it have been obtained by Tomiyama [45].

3. When are all derivations from subalgebras inner? In
1970, Kaplansky [27] presented a sequence of lectures on analytic and
algebraic aspects of operator algebras which inaugurated the CBMS
Regional Conference Series in Mathematics. Motivated by derivation
results in the theory of central simple (algebraic) algebras and Sakai’s
theorem for simple C∗-algebras, he raised as one of his topics the
problem of the structure of derivations from a C∗-subalgebra of a C∗-
algebra A into A. In [27, p. 7], Kaplansky conjectured the following: If
A is an AW ∗-algebra and B is a C∗-subalgebra of A, every derivation
from B into A is inner in A. When A = B(H), the algebra of
all bounded linear operators on a Hilbert space H, E. Christensen
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[8] found some very interesting connections between this conjecture
and the Kadison-Kastler theory of perturbations of operator algebras
[24]. Using a remarkable inequality for bounded linear maps between
operator algebras due to G. Pisier [39, Corollary 2.3], Christensen
proved in [7, Corollary 5.4] that if A is a C∗-subalgebra of B(H) with
a cyclic vector, then every derivation of A into B(H) is inner in B(H).
Because it is central to many of the interesting questions in this area,
we thus have

PROBLEM 3. If A is a C∗-subalgebra of B(H), is every derivation
from A into B(H) inner in B(H)?

Problem 3 has a noteworthy connection with Kadison’s similarity
problem for representations of C∗-algebras [21]. Let A be a C∗-algebra
and suppose π is a bounded, Banach-algebra homomorphism of A into
B(H) for some Hilbert space H. The similarity problem asks, for an
invertible T ∈ B(H) such that the map a → Tπ(a)T−1, a ∈ A, is a ∗-
representation of A on H. Now, suppose A ⊆ B(H) and δ : A → B(H)
is a derivation. By a theorem of Ringrose [41, Theorem 2], δ is
automatically bounded, and this together with the derivation identity
shows that the map π : A → B(H ⊕ H), defined by

π(a) =
(

a δ(a)
0 a

)
, a ∈ A,

is a bounded, Banach-algebra homomorphism. If this homomorphism is
similar to a ∗-representation of A on H⊕H, then δ is inner in B(H) (for
a quick proof of this implication, see the end of the introduction to [16]).
Thus a positive solution to the similarity problem for representations
will yield a positive solution to Problem 3. The similarity problem has
been solved affirmatively for bounded homomorphisms with a cyclic
vector by U. Haagerup [16], using an improvement of the same Pisier
inequality for linear maps that Christensen used to solve Problem 3 for
subalgebras of B(H) with a cyclic vector.

The problem we have been discussing can be formulated in general by
considering the class of C∗-algebras A with the following property: for
each C∗-subalgebra B of A, every derivation of B into A is generated
by a multiplier of A. Such C∗-algebras were dubbed hereditarily
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cohomologically trivial (HCT for short) by A.J. Lazar, S.-K. Tsui,
and the author in [34]. Using this terminology, Problem 3 can be
succinctly rephrased as: is B(H) HCT? The HCT algebras are
evidently found among the C∗-algebras all of whose derivations are
generated by multipliers, and thus by the results of §2, one should
look for them first among the von Neumann algebras, the simple C∗-
algebras, the C∗-algebras with continuous trace, or the separable C∗-
algebras.

In [30] and [34], Lazar, Tsui, and the author determined the
HCT C∗-algebras which are either separable or have continuous trace.

THEOREM 3.1. [30, Theorem 1.1]. Let A be a separable C∗-algebra.
Then A is HCT if and only if A = A1 ⊕ A2, where A1 is abelian and
A2 is the restricted direct sum of elementary C∗-algebras.

THEOREM 3.2. [34, Theorem 1.1] Let A be a C∗-algebra with
continuous trace. Then A is HCT if and only if A = A1 ⊕ A2 ⊕ A3,
where

(i) A1 is abelian;

(ii) A2 is the restricted direct sum of a sequence {An} of C∗-algebras
such that, for each n, An is isomorphic to C0(Xn) ⊗ Mkn

, with Xn a
locally compact, Hausdorff, extremely disconnected space, and Mkn

is
the algebra of kn × kn matrices, 2 ≤ kn < ∞;

(iii) A3 is the restricted direct sum of a family of infinite-dimensional
elementary C∗-algebras.

We thus see in particular that a separable, simple C∗-algebra is HCT
if and only if it is elementary, and that C0(X) ⊗ Mn is HCT if and
only if either n = 1 or n ≥ 2 and X is locally compact, Hausdorff,
and extremely disconnected. These simple consequences can be used to
show that hereditary cohomological triviality does not pass to (a) tensor
products, (b) inductive limits, (c) C∗-subalgebras, or (d) quotients,
although it is inherited by (closed, two-sided) ideals and finite direct
sums. An example which verifies (a) is given by C([0, 1])⊗M2, and any
separable, infinite-dimensional UHF algebra shows that (b) holds. To
get an example which verifies (c), let N denote the positive integers with
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the discrete topology, let X denote the Stone-Ĉech compactification
of N , set A = C(X) ⊗ M2, and let B denote the C∗-subalgebra
of A consisting of all elements b of A with {b(n) : n = 1, 2, 3, . . . }
converging in norm to a matrix of the form (∗0

0
0 ). Since X is compact,

Hausdorff, and extremely disconnected, A is HCT . The subalgebra B
is separable, has continuous trace, and its spectrum is homeomorphic
to the one-point compactification of N , with the single one-dimensional
irreducible representation of B determining the point at infinity. Thus
the set of one-dimensional irreducible representations of B is not open
in the spectrum, and so B is not HCT . To see that (d) holds, let A
be as in (c), and let I denote the ideal of all elements x of A for which
{x(n) : n = 1, 2, 3, . . . } converges in norm to 0. Then A/I is isomorphic
to C(X\N) ⊗ M2, and since X\N is not extremely disconnected [15,
Problem 6R], A/I is not HCT .

One should next try to find some nonseparable, simple HCT C∗-
algebras and/or some HCT von Neumann algebras. A folk theo-
rem (proved explicitly by Christensen in [6, Theorem 5.1]) asserts
that all finite von Neumann algebras are HCT. The only nonsepa-
rable, simple HCT algebras that the author therefore knows are the
infinite-dimensional finite factors and the nonseparable elementary C∗-
algebras. We thus pose

PROBLEM 4. What are the nonseparable, simple C∗-algebras that
are HCT?

PROBLEM 5. Are there any properly infinite von Neumann algebras
that are HCT?

While Theorems 3.1 and 3.2 are definitive, they are somewhat dis-
appointing in that the class of HCT examples which results is quite
small. Larry Brown proposed in conversation with the author that a
perhaps better definition of hereditary cohomological triviality would
relax the insistence on generators from the multiplier algebra. Follow-
ing a suggestion of Professor Brown, the author considered in [46], for
a C∗-subalgebra B of a C∗-algebra A, the elements x of the enveloping
von Neumann algebra of A which multiply B into A, i.e., for which
xB ∪ Bx ⊆ A. The set of such elements is denoted by M(B, A), and
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we say that A is weakly HCT if, for each C∗-subalgebra B of A, every
derivation of B into A is generated by an element of M(B, A). Evi-
dently an HCT algebra is weakly HCT , and both definitions coincide
when A is unital. In [46], the separable C∗-algebras that are weakly
HCT were determined as follows:

THEOREM 3.3. [46, Theorem 2.6]. Let A be a separable C∗-algebra.
Then A is weakly HCT if and only if A = A1 ⊕ A2, where

(i) A1 has continuous trace and the set of all irreducible represen-
tations of A1 which act on a Hilbert space of dimension at least 2 is
discrete in the spectrum of A1;

(ii) A2 is the restricted direct sum of a sequence of elementary C∗-
algebras.

It follows that, at least in the separable case, an HCT algebra differs
from a weakly HCT algebra only at its continuous-trace summand. The
simplest example of a weakly HCT algebra that is not HCT is thus the
algebra B constructed in the paragraph which follows Theorem 3.2. It
can be shown [46, Proposition 2.7] that an n-homogeneous C∗-algebra
that is weakly HCT is in fact HCT . Thus it appears on the basis of the
evidence available so far that although the two classes are different, the
HCT C∗-algebras and the weakly HCT C∗-algebras are very closely
related.

4. Objects of cohomological dimension 0 in the C ∗- and W ∗-
categories. In the previous section, everything arose from asking
when all derivations from subalgebras of a C∗-algebra are inner. In
this section, we reverse quantifiers in this question and ask for what
C∗-algebras A is it true that, when A is a subalgebra of a C∗-algebra
B, each derivation of A into B is inner in B? In order to discuss
this precisely, the notation and basic terminology of the Hochschild
cohomology of algebras [19] will be useful.

Let A be a linear, associative algebra over the complex numbers
C , M a two-sided, linear A -module. A linear map δ : A → M is
a derivation if δ(ab) = aδ(b) + δ(a)b, for a, b ∈ A, and a derivation
δ is inner if, for some m ∈ M, δ(a) = ma − am, a ∈ A . The set
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of all derivations of A into M forms an abelian group Z1(A , M)
under vector space addition, and the subset B1(A , M) of all inner
derivations is a subgroup. We set H1(A , M) equal to the quotient
group Z1(A , M)/B1(A , M). Thus every derivation of A into M
is inner in M if and only if H1(A , M) = (0). A is said to have
cohomological dimension 0 if H1(A , M) = (0) for all linear, two-sided
A -modules M . It is a simple matter [11, Lemma 1] to show that
if A is a finite direct sum of full matrix algebras over C, then A
has cohomological dimension 0, and classical results of Hochschild [18,
Theorem 2.3] and Rosenberg and Zelinsky [42, Theorem 1] combine to
demonstrate the converse.

Using Hochschild cohomology as his model, a cohomology theory for
Banach algebras was defined and studied by B.E. Johnson in [20].
The target modules in this theory are taken to be two-sided, dual
Banach A -modules over a Banach algebra A , and thus the objects
of cohomological dimension 0 here are the Banach algebras A for
which H1(A , M) = (0) for all such modules M . Johnson showed [20,
Theorem 2.5] that the L1-group algebra of a locally compact group
has cohomological dimension 0 if and only if the group is amenable,
and he hence called a Banach algebra amenable if it has cohomological
dimension 0 in this sense. Johnson also proved in Section 7 of [20]
that an inductive limit of type I C∗-algebras is amenable. In [9],
A. Connes verified a suspicion commonly held at the time that all
amenable C∗-algebras are nuclear, and in 1983, Haagerup [17] proved
that all nuclear C∗-algebras are amenable (for an elegant proof of this
latter implication, see Effros [10]).

In view of the foregoing results as well as the considerations that were
made in the previous section, a very natural question to ask is the one
that was posed at the beginning of this section, i.e., in the notation
just introduced, for what C∗-algebras A do we have

(∗) H1(A, B) = (0), for all C∗-algebras B which contain A?

More precisely, (∗) means that if A and B are C∗-algebras and π : A →
B is a ∗-isomorphism, then every derivation of π(A) into B is inner in
B. From the point of view of operator algebras, this is the question
that should be asked first, and indeed it was. In 1970, G. Elliott, in a
study of derivations of matroid C∗-algebras, posed it as Problem 17.1
of [11]. Since a finite-dimensional C∗-algebra is a finite direct sum
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of matrix algebras, all finite-dimensional C∗-algebras satisfy (∗), and
Elliott asked if the converse holds. In [31], A.J. Lazar, S.-K. Tsui, and
the author answered this in the affirmative.

THEOREM 4.1. [31, Theorem 2.1], A C∗-algebra satisfies (∗) if and
only if it is finite-dimensional.

We now wish to formulate the W ∗-analog of Theorem 4.1. This
requires finding the W ∗-algebras M such that, whenever N is a W ∗-
algebra and π : M → N is a σ-continuous ∗-isomorphism, every
derivation of π(M) into N is inner in N , i.e., H1(M, N) = (0) for
all W ∗-algebras N containing M .

To orient ourselves to this, we return to the paper [9] of Connes. The
main result there is a characterization of the injective W ∗-algebras as
the W ∗-amenable ones. This means that a W ∗-algebra M is injective
if and only if, for each dual, normal, two-sided Banach M -module X
(see [25, §2] for a definition of this), H1(M, X) = (0). Connes proved
that C∗-algebraic amenability implies nuclearity by noticing that the
enveloping von Neumann algebra A∗∗ of an amenable C∗-algebra A is
W ∗-amenable in this sense, then using the above characterization to
conclude that A∗∗ is injective, whence A is nuclear by the results [5] of
Choi and Effros.

To formulate a W ∗-version of Theorem 4.1, we now notice that any
W ∗-algebra N which contains M is a dual, normal, Banach M -module
with respect to the usual linear and algebraic operations in N . If M is
injective, it hence follows that H1(M, N) = (0). An affirmative answer
to the following question would thus give the W ∗-algebra analog of
Theorem 4.1 and improve upon one direction in Connes’ amenability
characterization of injectivity:

PROBLEM 6. If M is a W ∗-algebra and H1(M, N) = (0) for all
W ∗-algebras N containing M , is M injective?

5. Extending derivations from subalgebras of separable C∗-
algebras. Innerness of a derivation from a subalgebra B to an algebra
A can be interpreted as an extension theorem, one which says that the
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derivation can be extended to a derivation of the entire algebra A, and
in the best possible way. The extension problem for derivations is thus
of interest in the search for generators.

We will concentrate our attention on separable C∗-algebras. If B ⊆ A
are separable C∗-algebras, when can a derivation of B into A be
extended to a derivation of A? Progress has been made when B is a
unital hereditary C∗-subalgebra of A, in which case there is a projection
e of A with B = eAe, and A is approximately finite-dimensional (AF).
We then have the following result:

THEOREM 5.1. [32, Theorem 2.2]. If A is a separable, AF, C∗-algebra
and e is a projection in A, then every derivation of eAe into A can be
extended to a derivation of A.

Elliott had proven earlier [12, Theorem 4.5] that each derivation of
eAe can be so extended, and his result is a crucial part of the proof of
Theorem 5.1. It can be shown [32, pp. 111 114] that Theorem 5.1 fails
if the hereditary subalgebra is not unital, even when A is UHF. Hence:

PROBLEM 7. If A is a separable C∗-algebra and e is a projection in
A, can every derivation of eAe into A (or into eAe) be extended to a
derivation of A?

By Lemma 2.1 of [32], if A is any C∗-algebra, if e is a projection in
A, and if H1(eAe, eAe) = (0), then H1(eAe, A) = (0). Thus if A is
simple or has continuous trace, Problem 7 has an affirmative answer.

What if the subalgebra from which we wish to extend is an ideal?
Simple examples show that a derivation of an ideal may not itself have
an extension, so in order to get some positive results, we need to weaken
our notion of extendability. In [12], Elliott considered the problem of
extension modulo derivations generated by a multiplier. If B ⊆ A
are C∗-algebras, this means that if δ is a derivation of B, we seek a
multiplier m of B such that the derivation adm|B + δ of B extends to a
derivation of A. G.K. Pedersen has pointed out in [37] that extensions
of this type from ideals of A would be of great use in the problem of
uniformly approximating derivations of A by derivations that restrict
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to an inner derivation on some nonzero ideal. Elliott proved in [12,
Theorem 3] that, wheneverA is separable and AF, each derivation of
an ideal of A extends modulo a multiplier derivation to a derivation of
A, but the general (separable) case here remains open.

PROBLEM 8. If A is a separable C∗-algebra, if I is a closed, two-sided
ideal of A, and if δ is a derivation of I, is there a multiplier m of I such
that ad m|I + δ extends to a derivation of A?

In [12, Problem 3.4], Elliott asked if his affirmative answer to Problem
8 when A is AF was still valid if the ideal was replaced by a hereditary
C∗-subalgebra. Lazar, Tsui, and the author gave two examples in [32]
which solves this problem in the negative. These examples can be
described most easily in terms of Bratteli diagrams: for this we will
follow the notation and terminology of [29, §2].

Let A be an AF algebra and let B be a hereditary C∗-subalgebra of
A. By Theorem 3.1 and Remark 3.2 of [13], B is AF, and there is a
generating sequence A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ . . . of finite-dimensional
C∗-subalgebras of A such that B is generated by {Bn = B ∩ An}.
We call {Bn} the generating sequence of B associated with {An}. For
n = 1, 2, 3, . . . , let

An = ⊕kn
i=1Ain, Bn = ⊕kn

i=1Bin

denote the Wedderburn decompositions of An and Bn (we suppose here
that Bin ⊆ Ain, i = 1, 2, . . . , kn, and hence some direct summands of
Bn could be {0}). Let fin and ein denote the units of Ain and Bin,
respectively, so that Bin = einAnein, i = 1, 2, . . . , kn, en = ⊕iein is the
unit of Bn, and fn = ⊕ifin is the unit of An, n = 1, 2, 3, . . . .

Example 1. [32, Example 1]. Let A1 be the AF algebra with Bratteli
diagram
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(2)

(2)

(2)

(2)

(4)

(4)

(4)

(4)

(4) (4) ,

2

2

2

... ... ... ...

and let B1 denote the hereditary C∗-subalgebra whose associated
generating sequence has Bratteli diagram

(1)

(1)

(1)

(1)

(3)

(3)

(3)

(3)

(3) (3) ,

2

2

2
... ... ... ...

Example 2. [32, Example 2]. Let A2 denote the AF algebra with
Bratteli diagram

(2)

(2)

(2)

(2)

(4)

(4)

(4)

(4)

(4) (4) ,... ... ... ... ...

(2)

(2)

(2)

(2)
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and let B2 denote the hereditary C∗-subalgebra whose associated
generating sequence has Bratteli diagram

(1)

(1)

(1)

(1)

(3)

(3)

(3)

(3)

(3) (3) .... ... ... ... ...

(1)

(1)

(1)

(1)

In Theorems 3.2 and 3.5 of [32], a derivation δi of Bi was constructed
such that, for each multiplier m of Bi, ad m|Bi

+δi does not extend to a
derivation of Ai, i = 1, 2. To see what the obstruction to the extension
is in each example, consider the Wedderburn decompositions

A(1)
n = ⊕n

i=1A
(1)
in , B(1)

n = ⊕n
i=1B

(1)
in , A(2)

n = ⊕n+2
i=1 A

(2)
in , B(2)

n = ⊕n+2
i=1 B

(2)
in

of the generating sequences {A(i)
n } and {B(i)

n } of Ai and Bi respectively,
i = 1, 2. In Example 1, the obstruction to extending δ1 in the desired
way comes from the fact that the portion of B

(1)
n that is orthogonal to

B
(1)
n−1 enters B

(1)
n via a partial embedding of multiplicity greater than

1, that is, e
(1)
n − e

(1)
n−1 = 0, e

(1)
n−1,n−1 = 0, e

(1)
n − e

(1)
n−1 ≤ f

(1)
n−1,n−1, and

A
(1)
n−1,n−1 is partially embedded in A

(1)
n−1,n with multiplicity 2 > 1, n =

2, 3, . . . . In Example 2, all partial embeddings are of multiplicity 1, and
so an obstruction to extensions like the one in the first example does
not occur, but what prevents extension of δ2 is the fact that the portion
of B

(2)
n that is orthogonal to B

(2)
n−1 enters B

(2)
n from two distinct direct

summands from the previous level, that is e
(2)
n −e

(2)
n−1 = 0, e

(2)
n,n−1 = 0 =

e
(2)
n+1,n−1, e

(2)
n − e

(2)
n−1 ≤ f

(2)
n,n−1 ⊕ f

(2)
n+1,n−1, and e

(2)
n − e

(2)
n−1 is majorized

by a sum of no fewer units from A
(2)
n−1, n = 2, 3, . . . .

Examples 1 and 2 can now be used as a guide to obtaining a condition
on hereditary subalgebras which allow derivation extensions of the
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desired type by looking for situations in which the characteristics
of these examples do not occur. Specifically, consider an AF C∗-
algebra A and a hereditary C∗-subalgebra B with associated generating
sequences and Wedderburn decompositions expressed in the notation
specified in the paragraph which precedes Example 1. We say that B
satisfied Condition E if the following holds: for n = 1, 2, 3, . . . , m =
1, 2, . . . , n − 1, i = 1, 2, . . . , kn, each nonzero projection ein − einemein

is the sum of mutually orthogonal, minimal projections p of Ain each
of which satisfies at least one of the following conditions:

(E1) p is orthogonal to every summand Ajm with Bjm = {0};
(E2) there is a j ∈ {1, 2, . . . , kn} with Bjm = {0} such that p ≤ fjm

and Ajm is partially embedded in Ain with multiplicity 1.

Lazar, Tsui, and the author proved in [33] that derivation extensions
modulo multiplier derivations are always available in the presence of
Condition E:

THEOREM 5.2. [33, Theorem 2.1]. Let A be a separable, AF C∗-
algebra, and suppose B is a hereditary C∗-subalgebra of A which satis-
fies Condition E. Then every derivation of B extends modulo a multi-
plier derivation to a derivation of A.

Notice that, in Example 1, (E1) and (E2) both fail at level n for
i = m = n − 1, and they both fail in Example 2 at level n for
i = n, m = n − 1. Indeed, Theorem 5.2 can be interpreted as saying
that, generally speaking, a derivation of a hereditary subalgebra can
be extended in the indicated way if the subalgebra does not possess
obstructions similar to those of Examples 1 and 2. Note also that
every closed, two-sided ideal of A satisfies Condition E ((E1) always
holds), and so Theorem 5.2 is a nontrivial generalization of Elliott’s
extension theorem. However, Theorem 5.2 is by no means the whole
story. If A is simple, then every hereditary C∗-subalgebra B of A is also
simple, and so by Sakai’s theorem every derivation of B is generated
by a multiplier of B. Thus every derivation of B, modulo a multiplier
derivation, is in fact identically zero, and B can be very far indeed from
satisfying condition E. Our final question stems from these remarks:
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PROBLEM 9. What are conditions on a hereditary C∗-subalgebra B
of a separable, AF C∗-algebra which are both necessary and sufficient
for derivation extensions from B modulo multiplier derivations?
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