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THE BOUNDEDNESS CONDITION OF
DILATION THEORY CHARACTERIZES
SUBNORMALS AND CONTRACTIONS

WACLAW SZYMANSKI

TO THE MEMORY OF CONSTANTIN APOSTOL

1. Introduction. At the foundations of the general dilation theory
on semigroups there are two conditions: positive definiteness PD and
the boundedness condition BC /see definitions below/. In general,
PD is considered to be more basic than BC, essentially because of the
traditional and the most natural method of constructing the dilation
Hilbert space by introducing the associated sesquilinear form, positivity
of which is guaranteed by PD. The core of this method goes back to
classical works of Kolmogoroff, Moore-Aronszajn, Krein, Koranyi-Sz.-
Nagy, and others see [6, KMKA Lemma] for references. An abstract
version of this method can be found in [11], where it is also shown
that, assuming PD, dilations can be constructed under conditions much
weaker than BC, but these dilations are far from being bounded, even
if semigroups in question have involutions. BC can be seen, in general,
as the condition that guarantees boundedness of dilations. This general
approach applies to a single operator theory in two important cases:
unitary dilations of contractions and normal extensions of subnormal
operators, which has been done by Sz.-Nagy [9, 8], following, for
subnormals, Halmos’s positivity condition [2].

In both cases BC is a consequence of PD. For a single contraction
the associated PD function is defined on the group (of integers),
which makes BC disappear. That, for a subnormal operator, the
associated PD function satisfies BC, was proved by Bram [1] who
used a deep result of Heinz [3]. Szafraniec [7] was able to show this
without Heinz’s result, but applying instead his remarkably simplified
BC for ∗-semigroups, which is a consequence of a very careful and
elaborate use of Schwarz’s inequality. These problems for semigroups
of contractions and subnormal semigroups are discussed in [4, 10] and
[12], respectively. Therefore it seems that BC is insignificant in these
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two cases. A close look, however, at the procedure how BC is proved in
case of contraction semigroups [10], where one has to use contractivity
once again, although it has already been used previously to prove PD,
gives rise to quite a contrary suspicion. In this paper we shall show that,
in both contraction and subnormal cases, BC is actually a condition
equivalent to PD, hence it characterizes contractions and subnormals
equally well as PD. To do this for subnormals (§3) we shall need some
operator inequalities (§2) which seem to be interesting in themselves.
The contraction case is treated in §4 for semigroups, following the
approach of [4, 10].

B(H) denotes the set of all linear bounded operators in a complex
Hilbert space H. I is the identity operator. Let S be a set. F (S, H)
stands for the linear space of all functions from S to H vanishing off
a finite subset of S. A function A : S × S → B(H) is called positive
definite PD if

∑
(A(s, t)f(s), f(t)) ≥ 0 for each f ∈ F (S, H). A will be

called symmetric if A(s, t)∗ = A(t, s), s, t ∈ S. PD implies symmetry
(cf. [5, p. 18]). Let now S be a semigroup (always with unit) and let
A : S×S → B(H) be a symmetric function. A satisfies the boundedness
condition BC if, for each u ∈ S, there is a non-negative real number
c(u) such that

∑
(A(us, ut)f(s), f(t)) ≤ c(u)∑
(A(s, t)f(s), f(t)) for each f ∈ F (S, H).

This inequality makes sense, namely, both its sides are real numbers,
because A is symmetric. Since the bounding constant c(u) above is
assumed to be non-negative, it is immediate that

(1.1) BC is submultiplicative, i.e., if BC is satisfied for u, v ∈ S with
c(u), c(v), respectively, then BC is satisfied for uv with c(u)c(v).

Suppose now that S is a ∗-semigroup, i.e., a mapping ∗ : S → S
is defined so that (s∗)∗ = s, (st)∗ = t∗s∗, s, t ∈ S, 1∗ = 1. Let
Φ : S → B(H) be a function. Define AΦ : S × S → B(H) by
AΦ(s, t) = Φ(t∗s), s, t ∈ S. Then AΦ is symmetric if and only if
Φ(s∗) = Φ(s)∗, s ∈ S.
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2. Some inequalities. Here we discuss conditions that guarantee
positivity of a self-adjoint operator.

(2.1) PROPOSITION. Suppose T, M ∈ B(H), M is self-adjoint, and T
is a contraction such that Tnx → 0 for each x ∈ H. If T ∗MT ≤ M ,
then M ≥ 0.

PROOF. The assumption T ∗MT ≤ M implies

M ≥ T ∗MT ≥ T ∗2MT 2 ≥ · · · ≥ T ∗nMTn ≥ . . . .

Let x ∈ X. Then ||T ∗nMTnx|| ≤ ||M || ||Tnx|| → 0, as n → ∞. By
the sequence of inequalities above, M ≥ 0.

This proposition applies in particular if ||T || < 1.

The following consequence of a result of Heinz [3; Satz 3, p. 426]
is the essential point in the elimination of the boundedness condition
from Halmos’s characterization of subnormality by Bram.

(2.2) (Heinz). If A, B ∈ B(H) are positive operators and A2 ≤ B2,
then A ≤ B.

Is there a way to get a certain converse of this result so that it could
be used to prove positivity? The most obvious converse would be:

(2.3) If A, B ∈ B(H) are self-adjoint, B2 ≤ A2, and B ≤ A, then
A ≥ 0.

This statement fails if A−B is not invertible even for dimH = 1. It
is true under additional assumptions:

(2.4) PROPOSITION. If A, B ∈ B(H) are self-adjoint, B2 ≤ A2, B ≤
A, AB = BA, and A − B is invertible, then A ≥ 0.

PROOF. Since A, B commute, the C∗-algebra with unit they generate
is commutative. By the Gelfand-Naimark functional calculus, the
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continuous functions f, g on the compact spectrum of this algebra,
that correspond to A, B, respectively, are real, g2 ≤ f2, g ≤ f , and
their values are not equal at any point of the spectrum, because A−B
is invertible. The conclusion is now immediate.

3. Subnormals. In this section we shall show that the boundedness
condition eliminated by Bram ((3.2)(ii) below) characterizes subnor-
mality of a single operator. We shall use the dilation approach as
in [8, 12], as well as the original Bram approach, both of which we
now describe. Let N be the additive semigroup of all non-negative
integers. Let S be the product semigroup N × N with involution de-
fined by (m, n)∗ = (n, m), for all (m, n) ∈ S. Let T ∈ B(H). Define
Φ : S → B(H) by Φ(m, n) = T ∗nTm, (m, n) ∈ S. Let AΦ be as defined
after (1.1). Let K be the direct sum of countably many copies of H,
which may be seen as l2⊗H. Let M be the operator in K given by the
matrix whose (m, n) entry is Φ(m, n). M is symmetric on the dense
subspace F (N, H) of K. If ||T || < 1, then M extends to a bounded
operator on K, which will be denoted also by M (cf. the first part
of the proof of Theorem 1 in [1]). T0 = I ⊗ T is the diagonal matrix
operator in K with all diagonal entries equal T . These notations are
fixed throughout this section.

(3.1) PROPOSITION. The following conditions are equivalent:

(i) AΦ is PD on S,

(ii)
∑

(Tmg(n), Tng(m)) ≥ 0 for each g ∈ F (N, H),

(iii) (Mg, g) ≥ 0 for each g ∈ F (N, H).

The proof can be found in [1, 8 and 12]. Each of these conditions is
known to be equivalent to the subnormality of T .

Notice that Φ(n, m) = Φ(m, n)∗, (m, n) ∈ S. By the remarks at the
end of §1, AΦ is a symmetric function. Hence BC makes sense.

(3.2) PROPOSITION. The following conditions are equivalent:

(i) AΦ satisfies BC,
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(ii) There is c ≥ 0 such that∑
(Tm+1g(n), Tn+1g(m)) ≤ c

∑
(Tmg(n), Tng(m)), g ∈ F (N, H),

(iii) There is c ≥ 0 such that (T ∗
0 MT0g, g) ≤ c(Mg, g), g ∈ F (N, H).

PROOF. The equivalence of (ii) and (iii) is obvious (the constant c is
the same in both conditions).

Let s = (m, m′), t = (n, n′), u = (p, p′) ∈ S. Then

t∗u∗us = (n′ + p′ + p + m, n + p + p′ + m′),

and
AΦ(us, ut) = Φ(t∗u∗us) = T ∗n+p+p′+m′

Tn′+p′+p+m.

Let now f ∈ F (S, H). Define g ∈ F (N, H) by g(n) =
∑

m Tmf(m, n).
Then

(3.3)

∑
(AΦ(us, ut)f(s), f(t))

=
∑

(Tn′+p+p′+mf(m, m′), Tn+p+p′+m′
f(n, n′)

=
∑

(Tn′
T p+p′

g(m′), Tm′
T p+p′

g(n′)).

If AΦ satisfies BC, then, by (3.3), the inequality in (ii) holds with
c = c(u), where u = (1, 0). Conversely, if (ii) holds, then BC is satisfied
for u = (1, 0) with the constant c. By (1.1), i.e., the submultiplicativity
of BC, and (3.3), AΦ satisfies BC.

(3.4) THEOREM. The following conditions are equivalent:

(i)
∑

(Tmg(n), Tng(m)) ≥ 0, for each g ∈ F (N, H),

(ii) For each c > ||T ||2∑
(Tm+1g(n), Tn+1g(m)) ≤ c

∑
(Tmg(n), Tng(m)), g ∈ F (N, H),

(iii) There is a c > ||T ||2 such that∑
(Tm+1g(n), Tn+1g(m)) ≤ c

∑
(Tmg(n), Tng(m)), g ∈ F (N, H).



596 W. SZYMANSKI

PROOF. (i) ⇒ (ii) has been proved by Bram [1, Theorem 1]. For the
sake of completeness we give here a shorter proof, essentially following
Bram’s arguments. The equality (3.5) is a new ingredient which makes
the proof more transparent. As shown at the end of the proof of
Theorem 1 in [1], we may assume ||T || < 1. Then M is bounded. Let
U+ denote the unilateral shift of multiplicity one in l2. Then U+ ⊗ I is
the unilateral shift of multiplicity dimH in l2⊗H = K. The interesting
point is that the special form of the matrix M implies:

(3.5) MT0 = (U+ ⊗ I)∗M.

Now it is immediate that (T ∗
0 MT0)2 ≤ M2. For if x ∈ K, then, by

(3.5),
||T ∗

0 MT0x|| ≤ ||T ∗
0 (U+ ⊗ I)∗Mx|| ≤ ||Mx||.

By (3.1) ((ii) ⇒ (iii)), M is positive. To finish the proof apply (2.2)
and (3.2) ((iii) ⇒ (ii)).

Since (ii) ⇒ (iii) is obvious, it remains to prove (iii) ⇒ (i). As above,
we assume ||T || < 1. By (3.2)((ii) ⇒ (iii)), T ∗

0 MT0 ≤ M , because M is
bounded. Since ||T0|| = ||T || < 1, we now apply the crucial Proposition
(2.1) to conclude that M is positive. (i) follows now from (3.1) ((iii)
⇒ (ii)).

(3.6) COROLLARY. The following conditions are equivalent:

(i) T is subnormal,

(ii) AΦ is PD on the ∗-semigroup S,

(iii) AΦ satisfies BC.

4. Contraction semigroups. Firstly let us recall the basic
construction from [10]. Let G be a commutative group ordered by a
subsemigroup G+. This means that G+∩(−G+) = {0}, G+∪(−G+) =
G. The order in G is defined by: m ≤ n if n−m ∈ G+ (for n, m ∈ G).
In G+×G+ we define an involution by (m, n)∗ = (n, m), for m, n ∈ G+,
and an algebraic operation # : for (j, k), (m, n) ∈ G+ × G+,

(j, k)#(m, n) =
{

(m + j − n, k) if j ≥ n,
(m, k + n − j) if j < n.
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It is proved in [10, Proposition 1] that (G+×G+, #, ∗) is a ∗-semigroup
with unit (0, 0), where 0 is the unit of G. This semigroup is denoted by
G#. Proposition 2 of [10] states that coisometric semigroup homomor-
phisms of G+ into L(H) (each value is a coisometry) are in a bijective
correspondence with ∗-semigroup homomorphisms of G#.

Let π : G+ → L(H) be a semigroup homomorphism. Define
Φ : G# → L(H) by Φ(m, n) = π(n)∗π(m), (m, n) ∈ G#. Let AΦ be
as defined after (1.1) with S = G#. These notations will be preserved
throughout this section.

(4.1) THEOREM. The following conditions are equivalent:

(i) π is contractive, i.e., ||π(n)|| ≤ 1 for each n ∈ G+,

(ii) AΦ is PD on G#,

(iii) AΦ satisfies BC.

The conditions (i) and (ii) have been proved to be equivalent in [10].
It is also shown there that each of them is equivalent to the existence
of the ∗-dilation of the function AΦ which, in turn, is equivalent to
the existence of the coisometric extension of π. The main point here
is to prove that BC is equivalent to each (i), (ii) above. On the way
to prove this equivalence we shall be able to give also a completely
straightforward proof of (i) ⇔ (ii), which, unlike the one given in [10],
is entirely self-contained (and we get it here “for free”). The beginning
of this proof is influenced by Sz.-Nagy’s proof of his PD condition that
characterizes a single contraction in [8, p. 28].

PROOF. Firstly notice that AΦ is a symmetric function. For
if (m, n) ∈ G#: then Φ((m, n)∗) = Φ(n, m) = π(m)∗π(n) =
(π(n)∗π(m))∗ = Φ(m, n)∗. Hence if f ∈ F (G#, H), then

Ωf =
∑
α,β

(AΦ(β, α)f(β), f(α)) =
∑
α,β

(Φ(α∗#β)f(β), f(α))

is a real number.

Let us take f ∈ F (G#, H) and write Ωf in full. Let α = (k, j),
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β = (m, n). Then

(1) AΦ(β, α) = Φ(α∗#β) =
{

π(k)∗π(m)π(j − n) if j ≥ n,
π(n − j)∗π(k)∗π(m) if j < n.

Hence

Ωf =
∑
j≥n

(π(m)π(j − n)f(m, n), π(k)f(k, j))

+
∑
j<n

(π(m)f(m, n), π(k)π(n− j)f(k, j))

=
∑
j≥n

(π(j − n)h(n), h(j)) +
∑
j<n

(h(n), π(n− j)h(j)),

where h : G+ → H is defined by

(2) h(n) =
∑

p

π(p)f(p, n), n ∈ G+.

This computation of Ωf up to this point has been done in [10].

It is clear that h vanishes off a finite subset {j0, . . . , jμ} of G+.
Assume that j0 < j1 < · · · < jμ. Define g : G+ → H by

(3) g(j) =
∑
n<j

π(j − n)h(n) if j > j0, and g(j) = 0 if j ≤ j0.

This function has the following properties:

(4) If p = 0, . . . , μ−1 and jp < j ≤ jp+1, or if p = μ and j > μ, then

g(j) =
∑

0≤i≤p

π(j − ji), and

g(j) = π(j − jp)[g(jp) + h(jp)];

(5) g(j) = π(j − j0)h(j0) if j0 < j ≤ j1.
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The property (5) follows from (4) and from the definition of g. The
first part of (4) is clear. Here is the proof of the second part.

g(j) =
∑

0≤i≤p

π(j − ji)h(ji) = π(j − jp)
∑

0≤i≤p

π(jp − ji)h(ji)

= π(j − jp)

[ ∑
0≤i≤p−1

π(jp − ji)h(ji) + h(jp)

]

= π(j − jp)[g(jp) + h(jp)].

Now we shall continue computing Ωf :

Ωf =
∑

n

||h(n)||2 +
∑
j>n

(π(j − n)h(n), h(j)) +
∑
j<n

(h(n), π(n− j)h(j))

=
∑

n

||h(n)||2 +
∑
j>j0

[ ∑
n<j

2Re (π(j − n)h(n), h(j))

]

=
∑

n

||h(n)||2 +
∑
j>j0

2Re (g(j), h(j))

= ||h(j0)||2 +
∑

1≤i≤μ

(||g(ji) + h(ji)||2 − ||g(ji)||2)

= ||h(j0)||2 − ||g(ji)||2 +
∑

1≤i≤μ−1

||g(ji) + h(ji)||2

−
∑

2≤i≤μ

||g(ji)||2 + ||g(jμ) + h(jμ)||2

= ||h(j0)||2 − ||g(j0)||2 +
∑

1≤i≤μ−1

(||g(ji) + h(ji)||2 − ||g(ji+1)||2)

+ ||g(jμ) + h(jμ)||2.
Using (4) and (5) we get
(6)

Ωf =[||h(j0)||2 − ||π(j1 − j0)h(j0)||2]
+

∑
1≤i≤μ−1

[||g(ji) + h(ji)||2 − ||π(ji+1 − ji)(g(ji) + h(ji))||2]

+ ||g(jμ) + h(jμ)||2.
At this point we actually have proved that (i) ⇔ (ii). Indeed, if

π(n) is a contraction for each n, then Ωf ≥ 0. Conversely, let us fix
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arbitrarily x ∈ H, n ∈ G+, and let us choose f so that h(0) = x, h(n) =
−π(n)h(0), h(j) = 0 elsewhere. Take μ = 1, j0 = 0, j1 = n. Then in
the sum in (6) only the first two terms are non-zero, by (5) and the
choice of h(n). Thus

0 ≤ Ωf = ||x||2 − ||π(n)x||2.

Now let us fix arbitrarily δ = (c, d) ∈ G#. The product δ∗#δ = (c, c)
does not depend upon the second element of the pair (c, d). Let
α = (k, j), β = (m, n) ∈ G#. Since # is associative [10, Proposition 1],

(α∗#δ∗)#(δ#β) = α∗#(δ∗#δ)#β = (j, k)#(c, c)#(m, n)

=

{
(j, k)#(m, n) if j ≥ c or n ≥ c

(m + c − n, k + c − j) if j < c and n < c.

Therefore
(7)

AΦ(δ#β, δ#α) = Φ(α∗#δ∗#δ#β)

=

{
AΦ(β, α) if j ≥ c or n ≥ c

π(k + c − j)∗π(m + c − n) if j < c, n < c.

For f ∈ F (G#, H) define

Ωf (δ) =
∑
α,β

(AΦ(δ#β, δ#α)f(β), f(α)).

From (7) we see that

Ωf (δ) =
∑

α,β:j<c,n<c

(AΦ(δ#β, δ#α)f(β), f(α))

+
∑

α,β:j≥c or n≥c

(AΦ(β, α)f(β), f(α)).

which shows that the summands in Ωf and Ωf (δ) corresponding to
j ≥ c or n ≥ c are equal. Hence we may disregard them, because for
our purpose of examining BC we shall be interested only in estimating
the quantity Ωf−Ωf (δ). Thus with no loss of generality we may assume
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that, given δ = (c, d), we consider only functions f ∈ F (G#, H) such
that the corresponding functions h defined by (2) vanish off a subset
{j0, . . . , jμ} satisfying j0 < · · · < jμ < c. Let us fix such f . Then

Ωf (δ) =
∑

j<c,n<c

(AΦ(δ#β, δ#α)f(β), f(α))

=
∑

j<c,n<c

(π(c − n)h(n), π(c− j)h(j))

= ||
∑
j<c

π(c − j)h(j)||2 = ||g(c)||2 = ||π(c − jμ)(g(jμ) + h(jμ))||2.

The last two equalities follow from (3) and (4), respectively. Finally,
by (6), we get

Ωf − Ωf (δ) =[||h(j0)||2 − ||π(j1 − j0)h(j0)||2]
+

∑
1≤i≤μ−1

[||g(ji) + h(ji)||2

− ||π(ji+1 − ji)(g(ji) + h(ji))||2]
+ ||g(jμ) + h(jμ)||2 − ||π(c − jμ)(g(jμ) + h(jμ))||2.

Now, if each π(n) is a contraction, then Ωf − Ωf (δ) ≥ 0. Hence AΦ

satisfies BC. Conversely, suppose that BC holds. Let us fix x ∈ H and
n ∈ G+. Let μ = 0, j0 = 0, c = n, h(j0) = x, h(j) = 0 elsewhere. Then
the above sum reduces to its last two terms. Since g(j0) = 0,

0 ≤ Ωf − Ωf (δ) = ‖x||2 − ||π(n)x||2.

Hence each π(n) is a contraction.

The last part of this proof shows that BC seems to “fit” contractivity
even better than PD.
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3. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann.
123 (1951), 415 438.

4. W. Mlak, Unitary dilations in case of ordered groups, Ann. Polon. Math. 17
(1966), 321 328.

5. , Dilations of Hilbert space operators (general theory), Dissertationes
Math. 153 (1978), 1 65.

6. , Conditionally positive definite functions on linear spaces, Ann. Polon.
Math. 42 (1983), 187 239.

7. F.H. Szafraniec, Dilations on involution semigroups, Proc. Amer. Math. Soc.
66 (1977), 30 32.

8. B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which
extend beyond the space, Appendix to F. Riesz and B. Sz.-Nagy Functional analysis,
Ungar, New York, 1960.

9. and C. Foias, Harmonic analysis of operators in Hilbert space, North
Holland, Amsterdam - London; Elsevier, New York, 1970.

10. W. Szymanski, Coisometric extensions of contraction semigroups, Proc.
Amer. Math. Soc. 97 (1986), 418 422.

11. , Positive forms and dilations, Trans. Amer. Math. Soc. 301 (1987),
761 780.

12. , Dilations and subnormality, Proc. Amer. Math. Soc. 101 (1987),
251 259.

Department of Mathematics and Computer Science, West Chester
University, West Chester, PA 19383


