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ON ALMOST COMMUTING HERMITIAN OPERATORS

STANISLAW J. SZAREK

ABSTRACT. It is an old problem in operator theory
whether a pair of norm one compact Hermitian operators with
“small” (in norm) commutator can be “well” approximated by
a commuting pair of Hermitian operators. We show that, for
operators of rank not exceeding n, such approximants exist
provided ||[A, B]||/n1/2 is small. This improves a result of
Pearcy and Shields and sheds some new light on the original
question and its relationship to a few related ones.

The following is an old question in the “local” operator theory
(cf. [8]): If two norm one compact Hermitian operators have small
commutators, are they close to a commuting pair? More precisely,

Given ε > 0, does there exist δ > 0 such that,
whenever A,B are norm one, compact Hermitian
operators on a Hilbert space with ||[A,B]|| ≤ δ,
then one can find (compact Hermitian operators)
A1, B1 satisfying ||A1 − A|| ≤ ε, ||B1 − B|| ≤ ε and
[A1, B1] = 0?

(1)

We are going to refer to (1) as the Main Problem. An equivalent
version follows: If T is a norm one compact operator with “small”
selfcommutator [T ∗, T ], is T “close” to a normal operator? This one is
clearly related to the work of Brown, Douglas, Filmore [3] on essentially
normal operators. By approximation, questions of the above type
reduce to the case of operators acting on finite dimensional spaces (i.e.,
to matrices) with dimension-free dependence of δ on ε.

Two positive results in the direction of the Main Problem are cer-
tainly worth mentioning. First, it was proved by Pearcy and Shields
[7] that, if just one of the operators is assumed to be Hermitian and they
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act on an n-dimensional space, then (1) holds with non-dimension-free
dependence of δ on ε, namely, δ = ε2/(n− 1). Secondly, Davidson [5]
proved the following absorption theorem: If A,B have small commuta-
tors, then there exists a commuting pair C,D of Hermitian operators
such that A⊕C and B⊕D are close to a commuting pair (moreover, C
and D can be chosen to act on a space of the same dimension as that
of A and B). This was later used to deduce a quantitative version of
the theorem of Brown-Douglas-Filmore by Berg and Davidson [1].

On the other hand, a number of analogues of the Main Problem were
shown to be false: the one, obtained by replacing everywhere the word
“Hermitian” by “unitary,” by Voiculescu [9] and the one for “arbitrary”
operators by Choi [4]. In both cases a sequence of pairs of rank n
operators is constructed, for which the norm of the commutator does
not exceed C/n, while the distance from a commuting pair is at least
c, where C, c > 0 are numerical constants.

The purpose of this paper is to give an (asymptotic) improvement
of the result of Pearcy and Shields in the case when both A and B
are Hermitian, which shows that the situation in the Hermitian setting
is completely different than in the “unitary” or “arbitrary” cases. A
counterexample to the Main Problem, if it exists, must be of different
nature than those from [4] or [9]. Our main result is

THEOREM. There exists a positive constant c such that, whenever n
is a positive integer, ε > 0 and A,B are two Hermitian Hilbert space op-
erators of rank at most n satisfying ||[A,B]|| ≤ δ ≡ cε13/2n−1/2, ||A|| ≤
1, ||B|| ≤ 1, then there exist commuting Hermitian operators A1, B1

such that ||A1 −A|| ≤ ε and ||B1 −B|| ≤ ε.

We have an immediate

COROLLARY. If n, ε, δ are as in the Theorem and T is a rank n Hilbert
space operator such that ||T || ≤ 1 and ||[T ∗, T ]|| ≤ δ, then there exists
a normal operator N with ||N − T || ≤ ε.

PROOF. Apply the Theorem with A = ReT and B = ImT .
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REMARKS. (1) The dependence of δ on ε is certainly not optimal, one
can easily reduce the exponent 13/2 at the cost of making the argument
more complicated. The best possible exponent is clearly 2 (as in [7])
and in that case the hypothesis that A,B are of norm ≤ 1 wouldn’t
be necessary. We did not work hard on optimizing the exponent; our
main point is that ε = o(1) if δ = o(n−1/2). On the other hand,
the exponent “−1/2” in n−1/2 does not seem to be easily improvable
without introducing new ideas into argument.

(2) Our argument is very strongly based on [5], where a deep analysis
of the Main Problem was presented and where most of the ideas used
here appear explicitly or implicitly. Our contribution consists mainly
of the explicit condition on m, s and ε in the Proposition below, the
argument leading to it and observing that it may be useful.

(3) The noncompact version of the Main Problem is also false due to
an index obstruction (see Berg and Olsen [2]). See also [4] for other
relevant references.

For the proof of the Theorem we will need the following technical
result, inspired by question (Q ′) from [5] (see also Theorem 5.2 there).

PROPOSITION. There exists c > 0 such that, whenever ε ∈ (0, 1), m, s
are positive integers with m < cε9s, H = ⊕0≤j≤sH j (an orthogonal
decomposition) with min0≤j≤s dimH j ≤ m for all j, and B (a selfad-
joint operator on H , 0 ≤ B ≤ 1) is block tridiagonal with respect to
H j’s (i.e., BH i⊥H j if |i − j| > 1), then there exists an orthogonal
projection P with H 0 ⊂ ran(P ),H s ⊂ ker(P ) and ||BP − PB|| < ε.

PROOF of the Theorem. (Assuming the Proposition). Without
serious loss of generality we can assume that 0 ≤ A,B ≤ 1 (just
replace A,B by (I + A)/2, (I + B)/2 respectively and modify the
constant c accordingly). We sketch briefly the procedure from [5], which
reduces a “Theorem-like” statement to a “Proposition-like” statement.
For completeness, we provide more of the details at the end of our
argument.

Given positive integer s (to be specified later), partition the interval
[0, 1] into subintervals I0, I1, I2, . . . , each (except possibly for the last
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one) of length ρ ≡ ε/s. Let A = ⊕j≥0Aj be the corresponding spectral
decomposition, i.e., if A acts on H , then H = ⊕j≥0H j , each Aj acts
on H j and the spectrum σ(Aj) ⊂ Ij . Let (Bij) be the matrix of B
(with operator entries) with respect to the decomposition H = ⊕H j

and let B′ be its block-triangular part (i.e., B′ = (B′
ij) with B′

ij = Bij

if |i− j| ≤ 1 and B′
ij = 0 otherwise). Then

(2) ||B −B′|| ≤ 16δρ−1

If, moreover, for every integer q ≥ 0, there is a projection L with
⊕0≤j≤qH j ⊂ ran(L),⊕j≥q+sH j ⊂ ker(L) and [L,B′] ≤ ε/5, then
there exist A1, B1 with

(3) ||A1 −A|| ≤ ε, ||B1 −B′|| ≤ 4ε/5 and [A1, B1] = 0.

Consequently, if additionally

(4) δ ≤ ε2/80s,

then also ||B1−B|| ≤ 4ε/5+16δρ−1 ≤ ε, and so (A1, B1) is the required
pair of commuting approximants.

Let us now show that the above procedure, together with our Propo-
sition, proves the Theorem. Indeed, if we set, for given q, m ≡
min0≤j≤s dimH j+q, then certainly m ≤ n/s, and so the Proposition
would yield the required projection L provided that n/s ≤ c1ε

9s or
s ≥ (c−1

1 ε−9n)1/2 (where c1 = 59c; we must change the constant due
to the fact that we are replacing ε by ε/5 in the assertion). Combining
this with (4) concludes the proof of the Theorem.

Let us recall now briefly how (2) and (3) were achieved in [5]. For (2),
take a function f ∈ L1(R ) such that ||f ||1 < 2ρ−1 and that its Fourier
transform f̂ satisfies f̂(x) = x−1 for |x| > ρ. Next let B′′ = B − B′

and define

Q =
∫
R

exp(−itA)[A,B′′] exp(itA)f(t)dt.

It is easy to check that ||Q || ≤ 2ρ−1||[A,B′′]|| ≤ 8δρ−1. On the
other hand, an examination of the scalar products 〈[A,Q ]v, u〉 and
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〈[A,B′′]v, u〉, where u and v are (any) eigenvectors of A and B respec-
tively, shows that [A,Q ] = [A,B′′]. Since Q − B′′ is block-diagonal
with respect to ⊕H j , ||B′′|| ≤ 2||Q ||, and so (2) follows.

For (3), divide ⊕H j into “superblocks” corresponding to spectral
intervals J0, J1, J2, . . . of A of length ε and let L0, L1, L2, . . . be the
projections corresponding to these “superblocks,” whose existence is
guaranteed by the Proposition. Next let A1 =

∑
i μi(Li+1−Li), where

μi is the center of Ji, and B1 =
∑

i(Li+1 − Li)B′(Li+1 − Li); (3) is
then easily checked.

It remains to prove the Proposition. We are going to need a few
auxiliary results. We start with an elementary Lemma:

LEMMA 1. If μ is a finite measure on [0, 1] and κ, η > 0, then there
exists a collection {I1, . . . , Ir} of subintervals of [0, 1] such that

(a) r ≤ 2κ−1,

(b) |Ij | ≤ κ for all j,

(c) dist(Ii, Ij) ≥ η if i �= j, and

(d) μ(∼ ∪j≤rIj) ≤ 4ηκ−1μ([0, 1]).

PROOF. (Sketch) Divide [0, 1] into subintervals of length ≤ κ/2.
Remove from each of them (except for the extreme ones) a subinterval
of length η (we may clearly assume that η < κ), which has the smallest
μ-mass. The complement of the removed intervals constitutes the
required collection.

The next lemma is a variant of Lemma 2.2 from [5] (cf. also [9]).

LEMMA 2. If E,F ′ are (orthogonal) projections with E ≤ G,
||E(I − F ′)|| ≤ α and ||F ′(I − G)|| ≤ β, then there exists F such
that E ≤ F ≤ G and ||F ′ − F || ≤ (α2 + β2)1/2.
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PROOF. Set F = E + G(E⊥ ∩ F ′), where we identify a projection
with its range (note that the two summands are orthogonal).

The following is very well-known (see, e.g., [6]).

LEMMA 3. There exists a universal positive constant M such that,
if f is a continuous function on [0, 1] with modulus of continuity ω(·)
and n ∈ N , then there exists a polynomial p of degree ≤ n such that
||f − p||∞ ≤ Mω(1/n). Moreover, the map An : f → g may be chosen
to be a positive linear operator.

PROOF of PROPOSITION. Observe first that, without serious loss of
generality, we can replace the hypothesis “minj dimH j ≤ m” by

(5) max
j

dimH j ≤ m

(one may have to change the constant c, though). Indeed, if, e.g.,
dimH i ≤ m, then we can construct another orthogonal decomposi-
tion H = ⊕0≤j≤sH ′

j with H 0 ⊂ H ′
0, H s ⊂ H ′

s and dimH ′
j ≤ m,

for j = 1, 2, . . . , s − 1, with respect to which B is also block tridiag-
onal: set H ′

i = H i,H ′
i−1 (respectively, H ′

i+1) to be the orthogonal
projection of BH ′

i onto ⊕0≤j≤−1H j (respectively ⊕0≤j≤i+1H j), etc.
Then apply the Proposition to the “middle section” of B (acting on
H ′ = ⊕1≤j≤s−1H ′

j), to obtain a projection P ′ on H ′, and finally set
P = IH′

0
⊕ P ′ ⊕ OH′

s
.

As was observed in [5], under the additional assumption (5), the
Proposition is equivalent to the following statement (cf. question (Q ′′),
end of §3 there; for f ∈ L∞(0, 1), we denote by Mf the operator of
multiplication by f acting on L2(0, 1)):

(6) Let ε,m, s be as in the Proposition and let K be anm-dimensional
subspace of L2(0, 1). Then there exists a projection P such that,
K ⊂ ran(P ) ⊂ span(M j

xK : 0 ≤ j ≤ s− 1) and ||MxP − PMx|| < ε.

Indeed, to see that (6) implies the Proposition (which is what we
need), it is enough to use the spectral theorem and approximation,
identifying Mx with B and K with H 0. We want to remark here that
if we insist only on the first of the inclusions in the condition above,
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then P can always be chosen with rankP ≤ m/ε; this can be thought
of as a weak (cf. [5], comments at the end of §3) kind of uniform
quasidiagonality of self-adjoint operators.

Now denote F = ran(P ) and observe that

||MxP − PMx|| < ε ⇔ (f ∈ F , ||f || ≤ 1 ⇒ dist(Mxf,F ) < ε).

Let ϕ1, . . . , ϕm be an orthonormal basis of K and set Φ =
(
∑

j≤m |ϕj |2)1/2. Then (i) ||Φ|| = m1/2; (ii) Φ does not depend on
the choice of (ϕj); (iii) f ∈ K , ||f || ≤ 1 ⇒ |f | ≤ Φ. Apply Lemma
1 with κ = ε, η = 2−16ε6/m and dμ = Φ2dλ, where λ denotes the
Lebesgue measure, obtaining I1, . . . , Ir, r ≤ 2ε−1. Let E(·) be the
spectral measure of Mx (i.e., for I ⊂ [0, 1], E(I) = MχI ). Given
j ∈ {1, 2, . . . , r}, consider the operator Aj = E(Ij)|K and its polar
decomposition Aj = UjQ j . Denote further, by Ej(·), the spectral
measure of Q j(≥ 0) and let

a = 2−4ε3/2, K j = Ej((a, 1])K , L = span(AjK j , j = 1, 2, . . . , r).

We now want to show that the projection PL “nearly” satisfies the
assertion of the Proposition and so, by Lemma 2, there is a “nearby”
projection which works there. To this end observe that if f ∈ K with
||f || ≤ 1, then |f | ≤ Φ and so, by Lemma 1(d),

||f −
∑
j≤r

Ajf || ≤ (2ηm/κ)1/2 ≤ (2−15ε5)1/2.

Also, for any j, ||Ajf −AjEj((a, 1])f || ≤ a and so

||
∑

j

Ajf −
∑

j

AjEj((a, 1])f || ≤ r1/2a ≤ 2−7/2ε.

Hence dist(f,L ) ≤ (2−15ε5)1/2 + 2−7/2ε < ε/8 or, in other words,

(7) ||(I − PL)PK|| ≤ ε/8.

Now let g ∈ L with ||g|| = 1. Then g =
∑

j tjAjfj with fj ∈ K j ; we
can also assume that ||Ajfj || = 1 for all j and

∑
j |tj |2 = 1. It then
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follows from the definition of K j that ||fj || ≤ a−1. Observe that if cj
is the center of Ij , then

||Mxg −
∑

j

cjtjAjfj || ≤ 1/2 max
j

|Ij | ≤ ε/2

and, consequently,

(8) dist(Mxg,L ) ≤ ε/2.

Next, for each j ≤ r, let ψj be the function which is 1 on Ij , 0 on
Ii’s for i �= j and affine on each of the intervals in the complement
of S ≡ ∪i≤rIi; then (ψj)j≤r form a partition of unity on [0, 1].
Applying Lemma 3 to each of the ψj ’s and setting γ = M/η(s − 1),
we get polynomials (pj)j≤r such that, for all j, deg pj ≤ s − 1, 0 ≤
pj(t) ≤ 1 for t ∈ [0, 1], pj(t) ≥ 1 − γ for t ∈ Ij , pj(t) ≤ γ for
t ∈ Ii, i �= j and, additionally,

∑
j pj(t) = 1 for t ∈ [0, 1]. It follows

that
∑

j |χIj
(t) − pj(t)| ≤ 2γ for t ∈ S. We now want to estimate

||∑j tjAjfj −
∑

j tjpjfj || = ||∑j tj(χIj
− pj)fj ||. One has, for t ∈ S,

|
∑

j

tj(χIj
(t) − pj(t))fj(t)| ≤ 2γmax

j
|tjfj(t)| ≤ 2γ(

∑
j≤r

|fj(t)|2)1/2

and, for t �∈ S,

|
∑

j

tj(χIj
(t) − pj(t))fj(t)| = |

∑
j

tjpj(t)fj(t)|

≤ max
j

|tjfj(t)| ≤ a−1Φ(t).

Putting these together, we get

||
∑

j

tjAjfj −
∑

j

tjpjfj || ≤ a−1(4γ2r + 2ηm/κ)1/2

≤ 24ε−3/2(8γ2ε−1 + 2−15ε5)1/2.

If now the constant c from the hypothesis is chosen small enough, then
our assumptions on s imply γ < 2−9ε3 so the above does not exceed
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ε/8. It follows that, setting G = span(M j
xK : 0 ≤ j ≤ s−1) (remember

g =
∑

j tjAjfj),
dist(g,G) ≤ ε/8

and hence

(9) ||(I − PG)PL|| ≤ ε/8.

To conclude the argument, use (7), (8) and (9) to apply Lemma 2 with
F ′ = PL, E = PK and G = PG ; this gives a projection F . It is then
easily checked that P = F satisfies the assertion of the Proposition.
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